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Abstract

Paucity of large curated hand-labeled training data

forms a major bottleneck in the deployment of machine

learning models in computer vision and other fields. Re-

cent work (Data Programming) has shown how distant su-

pervision signals in the form of labeling functions can be

used to obtain labels for given data in near-constant time.

In this work, we present Adversarial Data Programming

(ADP), which presents an adversarial methodology to gen-

erate data as well as a curated aggregated label, given a

set of weak labeling functions. We validated our method on

the MNIST, Fashion MNIST, CIFAR 10 and SVHN datasets,

and it outperformed many state-of-the-art models. We con-

ducted extensive experiments to study its usefulness, as well

as showed how the proposed ADP framework can be used

for transfer learning as well as multi-task learning, where

data from two domains are generated simultaneously using

the framework along with the label information. Our fu-

ture work will involve understanding the theoretical impli-

cations of this new framework from a game-theoretic per-

spective, as well as explore the performance of the method

on more complex datasets.

1. Introduction

Curated labeled data is a key building block of modern

machine learning algorithms, and a driving force for deep

neural network models. The large parameter space of deep

models requires very large labeled datasets to build effec-

tive models that work in practice. However, this inherited

dependency on large curated labeled data has become the

major bottleneck of progress in the use of machine learn-

ing and deep learning in computer vision and other domains

[41]. Creation of large scale hand-annotated datasets in ev-

ery domain is a challenging task due to the requirement for

extensive domain expertise, long hours of human labor and

time - which collectively make the overall process expen-

sive and time-consuming. Even when data annotation is

carried out using crowdsourcing (e.g. Amazon Mechani-

cal Turk), additional effort is required to measure the cor-

rectness (or goodness) of the obtained labels. We seek to

address this problem in this work. In particular, we focus

on automatically learning the parameters of a given joint

image-label probability distribution (as provided in training

image-label pairs) with a view to automatically create la-

beled datasets.

To achieve this objective, we exploit the use of distant

supervision signals to generate labeled data. These distant

supervision signals are provided to our framework as a set

of weak labeling functions which represent domain knowl-

edge or heuristics obtained from experts or crowd annota-

tors. Writing a set of labeling functions (as we found in

our experiments) is fairly easy and quick, and can then be

used in our framework to generate data as well as associated

labels. More interestingly, such labeling functions are of-

ten easily generalizable, thus allowing our framework to be

extended to transfer learning and multi-task learning (dis-

cussed in Section 5). Figure 1 shows a few examples of our

results to illustrate the overall idea.

In practice, labeling functions can be associated with two

kinds of dependencies: (i) relative accuracies, which mea-

sure the correctness of the labeling functions w.r.t. the true

class label; and (ii) inter-function dependencies that cap-

ture the relationships between the labeling functions with

respect to the predicted class label. In this work, we have

proposed a novel adversarial framework using Generative

Adversarial Networks (GANs) that learns these dependen-

cies along with the data distribution using a minmax game.

Our GAN learns to generate a joint data-label distribution

using a generator block, a discriminator block and a La-

beling Functions Block (LFB), which contains another dis-

criminator that helps in learning the two kinds of depen-

dencies mentioned above. The overall architecture of the

proposed ADP architecture is presented in Figure 2a.

Our broad idea of learning relative accuracies and inter-

function dependencies of labeling functions is inspired by
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Figure 1: (a) Sample results of image-label pairs generated using the proposed ADP framework trained on CIFAR-10, MNIST and SVHN

datasets (top to bottom respectively). Note that the label is generated by our model; (b) Demonstration of cross-domain multi-task learning

using ADP , where the same model generates data from both Fashion MNIST and LookBook datasets (Section 5). Note that Fashion

MNIST is grayscale while LookBook is color, and the model still generates both data effectively; (c) Demonstration of transfer learning of

our ADP from MNIST dataset (source domain) to generate image-label pairs on the SVHN dataset (target domain).

the recently proposed Data Programming (DP) framework

[36] (and hence, the name ADP), but our method is differ-

ent in many ways: (i) DP is a strict conditional model (i.e.

P (ỹ|x)) that requires additional unlabeled data points even

at test time, while our model is a joint distribution model,

i.e. P (x, y); (ii) DP learns a generative model using Maxi-

mum Likelihood Estimation (MLE) and gradient descent to

learn the relative accuracies of labeling functions. We how-

ever replace this approach with a GAN-based adversarial

estimation of parameters. [11] and [42] provide insights on

the advantage of using a GAN-based estimator over MLE

to achieve a relatively quicker training time and good ro-

bustness on generated samples. (iii) In order to learn the

statistical dependencies of labeling functions, we use an ad-

versarial approach as an estimator (hence the second dis-

criminator in Section 3.3.2) to replace the computationally

expensive factor graph and Gibbs sampling techniques to

update the gradient in each step.

As our outcomes of this work, we show how a set of low-

quality, weak labeling functions can be used within a frame-

work that models a joint data-label distribution to generate

robust samples. We also show that this idea can be general-

ized quite easily to transfer learning and multi-task learning

settings. To summarize:

• We propose a novel adversarial framework, ADP , to

generate robust data-label pairs that be used to obtain

datasets in domains that have very little data and thus

save human labor and time.

• We show how an adversarial framework can be used to

learn dependencies between weak labeling functions

and thus provide high-fidelity aggregated labels along

with generated data in a GAN setting.

• The proposed framework can also be used in a transfer

learning setting where ADP can be trained on a source

domain, and then finetuned on a target domain to then

generate data-label pairs in the target domain.

• We also show the potential of this ADP framework

to generate cross-domain data in a multi-task setting,

where images from two domains are generated simul-

taneously by the model along with the labels.

2. Related Work

Data augmentation seems a natural answer to the scarcity

of curated hand-labeled training data. However, heuris-

tic data augmentation techniques like [15] and [19] use

a limited form of class-preserving image transformations.

Interpolation-based methods proposed in [13] and class-

conditional models of diffeomorphisms proposed in [20] in-

terpolate between nearest-neighbor labeled data points.

In this work, we choose to use a more intuitive way of

creating labeled data by learning a joint distribution model.

Learning a joint data-label distribution using generative

models such as [14], [18], and [28] is non-trivial, since the

label often requires domain knowledge and not directly in-

ferrably from data. Our proposed model hence uses dis-

tant supervision signals (in the form of labeling functions)

to generate novel labeled data points. Distant supervision

signals such as labeling functions are cheaper than man-

ual annotation of each data point, and has been successfully

used in recent methods such as [36]. Ratner et al. pro-

posed a generative model in [36] that uses a fixed number

of user-defined labeling functions to programatically gener-

ate synthetic labels for data in near-constant time. DP out-

performed number of approaches such as multiple-instance

learning [38], co-training [4], crowdsourcing [17], or en-

semble based weak-learner method like boosting [40], thus

reinforcing our choice in this work. The popular SMOTE

algorithm [7] performs oversampling to reduce class imbal-

ance and augment the given data. Unfortunately, all of these

methods vastly depend on hand-tuned parameters, the order

of geometric transformations, the optimal value of transfor-
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Figure 2: (a) Overall architecture of the Adversarial Data Programming (ADP) framework; (b) Example of a set of labeling functions

mation parameters, etc. as studied in [37], [10] and [15]).

Alfonseca et al. [1] generated additional training data us-

ing hierarchical topic models for weak supervision. Heuris-

tics for distant supervision are also proposed in [6], but this

method does not model the inherent noise associated with

such heuristics. Structure learning [43], [37] also exploits

the use of distant supervision signals for generating labels,

but as described in Section 1, these methods like [36] re-

quire unlabeled test data to generate a labeled dataset. Addi-

tionally, [36], [37] and [43] are computationally expensive

due to the use of Gibbs sampling in MLE.

We instead use an adversarial approach to learn the joint

distribution by weighting a set of domain-specific label

functions using a Generative Adversarial Network (GAN).

GAN [18] approximates the real data distribution by op-

timizing a minmax objective function and thus generates

novel out-of-sample data points. Broadly, GAN can be

viewed in terms of three manifestations: (i) GANs can be

trained to sample from a marginal distribution P (x) [12],

[35][2], where x refers to data. (ii) Recent efforts in lit-

erature such as Conditional GAN [31], Auxiliary Classi-

fier GAN [34] and InfoGAN [9] show training of GANs

conditioned on class labels y to thus sample from a condi-

tional distribution, i.e. P (x|y). Other state-of-the-art mod-

els with similar objectives have exploited other modalities

for the same purpose; for example, Zhang et al [49] pro-

pose a GAN conditioned on images, while Hu et al [21]

propose a GAN conditioned on text. (iii) There have been a

few very recent efforts [46], [51] and [22], which attempt

to train GANs to sample from a joint distribution. For

example, CoGAN [29] introduces a parameter-sharing ap-

proach to learn an unpaired joint distribution between two

domains, while TripleGAN [27] brings together a classifier

along with the discriminator and generator which helps in a

semi-supervised setting. In this work, we propose a novel

idea to instead use distant supervision signals to accomplish

learning the joint distribution of labeled images. We now

describe the proposed methodology.

3. Adversarial Data Programming (ADP):

Methodology

Our central aim in this work is to learn parameters of a prob-

abilistic model:

P (x, y) (1)

that captures the joint distribution over the data x and the

corresponding labels y, thus allowing us to generate out-

of-sample data points along with their corresponding labels

(we focus on images in the rest of this paper).

While recent efforts such as [29] and [16] have con-

sidered complementary objectives, they largely focused on

learning joint probability distributions in cross-domain un-

derstanding settings. In this work, we focus on learning the

joint image-label probability distribution with a view to au-

tomatically create labeled datasets, by exploiting the use of

distant supervision signals to generate labeled data. To the

best of our knowledge, this is the first such work that in-

vokes distant supervision while learning the joint distribu-

tion P (x, y), so as to generate labeled data points at scale

from P (x, y). Besides, automatic generation of labels for

data based on training data-label pairs is non-trivial, and

often does not work directly. Distant supervision provides
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us a mechanism to achieve this challenging goal. We en-

code distant supervision signals as a set of (weak) defini-

tions by annotators using which unlabeled data points can

be labeled. These definitions can be harvested from knowl-

edge bases, domain heuristics, ontologies, rules-of-thumb,

educated guesses, decisions of weak classifiers or obtained

using crowdsourcing. Many application domains have such

distant supervision available in different means through do-

main knowledge or heuristics, which can be leveraged in

the proposed framework. We provide examples in Section

4 when we describe our experiments.

We encapsulate all available distant supervision sig-

nals, henceforth called labeling functions, in a unified ab-

stract container called Labeling Functions Block (LFB, see

Figure 2a). Let LFB comprise of n labeling functions

λ1, λ2, · · · , λn, where each labeling function is a mapping:

λi : xj → Λij (2)

that maps a data point xj to a m-dimensional probabilistic

label vector, Λij ∈ R
m, where m is the number of class

labels with
∑

m Λij = 1 and 0 ≤ Λk
ij ≤ 1 for each k ∈

{1, · · · ,m}. For example, xj could be thought of as an

image from the MNIST dataset, and Λij ∈ R
10 would be

the corresponding label vector when the labeling function

λi is applied to xj . Λij , for instance, could be the one-hot

10-dimensional class vector, see Figure 2b.

We characterize the set of labeling functions, {λi, i =
1, · · · , n}, with two kinds of dependencies: (i) relative ac-

curacies of the labeling functions with respect to the true

class label of a given data point; and (ii) inter-function de-

pendencies that capture the relationships between the label-

ing functions with respect to the predicted class label. To

obtain a final label y for a given data point x using the LFB,

we use two different sets of parameters, Θ and Φ to capture

each of these dependencies between the labeling functions.

We, hence, denote the Labeling Function Block (LFB) as:

LFBλ,Θ,Φ : xj → Λj (3)

i.e. given a set of labeling functions λ, a set of parame-

ters capturing the relative accuracy-based dependencies be-

tween the labeling functions, Θ, and a second set of param-

eters capturing inter-label dependencies, Φ, LFB provides

a probabilistic label vector, Λj , for a given data input xj .

The joint distribution we seek to model in this work

(Equation 1) hence becomes:

P (x, LFBλ,Θ,Φ(x)) (4)

In the rest of this section, we show how we can learn the

parameters of the above distribution modeling image-label

pairs using an adversarial framework with a high degree

of label fidelity. We use Generative Adversarial Networks

(GANs) to model the joint distribution in Equation 4. In

particular, we provide a mechanism to integrate the LFB

(Equation 3) into the GAN framework, and show how Θ
and Φ can be learned through the framework itself. Our

adversarial loss function is given by:

minmaxL(G,D) = E(x,y)∼Preal(x,y) log(D(x, y))+

E(x̃,Λ)∼Pfake(z) log(1−D(x̃,Λ))

(5)

where G is the generator module and D is the discrimina-

tor module. The overall architecture of the proposed ADP

framework is shown in Figure 2a.

This approach has a few advantages: (i) labeling func-

tions (which can even be just loosely defined) are cheaper

to obtain than collecting labels for a large dataset; (ii) label-

ing functions can help bring domain knowledge into such

generative models; (iii) labeling functions act as an implicit

regularizer in the label space, thus allowing good general-

ization; (iv) with a small fine-tuning, labeling functions can

be easily re-purposed for new domains (transfer learning),

as we describe later in this paper.

The ADP architecture is designed to learn the parameters

required to model the joint distribution in Equation 4, and

thus generate out-of-sample image-label pairs. This archi-

tecture is broadly divided into three modules: the generator,

discriminator and the LFB. We now describe each of these

modules individually.

3.1. The ADP ­ Generator

Given a noise input z and a set of labeling functions λ,

the generator G outputs an image x and the parameters Θ
and Φ, the dependencies between the labeling functions de-

scribed earlier. In particular, G consists of three blocks:

Gcommon, Gimage and Gparameter, as shown in Figure 2a.

Gcommon captures the common high-level semantic rela-

tionships between the data and the label space, and is com-

prised only of fully connected (FC) layers. The output of

Gcommon forks into two branches: Gimage and Gparameter,

where Gimage generates the image x̃, and Gparameter gen-

erates the parameters (Θ,Φ). While Gparameter uses FC

layers, Gimage uses Fully Convolutional (FCONV) layers

to generate the image (more details in Section 4). Thus, the

generator G outputs (x,Θ,Φ) given input z ∼ N (0, I), the

standard normal distribution.

3.2. The ADP ­ Discriminator

The discriminator D of ADP estimates the likelihood of

an image-label input pair being drawn from the real dis-

tribution obtained from training data. D takes a batch of

image-label pairs as input and maps that to a probabil-

ity score to estimate the aforementioned likelihood of the

image-label pair. To accomplish this, D has two branches:

Dimage and Dlabel (shown in the Discriminator block in
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Figure 2a). These two branches are not coupled in the ini-

tial layers, so as to separately extract required low-level fea-

tures. The branches share weights in later layers to extract

joint semantic features that help D classify correctly if an

image-label pair is fake or real. We hence expand our ob-

jective function from Equation 5 to the following:

minmaxL(G,Dimage, Dlabel) =

E(x,y)∼Preal(x,y) log(Dimage(x))

+ Ez∼N (0,I) log(1−Dimage(Gimage(z)))

+ E(x,y)∼Preal(x,y) log(Dlabel(y))

+ Ez∼N (0,I) log(1−Dlabel(LFB(G(z))))

(6)

3.3. The ADP ­ Labeling Function Block

This is a critical module of the proposed ADP frame-

work. Our initial work revealed that a simple weighted

(linear or non-linear) sum of the labeling functions do not

perform well in generating out-of-sample image-label pairs.

We hence used a separate adversarial methodology within

this block to learn the dependencies. We describe the com-

ponents of the LFB below.

3.3.1 Relative Accuracies of Labeling Functions

The output, Θ, of the Gparameter block in the ADP-

Generator G provides the relative accuracies of the labeling

functions. Given the image output generated by Gimage: x̃,

the labeling functions {λ1, · · · , λn}, and the probabilistic

label vectors {Λi, i = 1, · · · , n} obtained using the label-

ing functions (as in Eqn 2), we define the aggregated final

label as:

ỹ =

n∑

i=1

θ̃iΛi = Θ̃ · Λ (7)

where θ̃i is the normalized version of θi, i.e. θ̃i =
θi∑

n
k=1

θk
.

The aggregated label, ỹ, is provided as an output of the LFB.

3.3.2 Inter-function Dependencies

Our empirical studies with considering only relative accu-

racies of labeling functions as a weighting mechanism led

to mode collapse in the joint distribution space, a well-

understood problem in GANs. Our preliminary empirical

studies demonstrated mode collapse in the joint distribution

space - either images of same class with different labels, or

images of different classes with same label were generated

(please see Fig 3). The rationale behind taking two discrim-

inators is to penalize the missing modes. Related literature

[36] shows that inter-functional dependencies act as an im-

plicit regularizer in the label space. We hence introduced

an adversarial mechanism inside the LFB to influence the

Algorithm 1: Procedure to compute Φreal

Input: Labeling functions {λ1, · · · , λn}, Relative

accuracies θ1, · · · , θn, Output probability vectors of

labeling functions Λ1, · · · ,Λn

Output: Φreal

Set Φreal = I(n, n);
/* I = Identity Matrix */

for i = 1 to n do

/* For each labeling function */

for j = i+ 1 to n do

/* For each other labeling function */

/* If one-hot encoding of the outputs

of two functions match, increment

(i, j)th entry in Φreal by 1 */

Φreal(i, j) =
Φreal(i, j) + OneHot(θiΛi) · OneHot(θjΛj);

end

end

for p = 1 to n do

Φreal(p, .) =
Φreal(p,.)∑

n
u=1

Φreal(p,u)
;

end

Set Φreal = Φreal +ΦT
real − diag(Φreal)

/* Complete matrix using symmetry */

Figure 3: Generated data over epochs (in blue): (1) ADP without

inter-functional dependencies, (2) ADP with inter-functional de-

pendencies. Data from true distribution (8 different Gaussians) in

red.

final relative accuracies, θ̃, using the inter-function depen-

dencies between the labeling functions. DLFB , a discrim-

inator inside LFB, receives two inputs: Φ, which is output

by Gparameter, and Φreal, which is obtained from Θ using

the procedure described in Algorithm 1.

Algorithm 1 computes a matrix of interdependencies be-

tween the labeling functions, Φreal, by looking at the one-

hot encodings of their predicted label vectors. If the one-

hot encodings match for a given data input, we increase the

count of their correlation by one, and compute this matrix

across a particular mini-batch of data points under consid-

eration. The counts are then normalized row-wise to ob-

tain Φreal. The task of the discriminator is to recognize the

computed interdependencies as real, and the Φ generated

through the network in Gparameter as fake. The gradient
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backpropagated through this discriminator to the G block is

critical as a regularizer in learning a better Θ, which is fi-

nally used to weight the labeling functions (as in Section

3.3.1). Combining the gradient information from DLFB

along with D, penalizes missing modes and helps G to gen-

erate more variety in the samples. The objective function of

our second adversarial module is hence:

minmaxL(DLFB , G) =

+ Ez∼N (0,I) log(DLFB(Φreal(z)))

+ Ez∼N (0,I) log(1−DLFB(Φ(z)))

(8)

where Φreal and Φ are obtained from Gparameter(z) as de-

scribed above. More details of the LFB are provided in

implementation details in Section 4. The overall architec-

Type Labeling Functions used

Heuristic Presence of long edges (vertical or horizon-

tal) [30]; Image histogram

Image Process-

ing based

Bag-of-feature [39]; Haar wavelet [8];

Discrete-continuous ADM [25]; Compres-

sive sensing [50]

Deep Learning

based

Convolution kernels from last conv layer

(before fully connected layers) of LeNet

Table 1: Labeling functions used for MNIST and SVHN datasets,

both of which represent the digit recognition task

ture of ADP (Figure 2a) is trained using end-to-end back-

propagation with gradients from both discriminators, D and

DLFB , influencing the weights learned inside the generator

G. Mini-batches of image-label pairs from a given training

distribution are provided as input to ADP , and Stochastic

Gradient Descent (SGD) is used to learn the parameters of

the model. At the end of training, we define the aggregated

final label as:

ỹ = Θ̃ · ΦT · Λ (9)

the samples (x̃, ỹ) generated using the G and LFB mod-

ules thus provide samples from the desired joint distribution

(Eqn 1) modeled using the framework.

4. Experiments and Results

4.1. Datasets

We validated the ADP framework on standard datasets:

MNIST [26], Fashion MNIST [45], SVHN [33], and

CIFAR-10 [23] with no additional pre-processing on the

datasets.1.

4.2. Labeling Functions

Labeling functions form a critical element of ADP , and

we used different cues from state-of-the-art algorithms to

help obtain labeling functions for our experiments. Table 1

shows the labeling functions we used for our experiments

1Code available at https://github.com/ArghyaPal/

Adversarial-Data-Programming

Type Labeling Functions used

Heuristic PatchMatch [3]; Blob Detection; Presence

of edges [1]; Textons; Image histogram

Image Process-

ing based

Global descriptor (GIST-based) [32]; Lo-

cal descriptor (SIFT-based) [48]; Bag-of-

visual-words; Histogram of Oriented Gra-

dient (HOG)-based: HoGgles [44]

Deep Learning

based

Convolution kernels from last conv layer

(before fully connected layers) of (Ima-

geNet) pre-trained AlexNet

Table 2: Labeling functions used for CIFAR 10 and Fashion

MNIST datasets

Heuristic Image Processing Deep Learning

MNIST 43 10 1

Fashion-MNIST 50 6 1

SVHN 43 10 2

CIFAR 10 46 18 2

Table 3: Number of labeling functions used for different datasets

on MNIST and SVHN (digit recognition problems), and

Table 2 shows the functions used for CIFAR and Fashion-

MNIST. We categorized labeling functions as: (i) Heuristic;

(ii) Image processing-based; and (iii) Deep learning-based

labeling functions (as in Tables 1 and 2). Table 3 presents

the statistics of the number of labeling functions used for

each of the considered datasets (the empirical study that

motivated these choices is presented in Section 5). In this

work, for each labeling function, a simple threshold rule on

the L2-norm of the aforementioned features is used, where

the threshold is obtained empirically as the mean of the L2-

norms of a randomly chosen subset, which is α-trimmed

to remove outliers. More examples of labeling functions

and ablation studies on their usefulness are presented in the

Supplementary Section.

4.3. Implementation Details

Gcommon has 3 dense fully connected layers (FC) (128

nodes per layer) with batch-normalization. Gimage contin-

ues with fractional length convolutional layers, similar to

[29] (FCONV: 1024 nodes per layer, Kernel size: 4 × 4,

Stride: 1, followed by batch-normalization and Parame-

terized ReLU), and generates image x. Gparameter uses

FC layers and generates Θ,Φ. The discriminator network

D follows the “in-plane rotation” network of [29]. Dlabel

is a stack of FC layers. Both Dimage and DLFB have 2

FCONV layers followed by FC layers. We trained the com-

plete model with mini-batch Stochastic Gradient Descent

(SGD) using a batch size of 128, learning rate of 0.0001,

momentum factor of 0.5 and Adam as an optimizer.

4.4. Comparison with State­of­the­Art Models

Qualitative Results: We compared our method against

other generative methods that allow generation of data

along with a label: Conditional GAN or CGAN [18], AC-

GAN [34], InfoGAN [9], CoGAN [29] and TripleGAN
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Figure 4: (Best viewed in color) Image-label pairs generated by training on CIFAR10 dataset using CGAN, ACGAN, InfoGAN, CoGAN,

TripleGAN and our method, ADP . For a given model, the columns of images represents generations after 0.1k, 20k, 40k, 50k epochs, and

the rows correspond to the associated class label. ‘ap’ stands for airplane, and ‘am’ stands for the automobile class of CIFAR 10 dataset.

Note the clarity of generations of the proposed method.

Dataset Image Quality Image-Label Correspondence

ACGAN CGAN InfoGAN TripleGAN ADP ACGAN CGAN InfoGAN TripleGAN ADP

MNIST 9.02±0.1 9.11±0.2 9.54±0.3 9.6± 0.4 9.46±0.3 8.27±0.3 9.11±0.2 9.78±0.2 9.6± 0.4 9.92± 0.1

FMNIST 9.32±0.4 8.89±0.3 9.10±0.3 9.2± 0.2 9.33± 0.6 8.8± 0.1 8.89±0.3 9.27±0.4 9.2± 0.2 9.93± 0.1

SVHN 5.3± 0.2 4.91±0.5 7.71±0.1 8.6± 0.3 8.86± 0.3 8.53±0.3 8.91±0.0 9.08±0.1 9.75± 0.2 9.72±0.3
CIFAR10 4.17±0.1 4.36±0.2 6.23±0.2 8.5± 0.1 8.27±0.3 7.27±0.1 8.62±0.2 9.72± 0.1 9.68±0.3 9.49±0.5

Table 4: Human Turing Test for image quality and image-label correspondence (Section 4.4, higher the better). Note that the proposed

method, ADP performs the best in most cases, and is a close second when TripleGAN wins.

Figure 5: Transfer learning from MNIST to SVHN dataset. Digits

within parentheses indicate true label, while the other is the label

generated using our method (Section 5, Transfer Learning)

No of Labeling

Functions

MNIST F-MNIST CIFAR10 SVHN

3 70.23% 81.02% 87.39% 83.82%

25 20.32% 30.53% 42.31% 38.30%

40 1.40% 6.81% 19.93% 16.62%

50 1.33% 4.92% 18.93% 13.05%

55 1.34% 4.80% 18.45% 12.83%

65 1.31% 4.73% 18.43% 12.82%

Table 5: Performance of ADP when number of labeling functions

is varied (Section 5, Optimal Number of Labeling Functions).

[27]. We changed the use case setup of these methods to

generate data-label pairs as required. Results for CIFAR10

are shown in Figure 4, and, results for other datasets are

shown in the Supplementary Section. While some of the

aforementioned methods (such as CGAN and InfoGAN)

generate images conditioned on a given label (and hence re-

quire a label to be provided as input), the label is provided

by the model in our case.

Quantitative Results: We considered three evaluation

metrics for studying the performance of our method quanti-

tatively: (i) Human Turing Test (HTT): This metric studies

how hard it is for a human annotator to tell the difference

between real and generated samples. We asked 40 subjects

to evaluate image quality and image-label correspondence

(Table 4) on a scale of 10, given 50 random image-label

samples from the generated pool for each method consid-

ered. Table 4 shows consistently good performance of ADP

(Training Data, Test Data) Epochs

5k 10k 15k 20k 30k 40k 50k

(Real data-50K, Real data-10K) 9.83 7.3 7.12 6.3 6.1 4.3 4.19

(ADP data-50K, Real data-10K) 9.32 8.9 8.13 7.0 6.75 5.53 5.0

(Real data-50K, ADP data-10K) 9.67 9.4 7.92 7.3 6.81 6.18 5.6

(ADP-25K + Real data-25K,

Real data-10K)

8.5 6.6 6.21 5.7 5.5 4.83 3.5

(ADP-50K + Real data-50K,

Real data-10K)

7.71 6.3 6.0 5.34 3.1 2.92 2.71

Table 6: Test cross-entropy loss of ResNet-56 on CIFAR-10

dataset. (Real data-50K, Real data-10K) = standard dataset; ADP

= our method; 10/25/50K = the number of data points used in thou-

sands. In ADP-25K + Real data-25K, class ratios were maintained

as in the original dataset.

over other methods, especially in image-label correspon-

dence, which is the focus of this work; (ii) Inception Score:

The inception score, as used in [29] and [27], for the CI-

FAR 10 dataset is shown in Figure 7. The figure shows that

ADP and TripleGAN perform significantly better than the

rest of the methods (more results on other datasets included

in the Supplementary Section). We also used a Parzen win-

dow based evaluation metric, and these results are included

in the Supplementary Section.
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Figure 6: Classification performance of a pretrained ResNet model

on image-label pairs generated by various models trained on CI-

FAR 10

Figure 7: Inception scores on CIFAR 10 (Section 4.4, Quantitative

Analysis)

Classification Performance: To study the usefulness of

the generated image-label pairs, we studied the classifica-

tion cross-entropy loss of: (i) pretrained ResNet-56 model

on the image-label pairs generated by our ADP at test time

and compared our method against TripleGAN, InfoGAN,

CoGAN as well as the popular oversampling technique,

SMOTE [7] (see Figure 6), and, (ii) We trained a ResNet-56

model on the image-label pairs generated by our ADP and

tested on CIFAR-10 dataset under different settings, and the

results are shown in Table 6.

5. Discussion and Analysis

Optimal Number of Labeling Functions: We studied

the performance of ADP when the number of labeling func-

tions is varied to understand the impact of this parameter

on the performance. We studied the test cross-entropy error

of a pretrained ResNet model with image-label pairs gen-

erated by ADP, trained using different number of labeling

functions. Table 5 shows our results, suggesting that 50-55

labeling functions provides the best performance, depend-

ing on the dataset. This justifies our choice of number of

labeling functions in Table 3.

Transfer Learning: The use of distant supervision sig-

nals such as labeling functions (which can often be generic)

allows us to extend the proposed ADP model to a transfer

learning setting. In this setup, we trained ADP initially on

a source dataset and then finetuned the model to a target

dataset, with very limited training. In particular, we first

Figure 8: ADP for Multi-Task Learning: Proposed Architecture

Figure 9: Results of ADP - Multi-Task Learning on MNIST (black

and white) and SVHN (RGB) datasets: (a) Intial epochs (b) Mid-

dle of training (c) generations at higher epochs

trained ADP on the MNIST dataset, and subsequently fine-

tuned the Gimage branch alone with the SVHN dataset. We

note that the weights of Gcommon, Gparameter and DLFB

are unaltered. The final finetuned model is then used to

generate image-label pairs (which we hypothesize will look

similar to SVHN). Figure 1 shows encouraging results of

our experiments in this regard.

Multi-task Joint Distribution Learning: Learning a

cross-domain joint distribution from heterogeneous do-

mains is a challenging task. We show that the proposed

ADP method can be used to achieve this, by modifying its

architecture as shown in Figure 8, to simultaneously gener-

ate data from two different domains. We study this archi-

tecture on the MNIST and SVHN datasets, and show the

promising results of our experiments in Figure 9. The LFB

acts as a regularizer and maintains the correlations between

the domains in this case. More results on other datasets - in

particular, LookBook and Fashion MNIST - are included in

the Supplementary Section as well as Figure 1.

6. Conclusions

Paucity of large curated hand-labeled training data for
every domain-of-interest forms a major bottleneck in de-
ploying machine learning methods in practice and stan-
dard data augmentation techniques are often limited in their
scope. Our proposed ADP framework learns the joint data-
label distribution effectively using a set of weakly defined
labeling functions. The method shows promise on standard
datasets, as well as in transfer learning and multi-task learn-
ing.
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