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Abstract

The labeled data required to learn pose estimation for

articulated objects is difficult to provide in the desired quan-

tity, realism, density, and accuracy. To address this issue,

we develop a method to learn representations, which are

very specific for articulated poses, without the need for la-

beled training data. We exploit the observation that the ob-

ject pose of a known object is predictive for the appear-

ance in any known view. That is, given only the pose and

shape parameters of a hand, the hand’s appearance from

any viewpoint can be approximated. To exploit this obser-

vation, we train a model that – given input from one view

– estimates a latent representation, which is trained to be

predictive for the appearance of the object when captured

from another viewpoint. Thus, the only necessary supervi-

sion is the second view. The training process of this model

reveals an implicit pose representation in the latent space.

Importantly, at test time the pose representation can be in-

ferred using only a single view. In qualitative and quan-

titative experiments we show that the learned representa-

tions capture detailed pose information. Moreover, when

training the proposed method jointly with labeled and unla-

beled data, it consistently surpasses the performance of its

fully supervised counterpart, while reducing the amount of

needed labeled samples by at least one order of magnitude.

1. Introduction

In this work we aim to estimate the pose of the hand

given a single depth image. For this task, the best perform-

ing methods have recently relied heavily on models learned

from data [12, 37, 46, 47]. Even methods which employ a

manually created hand model to search for a good fit with

the observation, often employ such a data-driven part as ini-

tialization or for error correction [21, 49, 52, 66]. Unfortu-

nately, data-driven models require a large amount of labeled

data, covering a sufficient part of the pose space, to work

well.
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Figure 1: Sketch for learning a pose specific representation

from unlabeled data. We learn to predict a low-dimensional la-

tent representation and, subsequently, a different view of the input,

solely from the latent representation. The error of the view pre-

diction is used as feedback, enforcing the latent representation to

capture pose specific information without requiring labeled data.

However, for the task of estimating the pose of articu-

lated objects, like the human hand, it is especially expen-

sive to provide accurate annotations for a sufficient amount

of real world data. The articulated structure and specific

natural movements of the hand frequently cause strong self-

occlusions. Together with the many 3D points to be anno-

tated, this makes the annotation procedure a huge effort for

human annotators.

A largely unexplored direction to cope with this chal-

lenge is to exploit unlabeled data, which is easy to obtain

in large quantities. We make a step towards closing this

gap and propose a method that can exploit unlabeled data

by making use of a specific property of the pose estimation

task. We rely on the observation that pose parameters1 are

predictive for the object appearance of a known object from

any viewpoint. That is, given the pose parameters of a hand,

the hand’s appearance from any viewpoint can be estimated.

The observation might not seem helpful upfront, since it as-

sumes the pose – which we want to estimate – to be given.

1For the sake of clarity, here, pose parameters denote the parameters

defining the skeleton, including its size, as well as a rough shape
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However, the observation becomes helpful if we capture the

scene simultaneously from different viewpoints.

By employing a different camera view, we can guide the

training of the pose estimation model (see Fig. 1). The guid-

ance relies on the fact that from any set of pose parameters,

which accurately specify the pose and rough shape of the

hand, we necessarily need to be able to predict the hand’s

appearance in any other view. Hence, by capturing another

view, this additional view can be used as a target for training

a model, which itself guides the training of the underlying

pose representation.

More specifically, the idea is to train a model which –

given the first camera view – estimates a small number of la-

tent parameters, and subsequently predicts a different view

solely from these few parameters. The intuition is that the

small number of parameters resemble a parameterization of

the pose. By learning to predict a different view from the

latent parameters, the latent parameters are enforced to cap-

ture pose specific information. Framing the problem in this

way, a pose representation can be learned just by captur-

ing the hand simultaneously from different viewpoints and

learning to predict one view given the other.

Given the learned low-dimensional pose representation,

a rather simple mapping to a specific target (e.g., joint posi-

tions) can be learned from a much smaller number of train-

ing samples than required to learn the full mapping from

input to target. Moreover, when training jointly with la-

beled and unlabeled data, the whole process can be learned

end-to-end in a semi-supervised fashion, achieving similar

performance with one order of magnitude less labeled sam-

ples. Thereby, the joint training regularizes the model to

ensure that the learned pose representation can be mapped

to the target pose space using the specified mapping.

We show the specificity of the learned representation and

its predictiveness for the pose in qualitative and quantitative

experiments. Trained in a semi-supervised manner, the pro-

posed method consistently outperforms its fully supervised

counterpart, as well as the state-of-the-art in hand pose es-

timation – even if all available samples are labeled. For the

more practical case, where the number of unlabeled sam-

ples is larger than the number of labeled samples, we find

that the proposed method performs on par with the baseline,

even with one order of magnitude less labeled samples.

2. Related work

Traditionally, works on hand pose estimation have

been divided into model-based and data-driven approaches.

Model-based approaches [5, 28, 38, 44, 62] search to pa-

rameterize a manually created hand model in each frame

such that it best fits the observation. These approaches usu-

ally need to rely on an initialization, e.g., from previous

frames, and thus, have problems to recover if pose estima-

tion fails once. Data-driven approaches [12, 18, 34, 48],

on the other hand, learn a mapping from the input frame

to a target pose from a usually large number of annotated

training samples. These approaches assume that the poses

seen at test time are at least roughly covered by the training

set and will otherwise fail to deliver a good estimate. With

the desire to combine the merits of both strands, researchers

have developed hybrid approaches [30, 42, 52, 66, 73]. But

again, the effectiveness of hybrid approaches is crucially af-

fected by the density of the annotations available for train-

ing the data-driven part.

Data annotation To provide a large number of labeled

samples, (semi-)automatic methods were employed to con-

struct the relevant publicly available training sets. Most of-

ten model-based approaches with the above mentioned is-

sues were used to provide (initial) annotations, which were

manually corrected [46, 48, 55]. Other efforts include the

development of an annotation procedure [35] to propagate

annotations to similar frames, or attaching 6D magnetic

sensors to the hand [61, 67], which resulted in the largest

dataset to date [67]. These efforts underline the difficulties

to provide sufficient labeled data, hampering novel applica-

tions, which might rely on different viewpoints or sensors.

Learning from unlabeled data At the same time, cap-

turing unlabeled data is easy, and considering the way how

we make use of such unlabeled data, several strands of prior

work are related to our method. The scheme of predicting

another view from the learned latent representation is, e.g.,

akin to the concept of autoencoders, where the input is re-

constructed from the latent representation [13, 57]. Instead

of reconstructing the input, we learn to predict a different

view. This enables the model to capture pose specific rep-

resentations as the results in §4.3 clearly point out.

Similarly, our work is also related to a strand of works on

representation learning from unlabeled data which split the

input data into parts and have the model learn relations be-

tween the parts [6, 39, 40, 68, 70]. For instance, Doersch et

al. [6] learn to predict the relative position of patches sam-

pled from an image, which should be possible if a model

has learned to extract semantics. Similarly, this has been

targeted by, e.g., relating tracked patches [60], solving jig-

saw puzzles [32] or colorizing images [23]. While our work

can be considered similar in spirit, our main objective is to

learn a pose specific representation in the latent space, for

which a crucial enabler is to employ multiple viewpoints.

Learning from multiple views An early example for

representation learning from multiple views is Canonical

Correlation Analysis (CCA) [15] of which various multi-

layered, non-linear variants have been proposed [2, 3, 24,

59]. The goal of CCA is to relate variables among different

views by learning projections which maximize the correla-

tion between different views.
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Researchers have also started to employ multiple camera

views to learn depth prediction or 3D object reconstruction

from unlabeled data [9, 17, 63]. Garg et al. [9] propose

an approach to monocular depth estimation, for which the

loss is based on the photo consistency of the projected pix-

els in the second view of a stereo image pair. Similarly,

Xie et al. [63] target generating a stereo pair from a single

view. Several works add upon this line of research, e.g.,

by incorporating sparse and noisy depth labels [22], adding

a left-right consistency constraint [10], jointly estimating

camera pose and depth [71], or learning to reconstruct full

3D [51, 56, 65].

In these works the desired target (e.g., depth or disparity)

can directly be linked to the training loss via geometric re-

lations and, therefore, only the intermediate latent represen-

tations have to encode some kind of semantics of the scene

and objects therein. In our case, the target itself is more

explicit semantic (e.g., joint positions or labels, resp.) and

we show how to formulate the task such that our learned la-

tent representation closely resembles what we are targeting,

namely the pose. The formulation also clearly differentiates

our method from CCA and its variants.

Semi-supervised learning for hand pose estimation

Little work has exploited unlabeled samples for hand pose

estimation. To the best of our knowledge, there are only

some notable exceptions [31, 50, 58]: Tang et al. [50] built

a discriminative approach which relies on a large synthetic

training set and correspondences between synthetic and real

samples. Similarly, Neverova et al. [31] establish corre-

spondences via an intermediate representation of part seg-

mentations. For their approach, they do not need pixelwise

labels for real samples, but still require joint annotations.

On the contrary, Wan et al. [58] incorporate entirely unla-

beled data by drawing from advances in generative model-

ing within a semi-supervised approach. While elegant and

well set up, neither of these approaches exploit the observa-

tion that the pose is predictive for the appearance from any

known view.

View synthesis for hand pose estimation Another no-

table work on hand pose estimation, we draw inspiration

from, is the work of Oberweger et al. [37]. They aim to

reconstruct the input view of the hand from previously esti-

mated joint positions, and subsequently learn to generate an

update for the pose estimate based on the discrepancy be-

tween the input and the reconstruction (akin to supervised

descent methods [45, 64]).

In contrast to our work, however, they aim to reconstruct

the same view directly from previous estimates of the joint

positions (without capturing shape information). Conse-

quently, their approach is fully supervised, i.e., it requires

joint annotations for each sample. In our work, we do not

require pose annotations, but exploit the information we get

from an additional view point, which is crucial for the train-

ing process, as we will show in our experiments. Neverthe-

less, inference is straight forward with our method, i.e., we

neither require an iterative procedure and generate images

as in [37], nor need a second view at test time.

3. Learning pose specific representations

Our work is based on the observation that a hand pose

representation, θ, which includes parameters for the hand’s

size and shape, is predictive for the hand’s appearance, x(i),

from any known view i. Let T ⊂ R
dT denote the set of pos-

sible poses or pose representations of dimensionality dT ,

i.e., θ ∈ T , and similarly, X ⊂ R
dX be the set of possible

input images of dimensionality dX , i.e., x(i) ∈ X . Then

– based on our observation – we assume that there exists a

view specific mapping, g∗i : R
dT → R

dX , such that

x(i) = g∗i (θ), ∀θ ∈ T . (1)

Nevertheless, for our task we do not know the pose. The

pose is what we are searching for. Given an image of a hand

x(i) we want to find the pose of the hand. That is, we search

for a mapping f∗
i : R

dX → R
dT from the input image to the

pose2:

θ = f∗
i (x

(i)), ∀x ∈ X . (2)

Given these two mappings, f∗ and g∗, we can see that by

subsequently applying them, we can directly map from one

view to the other. That is, given an input image of the hand,

x(i), from view i, we can use the mappings to compute the

hand’s appearance x(j), from any known view j:

x(j) = g∗j
(

f∗
i (x

(i))
)

. (3)

In our case, the mappings f∗ and g∗ are unknown. We

can, however, capture the scene simultaneously from two

different views i and j. Given the data from two views, x(i)

and x(j), we can formulate our problem as finding a map-

ping from one view to another. Hence, we use the task of

learning a mapping from one view to the other as a “proxy

task” for finding a latent representation, which resembles

the pose.

Note, for i = j, Eqn. (3) essentially specifies an autoen-

coder. In this case it is difficult to ensure that the model

learns a latent representation, which resembles the pose.

Hence, the crucial case, which we are investigating in this

work, is the case i 6= j. From our empirical investigation

(see §4.3) we find that for i 6= j and a sufficient amount of

(unlabeled) data it is easy to constrain the model such that

the latent representation captures pose information.

2To avoid cluttering the notation, we ignore that such a mapping is not

always unique, given only a single view. In theory, we could formulate θ

as a random variable, describing a distribution, we could sample from.
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3.1. Implementation of the observations

To implement our observations we want to learn the two

mappings, f∗ and g∗, from data. We do so by employing

a Convolutional Neural Network (CNN) with an encoder-

decoder architecture. To formalize our method, we denote

the learned estimates of the “true” mappings f∗ and g∗, f

and g, respectively. The encoder fi receives input x(i) from

view i and its output represents the desired latent represen-

tation θ. The latent representation is at the same time the in-

put for the decoder gj , which produces the view x(j) given

θ. Without loss of generality we assume the captured im-

ages, x, to be depth images. Note that, while, for color-only

input the appearance is affected by additional factors like

skin color or illumination, the basic observations still hold.

In the basic model, we train our system to predict a dif-

ferent view x(j), which we capture for training. The train-

ing loss, ℓu, for this model can thus be formulated as a re-

construction loss

ℓu = ℓrecon
(

ŷ(j),x(j)
)

, (4)

where ŷ(j) is the model’s prediction for view j, given input

x(i) from view i, i.e.,

ŷ(j) = gj
(

fi(x
(i))

)

. (5)

For the reconstruction loss ℓrecon the L1 norm yielded the

best results in our experiments.

Ideally, we want the latent representation, θ = fi(x
(i)),

to be very specific for the pose, not capturing any unnec-

essary information. The loss itself does not constrain the

latent representation to fulfill such a requirement. We can,

however, constrain the latent representation in a very simple

– though effective – way: We assume that the smallest pos-

sible representation which is predictive for the appearance

of any known view, other than the input, will, crucially, con-

tain a representation resembling the pose.

A low-dimensional representation of the pose is often

given by the joint positions. However, since there are many

dependencies between the joints, the pose can even be rep-

resented by a lower-dimensional subspace. While works

on hand modeling [1, 25] give an indication for the size of

such a low-dimensional subspace, we investigate the size

best matching our requirements in the experimental section

(§4.3). The representation should contain only little addi-

tional information which could obfuscate the pose represen-

tation and, thus, hamper learning a mapping to any target

pose representation as discussed in the next section.

3.2. Learning from labeled and unlabeled data

To map from the latent representation space to the de-

sired target space (e.g., joint positions) we add a single lin-

ear layer to our encoder-decoder architecture. We enforce

pose

repres-

entation

view 2

3D joint 

positions

view 1

Figure 2: Architecture sketch for semi-supervised learning.

The input view, x(1), is mapped to the latent representation, θ,

by the encoder f1. Solely based on θ, the decoder g2 is required

to generate a different view 2 of the input. At the same time the

latent representation is ensured to suffice a linear mapping, gl, to

the 3D joint positions by employing labeled samples. This is illus-

trated by the green paths depicting the gradient flow to the latent

representation and, consequently, to the encoder.

the latent representation to suffice this linear map by train-

ing the encoder, which maps from input to the latent repre-

sentation, jointly with labeled and unlabeled data in a semi-

supervised manner. That is, labeled samples guide the train-

ing of the latent representation such that it suffices the linear

mapping.

The architecture for semi-supervised training is depicted

in Fig. 2. The parameters of the linear layer from the latent

pose representation to the joint positions are only trained us-

ing labeled samples. All other parameters are trained using

both labeled and unlabeled samples.

The semi-supervised loss function, ℓsemi, is a combina-

tion of the loss from unlabeled and labeled data:

ℓsemi = ℓu + λl ℓl, (6)

where λl is a weighting factor, which is set to zero for un-

labeled samples. For robustness, we employ the sum of the

Huber loss [16] for individual joint errors, which is different

from the standard use of the Huber loss. That is,

ℓl =
∑

k

ℓHuber

(
∥

∥yJk − ŷJk

∥

∥

2

)

, (7)

where ‖.‖2 denotes the L2-norm, ŷJk the estimated position

of the k-th joint, yJk the corresponding ground truth position

and

ℓHuber(d) =

{

0.5 d2 if d < ǫ

ǫ (d− 0.5 ǫ) otherwise.
(8)

Note that d, the input to the Huber loss, is always positive

in our case.

Additionally, an adversarial loss can be added to the

training objective [11, 27, 29]. We describe this approach

and experiments in the supplemental material, but omit it
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from the main paper since results are only slightly improved

in some cases, whereas the adversarial loss imposes a com-

putational overhead and requires a very sensible adjustment

of meta-parameters for training.

3.3. Implementation details

Similar to other works [21, 48] we assume the hand to

be the closest object to the camera, and compute its center

of mass (CoM), which is also provided as additional input

to the decoder, g. We then crop a region with equal side

length in each direction around the CoM, resize it to 64×64
pixels and normalize the depth values within a fixed range

to be between −1 and 1. These crops form the input to our

method.

Our method does not rely on a specific choice of the net-

work architecture. For our experiments, we implemented

our encoder and decoder networks based on the architecture

developed for DCGAN [43], since it is a well developed ar-

chitecture, which is comparably “lightweight” and designed

for image synthesis. We base our encoder f on the discrim-

inator and our decoder g on the generator of the original

publicly available implementation. We only interchange the

positions of the ReLUs [8] and leakyReLUs [26] since we

want to ease gradient flow through the decoder, put a hy-

perbolic tangent (Tanh) activation function at the end of the

decoder to ensure that the output can range between −1 and

1, and adapt the input and output dimensions accordingly.

We train our model with Adam [19] for 100 epochs us-

ing a batch size of 128 and a learning rate of 10−4. For

semi-supervised learning we obtained the best results with

λl = 10. Our PyTorch implementation is publicly avail-

able3 .

4. Experiments

To prove the applicability of the proposed method we

perform qualitative and quantitative experiments on differ-

ent datasets. We investigate the representations learned

from unlabeled data (c.f . §3.1) in §4.3. Subsequently, we

present the results for semi-supervised learning (c.f . §3.2),

compare to the state-of-the-art in hand pose estimation, and

provide evidence for the effectiveness of our training proce-

dure in an ablation study (§4.4).

4.1. Datasets

We evaluate on two different datasets. Firstly, we test

on the NYU hand pose dataset [55], which, to the best of

our knowledge, is the only public dataset providing multiple

views for the training and test set. For a broader empirical

analysis of our approach we additionally provide a novel

multi-view dataset3.

3https://poier.github.io/PreView

NYU hand pose dataset The NYU dataset provides a

training set with 72,757 frames from a single actor and a

test set with 8,252 frames from two actors. It was captured

with structured light based RGBD cameras. The additional

cameras captured the scene from side views. Originally, the

additional cameras were employed to mitigate issues with

self-occlusions during annotation; for our work the addi-

tional camera views enable us to compare our approach on a

standard dataset. Unfortunately, the side view camera loca-

tions were changed several times during training set acquisi-

tion and no camera pose information is provided. Therefore,

we searched for a part of the training set with approximately

similar camera setup and found 43,641 frames (∼60% of

the original training set), which we used as a training set

for our experiments. For validation and testing, we use the

full sets from the original dataset. We denote the reduced

training set with consistent setup by NYU-CS.

Multi-view hand pose dataset We captured the dataset

for typical user interaction scenarios in front of a large

screen with a Time-of-Flight camera mounted at each of

the two top corners of the screen. We captured the two

cameras synchronously and captured poses needed for typ-

ical gestures like swiping, pointing or waving. While the

set of poses is restricted, we aimed to capture each pose

in all possible hand orientations and ended up with 63,701

frames from 14 different actors. Since the goal of our novel

dataset is to investigate semi-supervised learning where

only a small fraction of the available samples is labeled,

we only labeled a representative subset from a few actors.

To this we employed the method in [35], which tries to find

a subset of frames covering the pose space well. Overall

526 frames from 7 out of the 14 actors were manually an-

notated. We split the labeled data in 289 frames for training

and validation (189/100) and 237 for testing. We denote the

resulting multi-view hand pose dataset MV-Hands.

4.2. Metrics

For the evaluation, we employ three commonly used

metrics: the mean joint error (ME) as well as the joint- and

frame-based success rate (JS/FS). The ME denotes the av-

erage distance between the estimated and ground truth joint

positions in millimeter (mm). The JS is the fraction of

joints which were estimated within a certain distance to the

ground truth joint position. The FS is stricter and gives the

fraction of frames for which all joints have been estimated

within a certain distance to the ground truth position [53].

For hand pose estimation researchers often employ

curves of the success rates over different distance thresh-

olds. To express these curves with a single number, we

compute the area under the curve (AUC) up to a specified

threshold. We denote the AUC of the JS and FS up to a dis-

tance threshold of 80mm by JS80, and FS80, respectively.
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n Autoencoder PreView (Ours)

100 48.0± 0.76 33.4± 1.18 −30.4%
1,000 47.2± 0.29 29.6± 0.32 −37.3%
10,000 47.3± 0.08 29.0± 0.14 −38.7%
43,640 47.1± 0.08 29.0± 0.09 −38.4%

Table 1: Pre-training from unlabeled data. Mean joint error

and standard deviation on the NYU-CS dataset for different pre-

training methods and numbers of labeled samples, n.

4.3. Pre­training from unlabeled data

In the following, we perform several experiments to in-

vestigate the effectiveness of representations learned from

unlabeled data.

Linear mapping to joint positions To quantitatively an-

alyze the predictability of the pose given the learned latent

representations, we follow the standard procedure for test-

ing representations learned in an un-/self-supervised man-

ner [4, 7, 33, 69]: We train the network using the respective

pre-training method, i.e., without pose annotations, freeze

all layers up to the latent pose representation and train a lin-

ear mapping from the latent representation to the target joint

positions using annotated samples.

The results on the NYU-CS dataset are shown in Tab. 1.

We compare our method to pre-training using an autoen-

coder because of its close relation. In particular, the autoen-

coder’s target is the input view, whereas our method aims

to predict a different view. For a fair comparison, we use

the same architecture, i.e., the same number of parameters

and training algorithm for the autoencoder and the proposed

method for predicting different views (PreView).

Here, we also investigate how the respective methods be-

have when the number of labeled samples, n, is smaller than

the number of unlabeled samples, i.e., only a subset of la-

beled samples is provided. In this case, we use a random

subset of the data, which is the same for each method. For

the case where the training set is small, the size of the vali-

dation set will – for a realistic scenario – be similarly small.

To account for this, we also subsample the validation data.

We fix the size of the validation set, |V|, as a fraction of the

size of the sub-sampled training set, |L|. That is, we sample

at most |V| ≤ 0.3 |L| samples from the original validation

set. We repeat this experiment 10 times with different ran-

dom samples to investigate the effect of the sampling and

report the average and standard deviation of the results in

Tab. 1.

The results show that pre-training for view prediction

yields a latent representation which is significantly more

predictive for the pose than pre-training using an autoen-

coder. The improvement is consistent – independent of the
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Figure 3: Pose predictability. How the size of the latent represen-

tation, dT , affects the predictability of the pose (from pre-trained,

frozen representations). Results on the NYU validation set.

ratio between labeled and unlabeled samples – and ranges

between 30 and 40 percent.

On the other hand, qualitative inspection shows that the

autoencoder yields cleaner reconstructions of the inputs,

compared to the predictions of the second view of our

method. Obviously, reconstructing the input is an easier

task, and can be done more accurately, even without knowl-

edge about the pose, as the results in Tab. 1 suggest. We

show some exemplary view predictions and input recon-

structions in the supplemental material.

We believe that there are several reasons for this large

improvement in pose predictability: For example, our

model is enforced to not just capture pixel statistics as can

be sufficient to reconstruct the input [14, 20, 41] since the

prediction of a different viewpoint requires the model to ac-

tually reason about the pose. More specifically, our model

needs to reason about how the appearance affects the pose

and thus the appearance in the other view.

Size of the latent representation We expect the size of

the latent representation to be an important constraint for the

specificity of the learned pose representation (c.f . [36, 54]).

Hence, we investigate how the size of the representation

affects the results, i.e., the predictability of the pose. For

this hyper-parameter evaluation we employ the NYU val-

idation set. We compare the results for representations of

size dT ∈ {10, 20, 30, 40, 50, 80} in Fig. 3. It shows that

the mean joint error is reduced by a large margin when in-

creasing dT from 20 to 30, but the improvement diminishes

if dT ∼ 40. It seems that, when trained in the proposed

way, a size of 20 and below is too small to capture the pose

and shape parameters reasonably well. However, if the size

of the representation is increased above 50 the predictabil-

ity of the pose is not improved anymore. This is interesting,

65



(a) Autoencoder (b) PreView (Ours)

Figure 4: Nearest neighbors in latent space. Comparison of nearest neighbors in the latent representation space for representations

learned using an autoencoder (a) and our method (b). Query images (same queries shown for both methods) – randomly sampled from the

validation set – are shown in the marked, leftmost column of (a) and (b), the remaining columns are the respective nearest neighbors.

since the size of the parameter space, which was identified

by works on hand modeling [1, 25] is usually very similar.

The size identified in these works is indeed slightly smaller

when representing the pose alone. In our case, however, the

learned latent representation also needs to capture the size

and shape of the hand.

Neuron activations We also aimed to investigate what

each neuron in the latent space has learned. When we search

for the samples from the validation set, which activate a

single neuron most, we can observe that many of the neu-

rons are activated most for very specific poses. That is, the

samples, which activate a neuron most, clearly show similar

poses. We include these qualitative samples in the supple-

mental material.

Nearest neighbors To obtain further insights into the

learned representation, we visualize nearest neighbors in the

latent representation space. More specifically, given a query

image from the validation set, we find the closest samples

from the training set according to the Euclidean distance in

the latent representation space. Fig. 4b visualizes some ran-

domly sampled query images (i.e., no “cherry picking“) and

their corresponding nearest neighbors. We see that the near-

est neighbors most often exhibit a very similar pose as the

query image, even if the detection (i.e., hand crop) is not al-

ways accurate. This is in contrast to the nearest neighbors in

the latent representation learned using autoencoders, which

often show a completely different pose (see Fig. 4a).

4.4. Semi­supervised training

In a final set of experiments we test the proposed method

for jointly leveraging labeled and unlabeled data (c.f . §3.2)

during end-to-end training. Similar to the previous setup,

we consider the case where the number of labeled samples

is smaller or equal than the number of unlabeled samples,

and evaluate different ratios. For a small number of labeled

samples we obtained the best results by sampling the mini-

batches such that there is an equal amount of labeled and

unlabeled samples in each batch (c.f ., [72]).

Comparison to the state-of-the-art To evaluate the com-

petitiveness of the employed architecture, we compare

against the state-of-the-art in data-driven hand pose esti-

mation. Since the NYU-CS set contains about 60% of the

original training set, we need to re-train the state-of-the-art

approaches on the same subset for a fair comparison. We

compare to Crossing Nets [58], DeepPrior [36] and Deep-

Prior++ [34]. We selected DeepPrior, since its results are

still in the range of the state-of-the-art for the NYU dataset

(as shown in a recent independent evaluation [67]), the PCA

based ”prior“ makes the approach suffer less from a re-

duced training set, and finally, it has about the same num-

ber of model parameters as our model. The improved vari-

ant DeepPrior++, on the other hand, has very recently been

shown to be top-performing on different datasets [34].

To train the state-of-the-art approaches, we use the pub-

licly available source code provided by the authors. Note,

Wan et al. [58] used different models for the experiments on

the NYU dataset than the ones used in their publicly avail-

able code. For a fair comparison we use the same (metric)

crop size when cropping the hand for the entire training and

test set, and fix the training and validation subsets to the

same subsets as for the evaluation of our method.

The results in Tab. 2 and 3 show that – by leveraging un-

labeled data – our method consistently improves the perfor-

mance, independent of the number of labeled samples, and

improves the state-of-the-art approaches by a large margin

for a small number of labeled samples. Note that the NYU

dataset does not provide additional unlabeled samples, i.e.,

when all labeled samples are used, our method can not draw

from any additional information.

Ablation experiments Finally, we focus the quantitative

evaluation on the main contribution of this work. We ex-

clude disturbing factors like the model architecture or the

66



n 100 1,000 10,000 43,640

Metric (see §4.2) ME FS80 JS80 ME FS80 JS80 ME FS80 JS80 ME FS80 JS80

DeepPrior [36] 44.99 0.11 0.45 36.99 0.20 0.55 30.31 0.31 0.63 27.97 0.35 0.66

Crossing Nets [58] 67.65 0.00 0.25 36.35 0.16 0.55 28.97 0.29 0.64 25.57 0.34 0.68

DeepPrior++ [34] 38.07 0.14 0.53 31.01 0.23 0.61 24.14 0.37 0.69 20.87 0.44 0.73

Semi-s. Autoenc. 31.58 0.27 0.60 24.05 0.41 0.70 21.32 0.47 0.73 20.74 0.49 0.74

Semi-s. PreView (Ours) 29.35 0.31 0.63 22.83 0.43 0.71 19.81 0.50 0.75 19.60 0.51 0.75

Table 2: Comparison to the state-of-the-art. Results on the NYU-CS dataset for different metrics and different numbers of labeled

samples n. For the mean joint error (ME) smaller values are better, while for the success rates (FS80 and JS80) higher values are better.

Best results in boldface.

n 289

Metric (see §4.2) ME FS80 JS80

DeepPrior++ [34] 34.17 0.22 0.57

Supervised 26.35 0.36 0.67
Semi-superv. Autoencoder 25.20 0.38 0.68
Semi-superv. PreView (Ours) 24.14 0.39 0.69

Table 3: Comparison to the state-of-the-art and ablation ex-

periments. Results for different metrics on the MV-hands dataset.

training procedure by training a baseline for which we keep

everything the same but do not exploit any unlabeled data.

In Tab. 3 we compare the results on the MV-Hands

dataset. We see that our semi-supervised training improves

the results of supervised training for all metrics. Fig. 5 com-

pares the results on the NYU-CS dataset, where our method

(Semi-superv.) also improves results for a high number of

labeled samples. That is, semi-supervised training consis-

tently outperforms supervised training, even if all samples

are labeled. For the more realistic case, where only a subset

of the data is labeled, our method improves the performance

of the fully supervised approach by a large margin. In fact,

our method achieves similar or improved results even when

it is trained with one to two orders of magnitude less labeled

samples.

5. Conclusion

Learning from unlabeled data has long been recognized

as an important direction for machine learning and appears

especially desirable for tasks with high labeling effort, such

as estimation of articulated poses. However, traditionally

the representations learned from unlabeled data are most

often generic. While in this way the representations are

amenable for transfer learning to novel tasks, concrete ap-

plications benefit from task specific representations.
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Figure 5: Ablation experiments. Comparison of purely super-

vised training (Supervised), with the proposed method which can

exploit unlabeled samples (Semi-superv.) for different numbers of

labeled samples n on the NYU-CS dataset.

In this work, we showed a way how to learn task spe-

cific representations for pose estimation without labels. Ad-

ditionally, the proposed method can be trained end-to-end

in a semi-supervised manner. Our method consistently

surpasses the performance of standard supervised training,

even when all available training samples are labeled. More-

over, the results of supervised training are already improved

with one order of magnitude less labeled training samples.
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