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Abstract

In this paper, we present a novel localized Generative

Adversarial Net (GAN) to learn on the manifold of real da-

ta. Compared with the classic GAN that globally parame-

terizes a manifold, the Localized GAN (LGAN) uses local

coordinate charts to parameterize distinct local geometry

of how data points can transform at different locations on

the manifold. Specifically, around each point there exists

a local generator that can produce data following diverse

patterns of transformations on the manifold. The locality

nature of LGAN enables local generators to adapt to and

directly access the local geometry without need to invert

the generator in a global GAN. Furthermore, it can prevent

the manifold from being locally collapsed to a dimensional-

ly deficient tangent subspace by imposing an orthonormal-

ity prior between tangents. This provides a geometric ap-

proach to alleviating mode collapse at least locally on the

manifold by imposing independence between data transfor-

mations in different tangent directions. We will also demon-

strate the LGAN can be applied to train a robust classifi-

er that prefers locally consistent classification decisions on

the manifold, and the resultant regularizer is closely related

with the Laplace-Beltrami operator. Our experiments show

that the proposed LGANs can not only produce diverse im-

age transformations, but also deliver superior classification

performances.

1. Introduction

The classic Generative Adversarial Net (GAN) [7] seek-

s to generate samples with indistinguishable distributions

from real data. For this purpose, it learns a generator G(z)
as a function that maps from input random noises z drawn

from a distribution PZ to output data G(z). A discriminator

is learned to distinguish between real and generated sam-

ples. The generator and discriminator are jointly trained in

an adversarial fashion so that the generator fools the dis-

criminator by improving the quality of generated data.

All the samples produced by the learned generator form

a manifold M = {G(z)|z ∼ PZ}, with the input variables

z as its global coordinates. However, a global coordinate

system could be too restrictive to capture various forms of

local transformations on the manifold. For example, a non-

rigid object like human body and a rigid object like a car

admit different forms of variations on their shapes and ap-

pearances, resulting in distinct geometric structures unfit in-

to a single coordinate chart of image transformations.

Indeed, existence of a global coordinate system is a too

strong assumption for many manifolds. For example, there

does not exist a global coordinate chart covering an entire

hyper-sphere embedded in a high dimensional space as it is

even not topologically similar (i.e., homeomorphic) to an

Euclidean space. This prohibits the existence of a glob-

al isomorphism between a single coordinate space and the

hyper-sphere, making it impossible to study the underly-

ing geometry in a global coordinate system. For this rea-

son, mathematicians instead use an atlas of local coordinate

charts located at different points on a manifold to study the

underlying geometry [28].

Even when a global coordinate chart exists, a global

GAN could still suffer two serious challenges. First, a point

x on manifold cannot be directly mapped back to its global

coordinates z, i.e., finding z such as G(z) = x for a given

x. But many applications need the coordinates of a given

point x to access its local geometry such as tangents and

curvatures. Thus, for a global GAN, one has to solve the in-

verse G−1 of a generator network (e.g., via an autoencoder

such as VAE [9], ALI [6] and BiGAN [5]) to access the co-

ordinates of a point x and then its local geometry of data

transformations along the manifold.

The other problem is the manifold generated by a glob-
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Figure 1. Illustration of a curved manifold M embedded in 3-

dimensional ambient space. At each location x, its tangent space

Tx consists of all tangent vectors to the manifold. These tangent

vectors characterize the geometry of local transformations allowed

to move a point x on M.

al GAN could locally collapse. Geometrically, on a N -

dimensional manifold, this occurs if the tangent space Tx
of a point x is dimensionally deficient, i.e., dim Tx < N

when tangents become linearly dependent along some coor-

dinates 1. In this case, data variations become redundant or

even vanish along some directions on the manifold. More-

over, a locally collapsed tangent space at a point x could

be related with a collapsed mode [7, 22], around which a

generator G(z) would no longer produce diverse data as z

changes in different directions. This provides us with an al-

ternative geometric insight into mode collapse phenomena

observed in literature [20].

The above challenges inspire us to develop a Localized

GAN (LGAN) by learning local generators G(x, z) associ-

ated with individual points x 2 on a manifold. As illustrated

in Figure 1, local generators are located around different

data points so that the pieces of data generated by differ-

ent local generators can be sewed together to cover an en-

tire manifold seamlessly. Different pieces of generated data

are not isolated but could have some overlaps between each

other to form a connected manifold [19].

The advantage of the LGAN is at least twofold. First,

one can directly access the local geometry of transforma-

tions near a point without having to evaluate its global coor-

dinates, as each point is directly localized by a local genera-

tor in the corresponding local coordinate chart. This locality

nature of LGAN makes it straightforward to explore point-

wise geometric properties across a manifold. Moreover, we

will impose an orthonormality prior on the local tangents,

and the resultant orthonormal basis spans a full dimension-

al tangent space, preventing a manifold from being locally

collapsed. It allows the model to explore diverse patterns

1For example, on a 2-D surface, the manifold reduces to an 1-D curve

or a 0-D singularity at some points.
2At first glance, the form of a local generator G(x, z) looks like a con-

ditional GAN (cGAN) with x as its condition. However, a local generator

in LGAN intrinsically differs from cGAN in its geometric representation

of a local coordinate chart. Refer to Section 3 for details.

of data transformations disentangled in different directions,

leading to a geometric approach at least locally alleviating

the mode collapse problem on a manifold.

We will also demonstrate an application of the LGAN

to train a robust classifier by encouraging a smooth change

of the classification decision on the manifold formed by the

LGAN. The classifier is trained with a regularizer that min-

imizes the square norm of the classifier’s gradient on the

manifold, which is closely related with Laplace-Beltrami

operator. The local coordinate representation in LGAN

makes it straightforward to train such a classifier with no

need of computing global coordinates of training examples

to access their local geometry of transformations. More-

over, the learned orthonormal tangent basis also allows the

model to effectively explore various forms of independent

transformations allowed on the underlying manifold.

The remainder of this paper is organized as follows. In

the next section, we will review the related works, followed

by Section 3 in which we present the proposed Localized

GANs. In Section 4, a semi-supervised learning algorithm

is presented to use LGANs to train a robust classifier that

is locally consistent over the manifold formed by a LGAN

model.

2. Related Works

Global vs. Localized GANs. By different types of coordi-

nate systems used to parameterize their data manifolds, we

can categorize the GANs into global and local models. Ex-

isting models, including the seminal GAN model proposed

by Goodfellow et al. [7, 17] and many variants [1], are glob-

al GANs that use a global coordinate chart to parameterize

the generated data. In contrast, the localized GAN present-

ed in this paper is a local paradigm, which uses local co-

ordinate charts centered at different data points to form a

manifold by a collection of local generators.

The distinction between global and local coordinate sys-

tems results in conceptual and algorithmic differences be-

tween global and local GANs. Conceptually, the global

GANs assume that the manifolds formed by their generators

could be globally parameterized in a way that the manifolds

are topologically similar to an Euclidean coordinate space.

In contrast, the localized paradigm abandons the global pa-

rameterizability assumption, allowing us to use multiple lo-

cal coordinate charts to cover an entire manifold. Algorith-

mically, if a global GAN needs to access local geometric

information underlying its generated manifold, it has to in-

vert the generator function in order to find the global coor-

dinates corresponding to a given data point. This is usually

performed by learning an auto-encoder network along with

the GAN models, e.g., BiGAN [5] and ALI [6]. On the

contrary, the localized GAN enables direct access to local

geometry without having to invert a global generator, since

the local geometry around a point is directly available from
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the corresponding local generator. Moreover, the orthor-

mornality between local tangents could also maximize the

capability of a local GAN in exploring independent local

transformations along different coordinate directions, there-

by preventing the manifold of generated data from being

locally collapsed with deficient dimensions.

Semi-Supervised Learning. One of the most importan-

t applications of GANs lies in the classification problem,

especially considering their ability of modeling the man-

ifold structures for both labeled and unlabeled examples

[25, 26, 18]. For example, [8] presented variational auto-

encoders [9] by combining deep generative models and ap-

proximate variational inference to explore both labeled and

unlabeled data. [22] treated the samples from the GAN gen-

erator as a fake class, and explore unlabeled examples by

assigning them to a real class different from the fake one.

[21] proposed to train a ladder network [27] by minimiz-

ing the sum of supervised and unsupervised cost function-

s through back-propagation, which avoids the convention-

al layer-wise pre-training approach. [24] presented an ap-

proach to learning a discriminative classifier by trading-off

mutual information between observed examples and their

predicted classes against an adversarial generative model.

[6] sought to jointly distinguish between not only real and

generated samples but also their latent variables in an ad-

versarial fashion. [4] presented to train a semi-supervised

classifier by exploring the areas where real samples are un-

likely to appear.

In this paper, we will explore the LGAN’s ability of mod-

eling the data distribution and its manifold geometry to train

a robust classifier, which can make locally consistent classi-

fication decisions in presence of small perturbations on da-

ta. The idea of training a locally consistent classifier could

trace back almost two decades ago to TangentProp [23] that

pursued classification invariance against image rotation and

translation manually performed in an ad-hoc fashion. Ku-

mar et al. [11] extended the TangentProp by training an

augmented form of BiGAN to explore the underlying da-

ta distributions, but it still relied on a global GAN to indi-

rectly access the local tangents by learning a separate en-

coder network. On the contrary, the local coordinates will

enable the LGAN to directly access the geometry of image

transformations to train a locally consistent classifier, along

with the orthonormality between local tangents allowing the

learned classifier to explore its local consistency against in-

dependent image transformations along different local co-

ordinates on the manifold.

3. Localized GANs

We present the proposed Localized GANs (LGANs).

Before that, we first briefly review the classic GANs in the

context of differentiable manifolds.

3.1. Classic GAN and Global Coordinates

A Generative Adversarial Net (GAN) seeks to train a

generator G(z) by transforming a random noise z ∈ R
N

drawn from PZ to a data sample G(z) ∈ R
D. Such a clas-

sic GAN uses a global N -dimensional coordinate system

z to represent its generated samples G(z) residing in an

ambient space R
D. Then all the generated samples form

a N -dimensional manifold M = {G(z)|z ∈ R
N} that is

embedded in R
D.

In a global coordinate system, the local structure (e.g.,

tangent vectors and space) of a given data point x is not di-

rectly accessible, since one has to compute its correspond-

ing coordinates z to localize the point on the manifold. One

often has to resort to an inverse of the generator (e.g., via

ALI and BiGAN) to find the mapping from x back to z.

Even worse, the tangent space Tx could locally collapse

at a point x if it is dimensionally deficient (i.e., dim Tx <

N ). Actually, if dim Tx is extremely low (i.e., << N ), a lo-

cally collapsed point x could become a collapsed mode on

the manifold, around which G(z) would no longer produce

significant data variations even though z changes in differ-

ent directions. For example, if dim Tx = 1, there is only

a curve of data variations passing through x. In an extreme

case dim Tx = 0, the data variations would completely van-

ish as x becomes a singular point on the manifold.

3.2. Local Generators and Tangent Spaces

Unlike the classic GAN, we propose a Localized GAN

(LGAN) model equipped with a local generator G(x, z)
that can produce various examples in the neighborhood of a

point x ∈ R
D on the manifold.

This forms a local coordinate chart {G(x, z)|z ⊂ R
N ∼

PZ} around x, with its local coordinates z drawn from a

random distribution PZ over an Euclidean space R
N . In

this manner, an atlas of local coordinate charts can cover

an entire manifold M by a collection of local generators

G(x, z) located at different points on M.

In particular, for G(x, z), we assume that the origin of

the local coordinates z should be located at the given point

x, i.e., G(x,0) = x, where 0 ∈ R
N is an all-zero vector.

To study the local geometry near a point x, we need

tangent vectors located at x on the manifold. By chang-

ing the value of a coordinate z
j while fixing the others, the

points generated by G(x, z) form a coordinate curve pass-

ing through x on the manifold. Then, the vector tangent to

this coordinate curve at x is

τ j
x
,

∂G(x, z)

∂zj
|z=0 ∈ R

D. (1)

All such N tangent vectors τ j
x
, j = 1, · · · , N for-

m a basis spanning a linear tangent space Tx =
Span(τ 1

x
, · · · , τN

x
) at x. This tangent space consists of al-

l vectors tangent to some curves passing through x on the
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manifold. Each tangent τ ∈ Tx characterizes some local

transformation in the direction of this tangent vector.

A Jacobian matrix Jx ∈ R
D×N can also be defined by

stacking all N tangent vectors τ j
x

in its columns.

3.3. Regularity: Locality and Orthonormality

However, there exists a challenge that the tangent space

Tx would collapse if it is dimensionally deficient, i.e, its

dimension dimTx is smaller than the manifold dimension

N . If this occurs, the N tangents in (1) could reduce to de-

pendent transformations that would even vanish along some

coordinates z.

To prevent the collapse of the tangent space, we need to

impose a regularity condition that the N basis {τ j
x
, j =

1, · · · , N} of Tx should be linearly independent of each

other. This guarantees the manifold be locally “simi-

lar” (diffeomorphic mathematically) to a N -dimensional

Euclidean space, rather than being collapsed to a lower-

dimensional subspace having dependent local coordinates.

As a linearly independent basis can always be trans-

formed to an orthonormal counterpart by a proper transfor-

mation, one can set the orthonormal condition on the tan-

gent vectors τ j
x

, i.e.,

⟨τ i
x
, τ j

x
⟩ = δij (2)

where δij = 0 for i ̸= j and δii = 1 otherwise. The resul-

tant orthonormal basis of tangent vectors capture the inde-

pendent components of local transformations near individ-

ual data points on the manifold.

In summary, the local generator G(x, z) should satisfy

the following two conditions:

(i) locality: G(x,0) = x, i.e., the origin of the local coor-

dinates z should be located at x;

(ii) orthonormality: J
T
x
Jx = IN , which is a matrix form

of (2) with IN being the identity matrix of size N .

One can minimize the following regularizer on G(x, z)
to penalize the violation of these two conditions 3,

ΩG(x) = µ∥G(x,0)− x∥2 + η∥JT
x
Jx − IN∥2 (3)

where µ and η are nonnegative weighting coefficients for

the two terms. By using a deep network for computing

G(x, z), this regularizer can be minimized by backpropa-

gation algorithm.

3.4. Training G(x, z)

Now the learning problem for the localized GANs boil-

s down to train a G(x, z). Like the GANs, we will train

a discriminator D(x) to distinguish between real samples

3Alternatively, we can parameterize G(x, z) as x+B(x, z)−B(x,0)
with a network B modeling a perturbation on x. Such a parameterization

of local generator directly satisfies the locality constraint G(x,0) = x.

drawn from a data distribution PX and generated samples

by G(x, z) with x ∼ PX and z ∼ PZ as follows.

max
D

Ex∼PX
logD(x) + Ex∼PX ,z∼PZ

log(1−D(G(x, z))

where D(x) is the probability of x being real, and the maxi-

mization is performed wrt the model parameters of discrim-

inator D.

On the other hand, the generator can be trained by maxi-

mizing the likelihood that the generated samples by G(x, z)
are real as well as minimizing the regularization term (3).

min
G

−Ex∼PX ,z∼PZ
logD(G(x, z)) + Ex∼PX

ΩG(x)

where the minimization is performed wrt the model param-

eters of local generator G, and the regularization enforces

the locality and orthonormality conditions on G.

Then D and G can be alternately optimized by stochastic

gradient descent via a backpropagation algorithm.

4. Semi-Supervised LGANs

In this section, we will show that the LGAN can help us

train a locally consistent classifier by exploring the mani-

fold geometry. First we will discuss the functional gradient

on a manifold in Section 4.1, and show its connection with

Laplace-Beltrami operator that generalizes the graph Lapla-

cian in Section 4.2. Finally, we will present the proposed

LGAN-based classifier in detail in Section 4.3.

4.1. Functional Gradient along Manifold

First let us discuss how to calculate the derive of a func-

tion on the manifold.

Consider a function f(x) defined on the manifold. At a

given point x, its neighborhood on the manifold is depicted

by G(x, z) with the local coordinates z. By viewing f as a

function of z, we can compute the derivative of f when it is

restricted on the manifold.

It is not hard to obtain the derivative of f(G(x, z)) with

respect to a coordinate z
j by the chain rule,

∂f(G(x, z))

∂zj
|z=0 = ⟨τ j

x
,∇xf(x)⟩

where ∇xf(x) is the gradient of f at x, and ⟨·, ·⟩ is the inner

product between two vectors. It depicts how fast f changes

as a point moves away from x along the coordinate z
j on

the manifold.

Then, the gradient of f at x when f is restricted on the

manifold G(x, z) can be written as

∇G
x
f , ∇zf(G(x, z))|z=0 = J

T
x
∇xf(x) (4)

Geometrically, it shows the gradient of f along the manifold

can be obtained by projecting the regular gradient ∇xf onto
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the tangent space Tx with the Jacobian matrix Jx. Here

we denote the resultant gradient along manifold by ∇G
x
f to

highlight its dependency on G(x, z)

4.2. Connection with Laplace­Beltrami Operator

If f is a classifier, ∇zf(G(x, z)) depicts the change

of the classification decision on the manifold formed by

G(x, z). At x, the change of f restricted on G(x, z) can

be written as

|f(G(x, z+ δz))− f(G(x, z))|2 ≈ ∥∇G
x
f∥2δz (5)

It shows that penalizing ∥∇G
x
f∥2 can train a robust clas-

sifier that is resilient against a small perturbation δz on a

manifold. It is supposed to deliver locally consistent classi-

fication results in presence of noises.

The functional gradient is closely related with the

Laplace-Beltrami operator, the one that is widely used as

a regularizer on the graph-based semi-supervised learning

[2, 3, 30, 29].

It is well known that the divergence operator

−div and the gradient ∇ are formally adjoint, i.e.,∫
M
⟨V,∇G

x
f⟩dPX =

∫
M

div(V)fdPX . Thus we have

∫
M

∥∇G
x
f∥2dPX =

∫
M

fdiv(∇G
x
f)dPX (6)

where ∆f , div(∇G
x
f) is the Laplace-Beltrami operator.

In graph-based semi-supervised learning, one constructs

a graph representation of data points to approximate the un-

derlying data manifold [3], and then use a Laplacian matrix

to approximate the Laplace-Beltrami operator ∆f .

In contrast, with the help of LGAN, we can directly ob-

tain ∆f on G(x, z) without having to resort to a graph rep-

resentation. Actually, as the tangent space at a point x has

an orthonormal basis, we can write

∆f = div(∇G
x
f) =

N∑
j=1

∂2f(G(x, z))

∂(zi)2
(7)

In the following, we will learn a locally consistent clas-

sifier on the manifold by penalizing a sudden change of it-

s classification function f in the neighborhood of a point.

We can implement it by minimizing either the square nor-

m of the gradient or the related Laplace-Beltrami opera-

tor. For simplicity, we will choose to penalize the gradi-

ent of the classifier as it only involves computing the first-

order derivatives of a function compared with the Laplace-

Beltrami operator having the higher-order derivatives.

4.3. Locally Consistent Semi­Supervised Classifier

We consider a semi-supervised learning problem with a

set of training examples (xl, yl) drawn from a distribution

PL of labeled data. We also have some unlabeled examples

xu drawn from the data distribution PX of real samples.

The amount of unlabeled examples is often much larger

than their labeled counterparts, and thus can provide useful

information for training G to capture the manifold structure

of real data.

Suppose that there are K classes, and we attempt to train

a classifier P (y|x) for y ∈ {1, 2, · · · ,K + 1} that outputs

the probability of x being assigned to a class y [22]. The

first K are real classes and the last one is a fake class denot-

ing x is a generated example.

This probabilistic classifier can be trained by the follow-

ing objective function

max
P

E(xl,yl)∼PL
logP (yl|xl) + Exu∼PX

logP (yu ≤ K|xu)

+Ex∼PX ,z∼PZ
logP (y = K + 1|G(x, z))

−
K∑

k=1

Ex∼PX
∥∇G

x
logP (y = k|x)∥2

(8)

where ∇G
x
logP (y = k|x) of the last term is the gradient of

the log-likelihood along the manifold G(x, z) at x, that is

∇z logP (y = k|G(x, z))|z=0. Let us explain the objective

(8) in detail below.

• The first term maximizes the log-likelihood that a la-

beled training example drawn from the distribution PL

of labeled examples is correctly classified by P (y|x).

• The second term maximizes the log-likelihood that an

unlabeled example xu drawn from the data distribution

PX is assigned to one of K real classes (i.e., yu ≤ K).

• The third term enforces P (y|x) to classify a generated

sample by G(x, z) as fake (i.e., y = K + 1).

• The last term penalizes a sudden change of classifica-

tion function on the manifold, thus yielding a locally

consistent classifier as expected. This can be seen by

viewing logP (y|x) as f in (5).

On the other hand, with a fixed classifier P (y|x), the

local generator G is trained by the following objective:

min
G

KG + LG + Ex∼PX
ΩG(x) (9)

where

• The first term is label preservation term

KG = −E(xl,yl)∼PL,z∼PZ
logP (yl|G(xl, z))

which enforces generated samples should not change

the labels of their original examples. This label preser-

vation term can help explore intra-class variance by

generating new variants of training examples without

changing their labels.
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Figure 3. Network architecture for local generators on the CelebA

dataset.

• The second term is feature matching loss LG =
∥Ex∼PX

ψP (x)−Ex∼PX ,z∼PZ
ψP (G(x, z))∥2, where

ψP is an intermediate layer of feature representation

from the classification network P . It minimizes the

feature discrepancy between real and generated exam-

ples, and exhibits competitive performance in litera-

ture [22, 11] for semi-supervised learning.

• The third term is the regularizer ΩG(x) that enforces

the locality and orthonormality priors on the local gen-

erator as shown in (3).

5. Experiments

In this section, we conduct experiments to test the capa-

bility of the proposed LGAN on both image generation and

classification tasks.

5.1. Architecture and Training Details

In this section, we discuss the network architecture and

training details for the proposed LGAN model in image

generation and claudication tasks.

In experiments, the local generator network G(x, z) was

constructed by first using a CNN to map the input image x

to a feature vector added with a noise vector of the same

dimension. Then a deconvolutional network with fractional

strides was used to generate output image G(x, z). Figure

3 illustrates the architecture for the local generator network

used to produce images on CelebA. The same discriminator

network as in DCGAN [20] was used in LGAN. The detail

of network architectures used in semi-supervised classifica-

tion tasks will be discussed shortly.

Instead of drawing z from a Gaussian distribution, the

quality of generated images can be improved by training

the LGAN with noises sampled from a mixture of Gaus-

sian noise with a discrete distribution δ0 concentrated at 0,

i.e., z ∼ 0.9 N (0, I) + 0.1 δ0 where N (0, I) is zero-mean

Gaussian distribution with an identity covariance matrix I.

In other words, with a probability of 0.1, z is set to 0; oth-

erwise, with probability of 0.9, it is drawn from N (0, I).
Sampling from δ0 could better serve to enforce the locality

Figure 4. Handwritten digits generated by LGAN on the MNITS

dataset. The middle column in a red bounding box represents the

image at the origin z = 0 of a local coordinate chart. In each row,

the images are generated in one direction of a local coordinate.

prior when training a local generator in its local coordinate

chart.

We used Adam solver to update the network parameter-

s where the learning rate is set to 5 × 10−5 and 10−3 for

training discriminator and generator networks respectively.

The two hyperparameters µ and η imposing locality and or-

thonormality priors in the regularizer were chosen based on

an independent validation set held out from the training set.

5.2. Image Generation with Diversity

Figure 2 illustrates the generated images on the CelebA

dataset. In this task, 32-D local coordinates were used in the

LGAN, and each row was generated by varying one of 32
local coordinates while fixing the others. In other worlds,

each row represents image transformations in one coordi-

nate direction. The middle column in a red bounding box

corresponds to the original image at the origin of local coor-

dinates. The figure shows how a face transforms as it moves

away from the origin along different coordinate directions

on the manifold. The results demonstrate LGAN can gener-

ate sharp-looking faces with various patterns of transforma-

tions, including the variations in facial expressions, beards,

skin colors, haircuts and poses. This also illustrates the L-

GAN was able to disentangle different patterns of image

transformations in its local coordinate charts on CelebA be-

cause of the orthonormality imposed on local tangent basis.

Moreover, we note that a face generated by LGAN could

transform to the face of a different person in Figure 2. For

example, in the first and the sixth row of the left figure,

we can see that a female face transforms to a male face.

Similarly, in the forth and the fifth row of the right figure,

the male face gradually becomes more female. This shows

that local generators can not only manipulate attributes of

input images, but are also able to extrapolate these inputs to

generate very different output images.

We also illustrate the image generation results on the M-

NIST dataset in Figure 4. Again, we notice the factorized

transformations in different tangent directions – across d-
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Figure 2. Faces generated by LGAN on the CelebA dataset. The middle column in a red bounding box represents the image at the origin

z = 0 of a local coordinate chart. In each row, the images are generated along a local coordinate. There exist various patterns of image

variations across different rows of faces, including whether wearing glasses and the variations in expressions, eyes, haircuts and so forth.

ifferent rows, the hand-written digits in the middle column

changed to various writing styles. Also, a digit could gradu-

ally change to a different digit. This shows local coordinate

charts for different digits were not isolated on the MNIST

dataset. Instead, they overlapped with each other to form a

connected manifold covering different digits.

5.3. Semi­Supervised Classification

We report our classification results on the CIFAR-10 and

SVHN (i.e., Street View House Number) datasets.

CIFAR-10 Dasetset. The dataset [10] contains 50, 000
training images and 10, 000 test images on ten image cat-

egories. We train the semi-supervised LGAN model in ex-

periments, where 100 and 400 labeled examples are labeled

per class and the remaining examples are left unlabeled.

The experiment results on this dataset are reported by av-

eraging over ten runs.

SVHN Dataset. The dataset [15] contains 32 × 32 street

view house numbers that are roughly centered in images.

The training set and the test set contain 73, 257 and 26, 032
house numbers, respectively. In an experiment, 50 and 1, 00
labeled examples per digit are used to train the model, and

the remaining unlabeled examples are used as auxiliary data

to train the model in semi-supervised fashion.

Figure 5 illustrates the network architecture for local

generators on both datsets. For the discriminator, we used

the networks used in literature [22] to ensure fair compar-

isons on CIFAR-10 and SVHN datasets. In the appendix,

we also present a larger convolutional network to train the

discriminator that has been used in [14], and we will show

that the LGAN successfully beat the state-of-the-art semi-

supervised models in literature [14, 12, 16].

In experiments, 100 and 256 local coordinates were used

to train LGAN on SVHN and CIFAR-10, respectively, i.e.,

the noise z is a 100-D and 256-D vector. Here, more local

Figure 5. Network architecture for local generators on SVHN and

CIFAR-10.

coordinates were used on CIFAR-10 as natural scene im-

ages could contain more patterns of image transformations

than street view house numbers. To reduce computation-

al cost, in each minibatch, ten coordinates were randomly

chosen when computing the back-propagated errors on the

orthonormal prior between local tangents. We also tested

by sampling more coordinates but did not observe any sig-

nificant improvement on the accuracy. So we only sampled

ten coordinates in a minibatch iteration to make a balance

between cost and performance.

Table 1 reports the experiment results on both SVHN and

CIFAR-10. On SVHN, we used 500 and 1, 000 labeled im-

ages to train the semi-supervised LGAN, which is 50 and

100 labeled examples per class, and the remaining training

examples were left unlabeled when they were used to train

the model. Similarly, on CIFAR-10, we used 1, 000 and

4, 000 labeled examples with the remaining training exam-

ples being left unlabeled. The results show that on both

datasets, the proposed semi-supervised LGAN outperforms
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Table 1. Classification errors on both SVHN and CIFAR-10 datasets compared with the state-of-the-art methods. The error rates with

Nl = 1000 and Nl = 4000 labeled training examples are reported. The best result is highlighted in bold. Note: *VAT did not report the

deviation in the paper [14].

Methods
SVHN CIFAR-10

Nl = 500 Nl = 1000 Nl = 1000 Nl = 4000

Ladder Network [21] – – – 20.40± 0.47

CatGAN [24] – – – 19.58± 0.46

ALI [6] – 7.41 ± 0.65 19.98 ± 0.89 17.99 ± 1.62

Improved GAN [22] 18.44 ± 4.8 8.11 ± 1.3 21.83 ± 2.01 18.63 ± 2.32

Triple GAN [13] – 5.77±0.17 – 16.99 ± 0.36

Π model [12] 7.05±0.30 5.43±0.25 – 16.55 ± 0.29

VAT [14]* – 6.83 – 14.87

FM-GAN [11] 6.6±1.8 5.9±1.4 20.06 ± 1.6 16.78 ± 1.8

LS-GAN [17] – 5.98 ± 0.27 – 17.30 ± 0.50

Our approach 5.48 ± 0.29 4.73 ± 0.16 17.44 ± 0.25 14.23 ± 0.27

(a) SVHN (b) CIFAR-10

Figure 6. Tangent images generated by LGAN along ten randomly chosen coordinates on SVHN and CIFAR-10 datasets. The first column

in the red bounding box shows the original images, followed by their tangent images in each row.

the other compared GAN-based semi-supervised methods.

Furthermore, we illustrate tangent images in Figure 6 on

SVHN and CIFAR-10 datasets. The first column in the red

bounding box shows the original images, followed by their

tangent images generated by the learned local generators a-

long ten randomly chosen coordinates in each row. These

tangent images visualize the local variations captured by

LGAN along different coordinate directions. This shows

how the model is able to learn a locally consistent classifier

by exploring the geometry of image transformations along

these tangent directions in a neighborhood of the underlying

manifold.

6. Conclusion

This paper presents a novel paradigm of localized

GAN (LGAN) model along with its application in semi-

supervised learning tasks. The model uses an atlas of local

coordinate charts and associated local generators to cover

an entire manifold, allowing it to capture distinct geome-

try of local transformations across the manifold. It also en-

ables a direct access to manifold structures from local coor-

dinates, tangents to Jacobian matrices without having to in-

vert the global generator in the classic GAN. Moreover, by

enforcing orthonormality between tangents, it can prevent

the manifold from being locally collapsed to a dimension-

ally deficient subspace, which provides a geometric insight

into alleviating mode collapse problem encountered in lit-

erature. Its application to semi-supervised learning reveals

the connection with Laplace-Beltrami operator on the man-

ifold, yielding a locally consistent classifier resilient against

perturbations in different tangent directions. Experimen-

t results on both image generation and classification tasks

demonstrate its superior performances to the other state-of-

the-art models.
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