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Abstract

Human vision is able to immediately recognize novel vi-

sual categories after seeing just one or a few training ex-

amples. We describe how to add a similar capability to

ConvNet classifiers by directly setting the final layer weights

from novel training examples during low-shot learning. We

call this process weight imprinting as it directly sets weights

for a new category based on an appropriately scaled copy of

the embedding layer activations for that training example.

The imprinting process provides a valuable complement to

training with stochastic gradient descent, as it provides im-

mediate good classification performance and an initializa-

tion for any further fine-tuning in the future. We show how

this imprinting process is related to proxy-based embed-

dings. However, it differs in that only a single imprinted

weight vector is learned for each novel category, rather

than relying on a nearest-neighbor distance to training in-

stances as typically used with embedding methods. Our ex-

periments show that using averaging of imprinted weights

provides better generalization than using nearest-neighbor

instance embeddings.

1. Introduction

Human vision can immediately recognize new categories

after a person is shown just one or a few examples [10, 8].

For instance, humans can recognize a new face from a photo

of an unknown person and new objects or fine-grained cat-

egories from a few examples by implicitly drawing con-

nections from previously acquired knowledge. Although

deep neural networks trained on millions of images have

in some cases exceeded human performance in large-scale

image recognition [15], under an open-world setting with

emerging new categories it remains a challenging problem

how to continuously expand the capability of an intelligent

agent from limited new samples, also known as low-shot

learning.

Embedding methods [25] have a natural representation

for low-shot learning, as new categories can be added sim-

ply by pushing data examples through the network and per-
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forming a nearest neighbor algorithm on the result [16].

It has long been realized in the semantic embedding lit-

erature that the activations of the penultimate layer of a

ConvNet classifier can also be thought of as an embedding

vector, which is a connection we further develop in this pa-

per. ConvNets are the preferred solution for achieving the

highest classification performance, and the softmax cross-

entropy loss is faster to train than the objectives typically

used in embedding methods, such as triplet loss.

In this paper, we attempt to combine the best proper-

ties of ConvNet classifiers1 with embedding approaches for

solving the low-shot learning problem. Inspired by the use

of embeddings as proxies [11] or agents [24] for individ-

ual object classes, we argue that embedding vectors can be

effectively compared to weights in the last linear layer of

ConvNet classifiers. Our approach, called imprinting, is to

compute these activations from a training image for a new

object category and use an appropriately scaled version of

these activation values as the final layer weights for the new

category while leaving the weights of existing categories

unchanged. This is extended to multiple training examples

by incrementally averaging the activation vectors computed

from the new training images, which our experiments find

to outperform nearest-neighbor classification as used with

embedding approaches.

We consider a low-shot learning scenario where a learner

initially trained on base classes with abundant samples is

then exposed to previously unseen novel classes with a lim-

ited amount of training data for each category [5]. The goal

is to have a learner that performs well on the combined set

of classes. This setup aligns with human recognition which

continuously learns new concepts during a lifetime.

Existing approaches exhibit characteristics that render

them infeasible for resource-limited environments such as

mobile devices and robots. For example, training a deep

ConvNet classifier with stochastic gradient descent requires

an extensive fine-tuning process that cycles through all prior

training data together with examples from additional cat-

egories [5]. Alternatively, semantic embedding methods

1In this paper we use the term “ConvNet classifiers” to refer to con-

volutional neural networks trained with the softmax cross-entropy loss for

classification tasks.
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such as [12, 16, 18, 20] can immediately remember new

examples and use them for recognition without retraining.

However, semantic embeddings are difficult to train due to

the computationally expensive hard-negative mining step

and these methods require storing all the embedding vec-

tors of encountered examples at test time for nearest neigh-

bor retrieval or classification.

We demonstrate that the imprinted weights enable in-

stant learning in low-shot object recognition with a single

new example. Moreover, since the resulting model after im-

printing remains in the same parametric form as ConvNets,

fine-tuning via backpropagation can be applied when more

training samples are available and when iterative optimiza-

tion is affordable. Experiments show that the imprinted

weights provide a better starting point than the usual ran-

dom initialization for fine-tuning all network weights and

result in better final classification results for low-shot cate-

gories. Our imprinting method provides a potential model

for immediate recognition in biological vision as well as a

useful approach for on-line updates for novel training data,

as in a mobile device or robot.

The remainder of the paper is organized as follows. In

Section 2, we discuss related work. Section 3 discusses the

connections between embedding training and classification.

Section 4 describes our approach. Then we provide imple-

mentation details and evaluate our approach with experi-

ments in Sections 5 and 6. Section 7 concludes the paper.

2. Related Work

Metric Learning. Metric learning has been successfully

used to recognize faces of new identities [2, 16] and fine-

grained objects [11, 12, 14, 19, 20]. The idea is to learn

a mapping from inputs to vectors in an embedding space

where the inputs of the same identity or category are closer

than those of different identities or categories. Once the

mapping is learned, at test time a nearest neighbors method

can be used for retrieval and classification for new cate-

gories that are unseen during training.

Contrastive loss [2] minimizes the distances between in-

puts with the same label while keeping the distances be-

tween inputs with different labels far apart. Rather than

minimizing absolute distances, recent approaches formulate

objectives focusing on relative distances. FaceNet [16] op-

timizes a triplet loss and develops an online negative min-

ing strategy to form triplets within a mini-batch. Instead of

penalizing violating instance-based triplets independently,

alternative loss functions regulate the global structure of the

embedding space. Magnet loss [14] optimizes the distribu-

tion of different classes by clustering the examples using k-

means and representing classes with centroids. Lifted struc-

tured loss [12] incorporates all pair-wise relations within a

mini-batch instead of forming triplets. The N -pair loss [18]

requires each batch to have examples from N categories for

improved computational efficiency. All these methods re-

quire some online or offline batch generation step to form

informative batches to speed up training. Structured cluster-

ing loss [19] optimizes a clustering quality metric globally

in the embeddings space.

The Proxy-NCA loss [11] demonstrates faster conver-

gence without requiring batch generation by assigning

trainable proxies to each category, which we will describe in

more detail in Section 3. NormFace [24] explores a similar

idea with all feature vectors normalized. The embedding

can generalize to unseen categories, however the nearest

neighbor model needs to store the embeddings of all ref-

erence points during testing. In our work, we retain the

parametric form of ConvNet models and demonstrate that

semantic embeddings can be used to imprint weights in the

final layer. As a result, our approach has the same conver-

gence advantages as [11] and [24] during training, yet does

not require storing embeddings for each training example or

using nearest-neighbor search during inference.

One-shot and Low-shot Learning. One-shot or low-

shot learning aims at training models with only one or a

few training examples. The siamese network [7] uses two

network streams to extract features from a pair of images

and regress the inputs to a similarity score between two fea-

ture vectors. Matching networks [22] learn a neural network

that maps a small support set of images from unseen cate-

gories and an unlabeled example to its label. Prototypical

networks [17] use the mean embeddings of new examples as

prototypes, but the embedding space is local with respect to

the support classes due to the episodic scheme. These works

formulate the low-shot learning problem as classifying an

image among a number of unseen classes characterized by

the support images; a query image and a support set must

be provided together every time at inference. However, this

evaluation setup does not align with human vision and many

real-world applications where a learner grows its capabil-

ity as it encounters more categories and training samples.

In contrast, we consider an alternative setup similar to [5]

which focuses on the overall performance of the learner on

a combined set of categories including base classes repre-

sented by abundant examples together with novel low-shot

classes. Hariharan and Girshick [5] train a multi-layer per-

ceptron to generate additional feature vectors from a sin-

gle example by drawing an analogy with seen examples.

Their method retrains the last linear classifier at the low-

shot training stage, whereas our approach allows instant

performance gain on novel classes without retraining. More

similar to our work is [13], which trains parameter predic-

tors for novel categories from activations. However, our

method directly imprints weights from activations, which is

made possible by architecture modifications that introduce

a normalization layer.
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3. Metric Learning and Softmax Classifiers

In this section, we discuss the connection between a

proxy-based objective used in embedding training and soft-

max cross-entropy loss. Based on these observations, we

then describe our method for extending ConvNet classifiers

to new classes in the next section.

3.1. Proxy­based Embedding Training

Recent work has blurred the divide between triplet-based

embedding training and softmax classification. For exam-

ple, Neighborhood Components Analysis [4] learns a dis-

tance metric with a softmax-like loss,

LNCA(x, y, Z) = − log
exp(−d(x, y))

∑
z∈Z exp(−d(x, z))

(1)

which makes points x, y with the same label closer than ex-

amples z with different labels under the squared Euclidean

distance d(x, y) = ||x− y||22. Movshovitz-Attias et al. [11]

reformulated the loss by assigning proxies p(·) to training

examples according to the class labels

Lproxy(x) , LNCA(x, p(x), p(Z))

=− log
exp(−d(x, p(x)))

∑
p(z)∈p(Z) exp(−d(x, p(z)))

, (2)

where p(Z) is a set of all negative proxies. This formulation

allows sampling anchor points x, rather than triplets, for

each mini-batch and results in faster convergence than other

objectives.

3.2. Connections to Softmax Classifiers

We will now discuss the connections between metric

learning and softmax classifiers. We consider the case

that each class has exactly one proxy and the proxy of

a data point is determined statically according to its la-

bel. Concretely, let C be the set of category labels and

P = {p1, p2, . . . , p|C|} be the set of trainable proxies, then

the proxy of every point x is p(x) = pc(x) where c(x) ∈ C
is the class label of x. We argue that the proxies pc are

comparable to weights wc in softmax classifiers.

To see this, we assume point vectors and proxy vectors

are normalized to the same length. It follows that minimiz-

ing the squared Euclidean distance between a point x and its

proxy p(x) is equivalent to maximizing the inner-product,

or equivalently cosine similarity, of the corresponding unit

vectors

min d(x, p(x)) , min ||x− p(x)||22 = maxx⊤p(x), (3)

since ||u−v||22 = 2−2u⊤v for unit vectors u, v ∈ R
D. Sub-

stituting the squared Euclidean distance with inner product

in Eq. 2, the resulting loss can be written as

L(x, c(x)) = − log
exp(x⊤pc(x))

∑
c∈C exp(x⊤pc)

, (4)
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Figure 1. The overall architecture of imprinting. After a base clas-

sifier is trained, the embedding vectors of new low-shot examples

are used to imprint weights for new classes in the extended classi-

fier.

which is comparable to the softmax cross-entropy loss used

for training classifiers

Lsoftmax(x, c(x)) = − log
exp(x⊤wc(x) + bc(x))
∑

c∈C exp(x⊤wc + bc)
, (5)

with bias terms bc = 0 for all c ∈ C.

4. Imprinting

Given the conceptual similarity of normalized embed-

ding vectors and final layer weights as discussed above, it

seems natural that we should be able to set network weights

for a novel class immediately from a single exemplar. In

the following, we outline our proposed method to do this,

which we call imprinting. In essence, imprinting exploits

the symmetry between normalized inputs and weights in a

fully connected layer, copying the embedding activations

for a novel exemplar into a new set of network weights.

To demonstrate this method, we focus on a two-stage

low-shot classification problem where a learner is trained on

a set of base classes with abundant training samples in the

first stage and then grows its capability to additional novel

classes for which only one or a few examples are available

in the second stage.

4.1. Model Architecture

Our model consists of two parts. First, an embedding

extractor φ : RN → R
D, parameterized by a convolutional

neural network, maps an input image x ∈ R
N to a D-

dimensional embedding vector φ(x). Different from stan-

dard ConvNet classifier architectures, we add an L2 normal-

ization layer at the end of the embedding extractor so that

the output embedding has unit length, i.e. ||φ(x)||2 = 1.

Second, a softmax classifier f(φ(x)) maps the embedding
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into unnormalized logit scores followed by a softmax ac-

tivation that produces a probability distribution across all

categories

fi(φ(x)) =
exp(w⊤

i φ(x))∑
c exp(w

⊤
c φ(x))

, (6)

where wi is the i-th column of the weight matrix normalized

to unit length. No bias term is used in this layer.

We view each column of the weight matrix as a template

of the corresponding category. Unlike in [11] where only

the embedding extractor part is used during test time with

the auxiliary proxies thrown away, we keep the entirety of

the network. In the forward pass, the last layer in our model

computes the inner product between the embedding of the

input image φ(x) and all the templates wi. With embed-

dings and templates normalized to unit lengths, the result-

ing prediction is equivalent to finding the nearest template

in the embedding space in terms of squared Euclidean dis-

tance

ŷ = argmax
c∈C

w⊤
c φ(x) = argmin

c∈C
d(φ(x), wc). (7)

Compared with non-parametric nearest neighbor models,

however, our classifier only contains one template per class

rather than storing a large set of reference data points.

Normalization. Normalizing embeddings and columns

of the weight matrix in the last layer to unit lengths is an

important architectural design in our model. Geometri-

cally, normalized embeddings and weights lie on a high-

dimensional sphere. In contrast, existing deep neural net-

works normally encourage activations to have zero mean

and unit variance within mini-batches [6] or layers [1] for

optimization reasons while they do not address the scale dif-

ferences between neuron activations and weights. In our

model, as a result of normalizing embeddings and columns

of the weight matrix, the magnitude differences do not af-

fect the prediction as long as the angle between the nor-

malized vectors remains the same, since the inner product

w⊤
i φ(x) ∈ [−1, 1] now measures cosine similarity. Recent

work in cosine normalization [9] discusses a similar idea

of replacing the inner product with a cosine similarity for

bounded activations and stable training, while we arrive at

this design from a different direction. In particular, this es-

tablishes a symmetric relationship between normalized em-

beddings and weights, which enables us to treat them inter-

changeably.

Scale factor. The cosine similarity w⊤
i φ(x) ∈ [−1, 1]

can prevent the normalized probability of the correct class

from reaching close to 1 when applying softmax activation.

For example, consider for an input x the inner product pro-

ducing 1 for the correct category and producing the mini-

mum possible value −1 for the incorrect categories, the nor-

malized probability is p(yi|x) = e1/[e1 + (|C| − 1)e−1] =

0.069, assuming a total of |C| = 100 categories. In conse-

quence, it fails to produce a distribution close to the one-hot

encoding of the ground truth label and therefore imposes a

lower bound on the cross-entropy loss. This effect becomes

more severe as the number of categories increases. To alle-

viate this problem, we adapt a scaling factor in our model

as discussed by Wang et al. [24]. Concretely, we modify

Eq. 6 by adding a trainable scalar s shared across all classes

to scale the inner product

fi(φ(x)) =
exp(sw⊤

i φ(x))∑
c exp(sw

⊤
c φ(x))

. (8)

We also experimented with the option of using an adaptive

scale factor per class, but we did not observe significant ef-

fects on classification accuracy compared to our use of a

single global scale factor.

In summary, our model architecture is similar to stan-

dard ConvNet classifiers except for two differences. The

normalized embeddings and weights introduce a symmet-

ric relationship that allows us to treat them interchangeably.

The scaled inner product at the final layer enables training

the entire model with the cross-entropy loss in the same way

that standard ConvNet classifiers are trained. Next, we dis-

cuss how to extend such a classifier to novel categories by

leveraging the symmetry between embeddings and weights.

4.2. Weight Imprinting

Inspired by the effectiveness of embeddings in retriev-

ing and recognizing objects from unseen classes in metric

learning, our proposed imprinting method is to directly set

the final layer weights for new classes from the embeddings

of training exemplars. Consider a single training sample

x+ from a novel class, our method computes the embed-

ding φ(x+) and uses it to set a new column in the weight

matrix for the new class, i.e. w+ = φ(x+). Figure 1 il-

lustrates this idea of extending the final layer weight matrix

of a trained classifier by imprinting additional columns for

new categories.

Intuitively, one can think of the imprinting operation as

remembering the semantic embeddings of low-shot exam-

ples as the templates for new classes. Figure 2 illustrates

the change of the decision boundaries after a new weight

column is imprinted. The underlying assumption is that test

examples from new classes are closer to the corresponding

training examples, even if only one or a few are observed,

than to instances of other classes in the embedding space.

Notably, this desired property coincides with metric learn-

ing objectives such as triplet loss. The proxy-based loss,

from which we have derived our method, upper bounds the

instance-based triplet loss [11].

Average embedding. If n > 1 examples {x
(i)
+ }ni=1 are

available for a new class, we compute new weights by av-

eraging the normalized embeddings w̃+ = 1
n

∑n

i=1 φ(x
(i)
+ )
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(a) (b)

Figure 2. Illustration of imprinting in the normalized embedding

space. (a) Before imprinting, the decision boundaries are deter-

mined by the trained weights. (b) With imprinting, the embedding

of an example (the yellow point) from a novel class defines a new

region.

and re-normalizing the resulting vector to unit length w+ =
w̃+/||w̃+||. In practice, the averaging operation can also

be applied to the embeddings computed from the randomly

augmented versions of the original low-shot training exam-

ples.

Fine-tuning. Since our model architecture has the same

differentiable form as ordinary ConvNet classifiers, a fine-

tuning step can be applied after new weights are imprinted.

The average embedding strategy assumes that examples

from each novel class have a unimodal distribution in the

embedding space. This may not hold for every novel class

since the learned embedding space could be biased to-

wards features that are salient and discriminative among

base classes. However, fine-tuning (using backpropagation

to further optimize the network weights) should move the

embedding space towards having unimodal distribution for

the new class.

5. Implementation Details

The implementation details are comparable to [11]

and [12]. For training, all the convolutional layers are

initialized from ConvNet classifiers pre-trained on the

ImageNet dataset [15]. InceptionV1 [21] is used in our

experiments. The parameters of the fully-connected layers

producing the embedding and unnormalized logit scores are

initialized randomly. L2 normalization is used for embed-

ding vectors and weights in the last layer along the embed-

ding dimension. Input images are resized to 256×256 and

cropped to 224×224. Intensity is scaled to [−1, 1]. Dur-

ing training, we augment inputs with random cropping and

random horizontal flipping. The learning rate is 0.0001 for

pre-trained layers; a 10× multiplier is used for randomly

initialized layers. We apply exponential decay every four

epochs with decay rate 0.94. The RMSProp optimizer is

used with momentum 0.9. During testing, input patches are

cropped from the center.

6. Experiments

We empirically evaluate the classifiers containing im-

printed weights. We first describe the overall protocols, then

we present results on the CUB-200-2011 dataset.

6.1. Data Splits

The CUB-200-2011 dataset [23] contains 200 fine-

grained categories of birds with 11,788 images. We use the

train/test split provided by the dataset. In addition, we treat

the first 100 classes as base classes where all the training ex-

amples (about 30 images per class on average) from these

categories are used to train a base classifier. The remaining

100 classes are treated as novel classes where only n exam-

ples from the training split are used for low-shot learning.

We experiment with a range of sizes n = 1, 2, 5, 10, 20 of

novel exemplars for the low-shot training split. During test-

ing, the original test split that includes both base and novel

classes is used. We measure the top-1 classification accu-

racy of the final classifier on all categories. To show the

effect of weight imprinting for low-shot categories, we also

report the performance on the test examples from the novel

classes only.

6.2. Models and Configuration Variants

Imprinting. To obtain imprinted models, we compute

embeddings of novel examples and set novel weights in the

final layer directly. When more than one novel example is

available for a class, the mean of the normalized embed-

dings is used. The basic configuration (Imprinting) uses

only the novel examples in their original forms. Alterna-

tively, we experiment with random augmentation (Imprint-

ing+Aug). Five augmented versions are generated for each

novel example by random cropping and horizontal flipping,

followed by averaging the embedded vectors. Both vari-

ants require only forward-pass computation of a trained em-

bedding extractor without any iterative optimization. We

compare these imprinting variants against a model initial-

ization consisting of random novel weights without fine-

tuning (Rand-noFT), which also involves zero backpropa-

gation. Random weights are generated with a Xavier uni-

form initializer [3].

Fine-tuning. To demonstrate that imprinted weights can

be used as better initializations than random values, we ap-

ply fine-tuning to the imprinting model (Imprinting+FT)

and to the model with random novel weights (Rand+FT),

respectively. In both cases, we fine-tune the entire net-

work end-to-end. We use only low-shot examples from

novel classes in addition to all training examples from base

classes. When the distribution across all classes is imbal-

anced, we oversample the novel classes such that all the

classes are sampled uniformly for each mini-batch. Ran-

dom data augmentation is also applied.

5826



n = 1 2 5 10 20

w
/o

F
T Rand-noFT2 0.17 0.17 0.17 0.17 0.17

Imprinting 21.26 28.69 39.52 45.77 49.32

Imprinting + Aug 21.40 30.03 39.35 46.35 49.80

w
/

F
T

Rand + FT 5.25 13.41 34.95 54.33 65.60

Imprinting + FT 18.67 30.17 46.08 59.39 68.77

AllClassJoint 3.89 10.82 33.00 50.24 64.88

Generator + Classifier [5] 18.56 19.07 20.00 20.27 20.88

Matching Networks [22] 13.45 14.75 16.65 18.81 25.77

Table 1. 200-way top-1 accuracy for novel-class examples in

CUB-200-2011. Imprinting provides good immediate perfor-

mance without fine tuning. Adding data augmentation (Imprint-

ing+Aug) does not give significant further benefit. The second

block of 3 rows shows the results of fine tuning, for which the

imprinting initialization retains an advantage. This remains true

even when compared to training all classes from scratch (All-

ClassJoint). The final 2 rows provide comparisons with previous

methods.

n = 1 2 5 10 20

w
/o

F
T Rand-noFT 37.36 37.36 37.36 37.36 37.36

Imprinting 44.75 48.21 52.95 55.99 57.47

Imprinting + Aug 44.60 48.48 52.78 56.51 57.84

w
/

F
T

Rand + FT 39.26 43.36 53.69 63.17 68.75

Imprinting + FT 45.81 50.41 59.15 64.65 68.73

AllClassJoint 38.02 41.89 52.24 61.11 68.31

Generator + Classifier [5] 45.42 46.56 47.79 47.88 48.22

Matching Networks [22] 41.71 43.15 44.46 45.65 48.63

Table 2. 200-way top-1 accuracy measured across examples in all

classes (100 base plus 100 novel classes) of CUB-200-2011. Im-

printing retains similar advantages for rapid learning and initial-

ization of fine-tuning as seen in Table 1.

Jointly-trained ConvNet classifier. For comparison, we

train a ConvNet classifier for base and novel classes jointly

without a separate low-shot learning phase (AllClassJoint).

The same data splits and preprocessing pipeline are used

as in the fine-tuning cases. This model does not normalize

embeddings or weights.

Other low-shot methods. We also apply the feature

generator [5] and matching networks [22] to our normalized

embeddings trained with the softmax loss for comparison.

6.3. Results

Tables 1 and 2 show the top-1 accuracy of 200-way clas-

sification for novel examples and all examples in CUB-200-

2011, respectively. Without any backpropagation, the im-

printed weights computed from one-shot examples instantly

provide good classification performance: 21.26% on novel

classes and 44.75% on all classes. Imprinting using the av-

erage of multiple augmented exemplars (Imprinting+Aug),

using the same random flips and crops as for base class

training, does not give a significant improvement in perfor-

2Rand-noFT is listed for easy comparison. Strictly, the header n =

1, . . . , 20 does not apply, since low-shot examples are not used.
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Figure 3. Accuracy of fine-tuned models on novel classes for the

first 40 epochs of training. Table 1 lists results after 112 epochs.
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Figure 4. Accuracy of fine-tuned models measured over all classes

(100 base plus 100 novel classes) for the first 40 epochs of training.

Table 2 lists results after 112 epochs.

mance. We conjecture this is because the embedding ex-

tractor has been trained on the base classes to be invariant

to the applied transformations.

When fine-tuning the network weights with backpropa-

gation, models initialized with imprinted weights (Imprint-
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Figure 5. (a) A subset of exemplars used for 1-shot training of novel classes sorted by their recall@1 scores as shown below each exemplar.

High-performing categories tend to exhibit more distinctive colors, shapes, and/or textures. (b) Randomly selected success and failure cases

predicted by a 1-shot imprinted model on CUB-200-2011. Test images and the 1-shot exemplar whose embedding was used to imprint the

predicted class are shown in separate rows. Correct and wrong predictions are marked with green and red borders, respectively.

ing+FT) take less time to converge and achieve better fi-

nal accuracies than randomly initialized models, especially

when limited low-shot examples are used. Figures 3 and 4

plot evaluation accuracy of the fine-tunned models in the

first 40 epochs on novel classes and all classes, respec-

tively. Accuracies in Tables 1 and 2 are recorded after

around 112 epochs. For cases n = 1, 2, the performance of

imprinted weights is close to saturation and fine-tuning for

more epochs can lead to degraded evaluation accuracies on

novel classes, which we conjecture is due to overfitting on

the 1 or 2 examples. The results show that the imprinted ini-

tialization can lead to better results for low-shot categories

even when training from scratch on the entire dataset, as

with AllClassJoint.

The classifier using generated features [5] has a similar

performance to imprinting for n = 1. While the matching

network outperforms the feature generator as n increases,

we observe a performance gap when compared with im-

printing. For our tests we modified the matching network

to perform 200-way classification instead of 5-way [22].

Figure 5 shows some sampled results following train-

ing of novel categories from the 1-shot imprinted model

on CUB-200-2011. The top row shows randomly selected

novel categories sorted by their classification accuracy as

given below each exemplar. As might be expected, the

highest-performing categories tend to exhibit more distinc-

tive features of color, texture, and/or shape. In Figure 5(b)

we show randomly selected success and failure cases pre-

dicted by the 1-shot imprinted model. The learned embed-

dings demonstrate an ability to generalize to different view-

points, poses, and backgrounds from the single training ex-

ample for each new category.

Transfer Learning with Imprinted Weights. We show

that imprinting benefits transfer learning in general. To

transfer a trained classifier to a new set of classes, we substi-

tute the final layer parameters with the mean embeddings of

examples from new classes. The only difference between

our approach and standard transfer learning approaches is

that we initialize the new weights by imprinting rather than

with random values. Note that the imprinting process re-

quires little cost in terms of computation. Table 3 shows

the top-1 classification accuracy of the imprinted model on

the new classes. Random initialization yields an accuracy

of 0.85% while the models using imprinted weights have

accuracies from 26.76% up to 52.25% as the number of

training examples increases. Applying random augmen-

tation (Imprinting+Aug) does not impact the performance

significantly. Additional fine-tuning improves the perfor-

mance. When novel training data is scarce (n = 1, 2, 5),

starting from the imprinted weights (Imprinting+FT) out-

performs fine-tuning from random weights (Rand+FT) by

a large margin. With more training examples, fine-tuning

from imprinted weights converges to similar accuracy as

when starting from random weights.

Comparison with Nearest Neighbors. As discussed in

Section 2, the usual approach used in metric learning has

been to store all exemplar embeddings and use the nearest

neighbor algorithm for classification. Therefore, we com-
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n = 1 2 5 10 20

w
/o

F
T Rand-noFT 0.85 0.85 0.85 0.85 0.85

Imprinting 26.76 33.11 43.00 48.74 52.25

Imprinting + Aug 26.08 34.13 43.34 48.91 52.94

w
/

F
T Rand+FT 15.90 28.84 46.21 61.37 71.57

Imprinting + FT 26.59 34.33 49.39 61.65 70.07

Table 3. Top-1 accuracy for transfer learning on CUB-200-2011

using 1–20 examples for computing imprinted weights. The im-

printed weights provide good immediate performance while also

providing better final classification accuracy for 1 to 5 shot learn-

ing following fine tuning.
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Figure 6. Top-1 accuracy of 100-way classification on novel

classes of CUB-200-2011. Imprinting averaged embeddings with

a softmax loss (blue bars) outperforms storing all individual em-

beddings with a nearest-neighbor classifier (green). By compari-

son, embeddings trained with the lifted structured loss do not per-

form as well as with the softmax loss (red and pink).

pare our approach of using averaged embeddings with us-

ing a nearest-neighbor classifier where the embeddings of

n low-shot training examples from each novel class form

the population set. When there is only one training exam-

ple per class, n = 1, the imprinted classifier is equivalent

to the nearest neighbor classifier. When n > 1, the size

of the imprinted classifier remains constant, whereas the

size of the nearest neighbor classifier grows linearly as n
increases. Note that storing all embeddings trained with the

softmax loss in a nearest-neighbor classifier is equivalent to

a special case of Proxy-NCA [11] using one proxy per class.

Perhaps surprisingly, the averaged embeddings perform

better than storing all individual embeddings (Figure 6). We

conjecture that the averaging operation reduces potentially

noisy dimensions in the embedding to focus on those that

are more consistent for that category. Although the averag-

ing may not seem to be the optimal choice in cases where

the distribution of novel class examples has multiple modal-

ities in the embedding space, we do not observe this in our

experiments. When the embedding space is first trained on

the base classes, lower layers of the network will have been

trained to bring multiple modalities together for feature in-
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Figure 7. Classification accuracies for Imprinting and All-

ClassJoint with different embedding dimensionalities under 1-shot

and 5-shot settings, respectively.

puts to the final linear layer. Moreover, keeping a single

embedding for each class in the imprinted classifier has ad-

ditional benefits since this standard form allows fine-tuning

the embedding space with backpropagation and reduces test

time computation and memory requirements.

Comparison with Lifted Structured Loss. Imprinted

weights and Proxy-NCA are both trained with the softmax

cross-entropy loss. Alternatively, we compare with embed-

dings trained with the lifted structured loss [12], which is

a generalization of the widely used triplet loss. Figure 6

shows that the softmax loss performs better in our exper-

iments than the lifted structured loss. However, the lifted

structured loss can also benefit from imprinting averaged

embeddings rather than a nearest-neighbor classifier.

Embedding Dimensionality. We use 64-dimensional

embeddings in all the experiments above. Empirically we

experimented with various settings D = 64, 128, 256, 512
for the imprinting model and the jointly-trained ConvNet

Classifier (Figure 7). Increasing the dimensionality does

not appear to have significant effects on the results.

7. Conclusions

This paper has presented a new method, weight imprint-

ing, that directly sets the final layer weights of a ConvNet

classifier for novel low-shot categories. This is a valuable

complement to stochastic gradient descent, as it provides

instant good classification performance on novel categories

while allowing for further fine tuning when time permits.

The key change that is made to the ConvNet architecture

is a normalization layer with a scaling factor that allows

activations computed for novel training examples to be di-

rectly copied (imprinted) as final layer weights. When mul-

tiple low-shot examples are presented, the computed acti-

vations for additional examples are averaged with the exist-

ing weights, which our experiments show to perform better

than the nearest-neighbor approach typically used with em-

bedding methods. An area for future research is whether

the imprinting approach can also be used for more rapid

training of other network layers, such as when encounter-

ing novel lower-level features.
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