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Figure 1. Exemplary shape reconstructions from a single image by our Matryoshka network based on nested shape layers.

Abstract

In this paper, we develop novel, efficient 2D encod-

ings for 3D geometry, which enable reconstructing full 3D

shapes from a single image at high resolution. The key idea

is to pose 3D shape reconstruction as a 2D prediction prob-

lem. To that end, we first develop a simple baseline network

that predicts entire voxel tubes at each pixel of a reference

view. By leveraging well-proven architectures for 2D pixel-

prediction tasks, we attain state-of-the-art results, clearly

outperforming purely voxel-based approaches. We scale

this baseline to higher resolutions by proposing a memory-

efficient shape encoding, which recursively decomposes a

3D shape into nested shape layers, similar to the pieces of

a Matryoshka doll. This allows reconstructing highly de-

tailed shapes with complex topology, as demonstrated in ex-

tensive experiments; we clearly outperform previous octree-

based approaches despite having a much simpler architec-

ture using standard network components. Our Matryoshka

networks further enable reconstructing shapes from IDs or

shape similarity, as well as shape sampling.

1. Introduction

Being able to reason about the 3D shape of objects, even

when presented with only a single monocular image, is one

of the remarkable abilities of the human visual system. In

∗This work was carried out while at TU Darmstadt.

the absence of geometric cues from stereopsis or motion,

our visual system is still able to infer detailed surfaces or

plausibly complete hidden parts.

The advent of large-scale shape collections [4] and ad-

vances in data-driven approaches, especially convolutional

neural networks (CNNs), have sparked new interest in de-

veloping approaches that mimic the human visual system

in its ability to reconstruct 3D shapes from a single image,

e.g. [5, 15, 20, 22, 27, 31]. The predominant structure of

CNNs employed for this task is an hourglass shape with an

encoder, which transforms a single image into a shape code,

and a decoder finally producing a 3D shape [5, 10]. Inter-

preting the shape code as a multi-dimensional tensor with

spatial and feature dimensions, the decoder successively in-

creases the spatial resolution of the shape code while reduc-

ing the number of feature dimensions. The output of the

decoder is a volumetric binary occupancy map. The overall

down-sampling and up-sampling of representations in this

hourglass architecture facilitates the accumulation of shape

information from the whole image and propagating it to all

parts of the reconstructed shape. Higher resolutions of the

input and/or output require more levels of scaling, which

results in deeper networks. The network depth is in turn

bound by the available GPU memory, impeding CNNs with

volumetric decoders in their ability to reconstruct shapes at

high resolution [11, 22, 27].

More efficient encodings, for example based on octrees

[11, 22, 27], alleviate this problem, but require sophisti-

cated structures and mechanisms for feature propagation
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through the decoder, impeding portability across deep lean-

ing frameworks and exploration of alternative architectures.

Alternatively, view-based reconstructions [18, 25] can en-

code highly detailed shape information, but cannot repre-

sent shapes with a significant level of self-occlusion.

In this paper, we develop a novel, efficient 2D encod-

ing for 3D geometry, which enables reconstructing full 3D

shapes from a single image at high resolution. We begin

by developing a new architecture for dense 3D shape recon-

struction at low resolutions. Its key feature is that we pose

reconstructing 3D voxel occupancy as a 2D prediction prob-

lem by directly predicting whole voxel tubes at every pixel

of a reference view. This allows us to use a wide range

of standard networks for 2D pixel-prediction tasks, which

enables this simple baseline to attain state-of-the-art accu-

racy, clearly outperforming previous purely voxel-based ap-

proaches. Another factor in reaching such high accuracy

levels is using a structured loss function.

We then scale this baseline to higher resolutions by

proposing an efficient shape encoding based on the idea

of nested shape layers. That is, the object shape is recur-

sively decomposed into nested layers, similar to the pieces

of a Matryoshka doll, see Fig. 4. This has several key ad-

vantages: (1) it allows for a highly detailed reconstruction

of shapes with complex topology, including self-occlusions;

(2) each shape layer can be represented through a set of six

depth maps, which is memory efficient and allows the use of

standard network architectures; (3) nested shape layers lead

to more detailed reconstructions than octree-based architec-

tures despite being much simpler. We further demonstrate

the capabilities of the proposed encoding and decoder ar-

chitecture in reconstructing shapes from IDs or shape simi-

larity, as well as in shape sampling.

2. Prior Work

With the advent of large-scale shape collections [4],

data-driven methods, and especially CNNs, have become

the method of choice for predicting 3D shapes. Insprired by

the success of CNNs for dense 2D prediction tasks, Wu et

al. [31] adapted CNNs to volumetric outputs. Yan et al. [33]

and Zhu et al. [34] showed that optimizing projections of

the predicted shape benefits the reconstruction. Choy et

al. [5] developed a joint approach for shape reconstruction

from one or multiple views. Girdhar et al. [10] combined

an autoencoder and a convolutional network to learn an em-

bedding of images and 3D shapes. Wu et al. [30] trained

a generative adversarial network to synthesize 3D shapes.

Tulsiani et al. [28] learned a shape decoder from 2D super-

vision. Wu et al. [29] used intermediate 2.5D shape rep-

resentations in order to decouple image encoding and 3D

shape decoding. All have in common that they model 3D

shapes as binary occupancy maps. This allows for cast-

ing shape estimation as a classification problem at the voxel

level and benefitting from the extraordinary performance of

CNNs in classification tasks. Representing each voxel sep-

arately to facilitate the classification task comes at a price,

however, as the memory requirements scale cubically with

the resolution of shapes. Consequently, the output resolu-

tion is usually limited to 32 voxels along each side.

Riegler et al. [22] addressed the memory requirements

of predicting high-resolution occupancy maps by adapting

CNNs to operate on octrees. However, their method re-

quires the tree structure to be known ahead of time, which

limits its applicability for 3D reconstruction. The works

of Tatarchenko et al. [27] and Häne et al. [11] alleviate

this problem by also predicting the tree structure. Besides

commonly requiring custom network layers [22, 27], which

impedes porting the approaches to other deep learning li-

braries, the sparse structure of octrees complicates feature

propagation to neighboring cells. This is in contrast to the

proposed method, which only requires network layers that

are standard in all common deep learning frameworks and,

by building on 2D convolutions, facilitates the easy explo-

ration of recent advances in network architectures.

Fan et al. [8] addressed the sparse structure of shapes

within a 3D volume by explicitly predicting a point cloud.

Their method demonstrated impressive results at low reso-

lution, but it has yet to be seen if and how well this approach

scales to higher resolutions.

As an alternative to a volumetric representation,

Tatarchenko et al. [26] trained a CNN to generate RGB-

D images from arbitrary views of an object. In a post-

processing step, the different views are merged into a con-

sistent shape. Following this approach for the generation of

shapes, Soltani et al. [25] predicted pairs of silhouettes and

depth images for a fixed set of views, and Lun et al. [18]

additionally predicted surface normal maps. The final fu-

sion of views has been addressed by merging them into

a point cloud and pruning outliers using the predicted sil-

houettes [25], registering views and solving an optimiza-

tion problem [18], as well as learning a differentiable depth

map renderer to produce consistent projections [17]. In gen-

eral, view-based methods are able to generate shapes at high

resolutions, but occasionally suffer from noisy estimates,

which need to be addressed in the fusion step. Furthermore,

view-based methods cannot handle large self-occlusions.

Our proposed method addresses the fusion step and han-

dling of occlusions in a simple, but efficient formulation.

Sinha et al. [24] projected object surfaces to geometry

images in order to build on image-based CNN architec-

tures. This shape representation allows for a very memory-

efficient encoding, but requires additional care for handling

different mesh topologies and projective distortions pro-

duce a non-uniformly distributed level of detail. Zou et

al. [35] assembled 3D shapes from volumetric primitives.

Our work, in contrast, is inspired by depth peeling [7] and
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constructive solid geometry [13]. Gallup et al. [9] used a n-

layer heightmap representation to constrain the reconstruc-

tions of buildings from occupancy grids. Our nested shape

layers can be seen as a generalization of this representation

as our Matryoshka networks effectively estimate 6 overlap-

ping heightmaps per layer, which are fused together.

In concurrent work, Delanoy et al. [6] explored the pre-

diction of multi-channel depth maps in the context of re-

constructing aligned shapes from sketches, which allows for

exploiting additional projective constraints.

3. Formulation

We develop a framework for memory-efficient prediction

of 3D shapes in two stages. First, we encode 3D shapes as

n-channel images, where each pixel represents a tube of n

voxels in a 3-dimensional tensor (a fiber along the z-axis).

This leads to a more memory-efficient intermediate repre-

sentation, since features are shared across entire fibers in-

stead of a single voxel (cell). To that end, we adapt network

architectures for dense pixel-prediction tasks to predicting

voxel tubes. This reduces the memory footprint of the net-

work, but still produces a dense binary occupancy map in

the last network layer. Second, we further compress the out-

put by predicting nested shape layers that can encode shapes

with arbitrary amounts of self-occlusion. Each shape layer

consists of 6 depth maps, c.f . Fig. 4. Through careful align-

ment of the depth maps and an appropriate loss function, we

avoid noisy estimates, a costly fusion via optimization, and

minimize the dimensionality of the final network layer.

3.1. Standard voxel decoder

To ground our discussions, let us begin by describing a

simple standard architecture for predicting volumetric bi-

nary occupancy maps, as it is common to a wide range of

previous work [5, 10, 33]. We here focus our discussion on

the decoder and assume that its input, a shape code S with

a spatial resolution of ns×ns×ns and nf features, is pro-

vided by an image encoder. Each layer of the voxel decoder

then up-samples the shape code, i.e. it increases the spatial

resolution while decreasing the number of features until the

full spatial resolution no×no×no has been reached and only

one feature dimension is left. The resulting 4-dimensional

tensor is then interpreted as a 3D binary occupancy map.

Intuitively, the voxel decoder transforms a 4-dimensional

tensor into 3-dimensional tensor by iteratively lowering the

feature resolution. Fig. 2 (left) shows an illustration.

3.2. Predicting voxel tubes

To address the memory inefficiency of such a standard

voxel decoder, we here propose to predict entire voxel

tubes. The key idea is that we interpret the shape code as

a 3-dimensional tensor with spatial dimensions nt×nt and

one feature dimension. Analogously to the voxel decoder,
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Figure 2. Memory-efficient geometry decoders. Encoding fea-

tures jointly per voxel tube turns a standard voxel decoder (left)

into a voxel tube image decoder (middle). Predicting shape layers

(right) allows for reconstructing shapes at higher resolution.

we up-sample the spatial resolution while down-sampling

the number of features. Different to the voxel decoder, how-

ever, we reduce the number of features until it equals no.

Hence, the output of our decoder is a 3-dimensional tensor

with resolution of no×no×no. With this simple change in

representation, a fiber of features no longer encodes a single

voxel, but a complete tube of voxels jointly. Therefore, we

term the resulting tensor a voxel tube image. Fig. 2 (middle)

illustrates the architecture. As the proposed decoder now

operates on images instead of voxel grids, we can employ

standard 2D network components for designing the decoder

and take full advantage of recent advances in architectures

for 2D prediction tasks [12, 14, 23, 32].

3.3. Shape layers: Learning to compress voxel tubes

Although sharing features across voxel tubes reduces

the space requirements of the decoder, it is insufficient for

scaling the output resolution by multiple octaves with cur-

rently available GPU architectures. To scale our approach

to higher resolutions, we compress shapes by constructing

them from multiple shape layers, each of which requires

only no × no × 6 activations in the network output. Each

shape layer S ∈ S is the product of fusing 6 depth maps

d = (d−x, d+x, d−y, d+y, d−z, d+z) ∈ D, which represent

a shape as depicted in Fig. 3 (left).

Specifically, each depth map di is an orthogonal projec-

tion imaged from view position vi, which is located at the

center of side i of an axis-aligned unit cube. We assume the

cube to be at the origin, and all views to face the origin.

Shape from depth maps. For each of the three axes, we

now define shapes as

Sx ≡ {(i, j, k) | d−x(j, k) ≤ i ≤ no − d+x(j, k)} (1a)

Sy ≡ {(i, j, k) | d−y(i, k) ≤ j ≤ no − d+y(i, k)} (1b)

Sz ≡ {(i, j, k) | d−z(i, j) ≤ k ≤ no − d+z(i, j)} , (1c)

where the tuple (i, j, k) indexes a cell in a binary occupancy

map of size no×no×no. That is, the shape Sx, for example,

1938



z

x

y

d+x

d-x

d+y

d+z

d-z

d-y

Figure 3. Fusion of depth maps. We interpret pairs of depth maps taken along three view axes (left) as run-length encoding of geometry

and fuse them to shapes Sx (right, green), Sy (red), and Sz (yellow). Noisy predictions cause a smearing at the shape silhouettes. By

intersecting Sx, Sy , and Sz , we obtain a shape S (white) with outliers removed.

can be thought of as being represented by sending x-axis-

aligned rays through it and recording where they enter the

shape and exit again. Put differently, the pairs (d−x, d+x),
(d−y, d+y), and (d−z, d+z) are effectively run-length en-

codings of the shapes Sx, Sy , and Sz . The colored car

shapes in Fig. 3 (right) illustrate this. Note how a single

shape, say Sz , is not sufficient to represent the car (shown

in yellow), since the geometry of the wheels cannot be re-

covered correctly from this view due to self-occlusion.

Shape fusion. We address this by fusing the three shapes

via their intersection as

S = φ(d) ≡ Sx ∩ Sy ∩ Sz with φ : D → S. (2)

The result is shown as the white car shape in Fig. 3 (right).

This fusion process and the placement of the three orthogo-

nal views vi is motivated by our observation that depth map

predictions are often less accurate near the silhouette of an

object. This is intuitive as the decision whether to assign a

pixel to foreground or background is less certain close to the

silhouette. If we cast the occupancy prediction as a classifi-

cation problem (c.f . Sec. 3.2), we can assess the uncertainty

through the softmax predictions. Depth map prediction is

cast as regression problem here, however, and the network

tends to average multiple plausible predictions. This has

been observed also for point clouds [8]. In regions around

the silhouette, this averaging causes noisy estimates and a

smearing of the shape as can be seen in the colored shapes

in Fig. 3 (right). By placing orthogonal views vi at the sides

of a unit cube, we ensure that regions of high uncertainty in

one view are complemented by regions of low uncertainty

in another. Fusing the shapes Sx, Sy , and Sz through their

intersection thus allows to remove outliers reliably.

3.4. Nested shape layers: Recovering occluded
parts

Representing shapes through a single set of 6 depth maps

cannot possibly recover parts that are occluded from all

three view axes. We address this by building up a shape

S1:L from L nested shape layers by iteratively adding and

subtracting shapes φ(di). This process is inspired by con-

structive solid geometry [13]. Let φ : D → S be the fusion

of a shape from the set of depth maps as defined in Eq. (2).

We then compose shapes via the recursion

S1 ≡ φ(d1) (3a)

S1:2n ≡ S1:2n−1 \ φ(d2n) (3b)

S1:2n+1 ≡ S1:2n ∪ φ(d2n+1), (3c)

where n ∈ N
+. We begin the recursion by only fusing depth

maps in the first layer (Eq. 3a), then we subtract shapes in

even layers (Eq. 3b), and add shapes in odd layers (Eq. 3c).

This process allows us to encode complex geometries; Fig.

4 shows an exemplary encoding of a shape into multiple

nested shape layers. Note that the nesting of the shape lay-

ers is akin to Matryoshka dolls (Fig. 4, right), i.e. the first

two shape layers encode the outermost doll, the next two

layers describe the second doll inside the first, and so on.

Learning. To learn to predict nested shape layers, we

need to define the appropriate ground truth depth maps.

To that end, let T1:L ∈ S be the (true) target shape and

π : S → φ(D) be the projection from an arbitrary shape

to the space of shapes that can be represented by the depth

map fusion process φ from Eq. (2). To compute the projec-

tion, we greedily apply a simple ray casting and store the

depth of the first intersection with the shape. The ground

truth is then given by the recursion

T1 ≡ π(T1:L) (4a)

T1:2n ≡ π(T1:2n−1 \ T1:L) (4b)

T1:2n+1 ≡ π(T1:L \ T1:2n). (4c)

Note that although the shapes are encoded recursively, we

train a single network to predict all layers jointly.

How many shape layers do we need? To answer this ques-

tion, we encode shapes from the ShapeNet-core dataset [4]

with a varying number L of layers and compute the inter-

section over union between shapes before encoding (T1:L)
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(a) S1:5 = (((S1 \S2) ∪S3) \S4) ∪S5. (b) Matryoshka doll

Figure 4. Composing shapes from nested shape layers. The proposed method reconstructs a shape S1:5 by iteratively adding (S1,S3,S5)

and subtracting (S2,S4) shape layers built from fused depth maps (a). This is akin to the layers of a Matryoshka doll (b).

and after decoding (S1:L). We report results in Tab. 1. We

find that 94.8% of shapes at a low resolution (323, provided

by Choy et al. [5]) can be completely encoded with a sin-

gle shape layer and only 4 shapes require more than 2 lay-

ers. Evaluating shapes from ShapeNet-cars at 1283 (from

Tatarchenko et al. [27]), we find that only 2.6% of shapes

can be completely encoded with just a single shape layer.

This demonstrates the need for a nested representation to

accurately represent shapes at high resolution.

3.5. Loss functions for dense and sparse prediction

As a voxel can either be occupied or empty, the pre-

diction of occupancies within a voxel grid is often cast

as binary classification, minimizing the binary cross en-

tropy [5, 10, 22, 27]. This is in contrast to the metrics com-

monly used for evaluating predictions [2]. Most common is

the intersection over union (IoU), or Jaccard index

IoU(A,B) =
|A ∩B|

|A ∪B|
. (5)

The IoU divides number of true positives (the intersection)

by the sum of true positives, false positives, and false nega-

tives (the union). In the context of segmenting a 3D object,

correct foreground predictions are thus effectively weighted

by the size of the true object and the prediction. Conse-

quently, the contribution of a single voxel toward the overall

loss depends on the remaining predictions within the voxel

grid. This is in contrast to the binary cross entropy or typi-

cal regression losses, e.g. L1 or L2, which decompose into

losses of individual voxels (or pixels).

Number of shape layers 1 2 3 4 5

ShapeNet-core 32
3

Completely reconstructed 94.8 100.0 100.0 100.0 100.0

Mean IoU of reconstruction 99.9 100.0 100.0 100.0 100.0

ShapeNet-cars 128
3

Completely reconstructed 2.6 35.2 94.3 99.9 100.0

Mean IoU of reconstruction 97.8 99.9 100.0 100.0 100.0

Table 1. Modeling power of nested shape layers. Percentage

of ShapeNet-core/cars shapes completely reconstructed with given

number of shape layers. Higher resolutions require more layers.

Alternatively, we also consider the cosine similarity

C(A,B) =
A ·B

‖A‖
2
‖B‖

2

, (6)

which has been used for learning embeddings, e.g. [3], but

as far as we know not in a reconstruction setting. To adapt

cosine similarity and IoU to our setting, c.f . [1, 2], we define

LC(x̄, ȳ) = 1− 〈x̄, ȳ〉 (7)

LIoU(x̄, ȳ) = 1−
〈x̄, ȳ〉

∑

i x̄i + ȳi − x̄iȳi

, (8)

where x̄, ȳ are predicted and ground truth shape each

stacked into a vector and normalized to unit norm. Note

that x̄ is based directly on the softmax outputs.

Loss functions for shape layers. Employing LC and LIoU

(Eqs. 7 and 8) for predicting (nested) shape layers would

require decoding the representation into a voxel grid during

training, thus counteracting the efficiency gains from the

compact representation. We hence opt for a different loss

function for training the prediction of (nested) shape layers.

Estimating depth (or run-lengths) is naturally a regression

task, which we address via a robust L1-penalty. Applying

a regression loss naı̈vely to the full depth map, however,

will bias the network toward background pixels. This has

been addressed in the literature by predicting separate fore-

ground masks [18, 25], requiring an additional channel per

depth map. Avoiding auxiliary outputs, we modify the em-

ployed loss to adaptively weigh foreground and background

regions by computing the average loss separately for fore-

ground and background regions. We further refrain from

forcing background pixels to equal any specific value, as

this would unnecessarily bind model capacity. Thus, we re-

quire background pixels to take on values less than a margin

m, instead. Our modified loss for each pixel then becomes

L′

1(x, y) =

{

|x− y| , if y > 0

max(0, x+m), otherwise,
(9)

where x and y are prediction and label for a pixel. We also

experimented with the L2-norm as basis for our modifica-

tion, but observed significantly worse reconstructions.

3.6. Implementation details

Our networks can be structured into an encoder and a

decoder with a bottleneck in the middle (Fig. 2, middle &
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Figure 5. Shapes reconstructed from a single image by our Matryoshka network at different resolutions.
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3D-R2N2 [5] 51.3 42.1 71.6 79.8 66.1 46.6 62.8 54.4 38.1 46.8 66.2 51.3 51.3 56.0

OGN [27] 58.7 48.1 72.9 81.6 70.2 48.3 64.6 59.3 39.8 50.2 63.7 53.6 63.2 59.6

PSGN [8] 60.1 55.0 77.1 83.1 74.9 54.4 70.8 60.4 46.2 55.2 73.7 60.6 61.1 64.0

Ours (voxel tube network) 67.1 63.7 76.7 82.1 74.2 55.0 69.0 62.6 43.6 53.4 68.1 57.3 59.9 64.1

Ours (Matryoshka network) 64.7 57.7 77.6 85.0 75.6 54.7 68.1 61.6 40.8 53.2 70.1 57.3 59.1 63.5

Table 2. Single image 3D shape reconstruction on ShapeNet-core at 323 resolution. We report the mean IoU (%) per category, and the

average IoU over all categories. Our networks outperform all voxel decoder baselines and are competitive with the more complex PSGN.

right). The encoder starts with 2 convolution layers with

interleaved batch normalization and ReLU nonlinearity to

produce 8 initial feature channels while keeping the input

resolution. It is further composed of residual modules [12]

that down-sample the input image to a resolution of 4× 4
while linearly increasing the number of feature channels to

512 (257 for experiments on shapes of a single category

and small resolution, i.e. our ablation study). Each residual

module contains two 3× 3 convolutions, with batch nor-

malization and a ReLU nonlinearity before each convolu-

tion. Downsampling while increasing the number of fea-

ture channels is done in the first convolution layer of each

residual module. Modules altering the spatial resolution al-

ternate with modules operating at the same resolution.

The decoder upsamples again until the desired output

resolution is reached. Mirroring the encoder, the decoder is

also composed of residual modules and decreases the num-

ber of feature channels linearly. For upsampling, the first

convolution is replaced with a transposed convolution. In

all our experiments, we trained using Adam [16] using an

initial learning rate of 0.001 and β1 = 0.9, β2 = 0.999, and

varied the schedule for dropping the learning rate with the

dataset size. We refer to the supplemental for more details.

4. Evaluation

To assess the performance of our geometry prediction

approaches at different tasks, compare them to prior work,

and study the influence of loss functions and network archi-

tectures, we a use a common subset [5, 8, 27] of ShapeNet-

core [4]. The subset consists of nearly 50000 3D shapes

divided into 13 major categories. For all experiments, we

report the intersection over union (IoU) in %.

4.1. Reconstruction from a single view

Comparison to prior work. For evaluating the perfor-

mance of our networks in reconstructing 3D shape from

a single RGB image, we compare to 3 recent approaches

on the ShapeNet-core dataset using the renderings, dataset

split, and ground truth voxel representations provided by

Choy et al. [5]. The renderings feature images of size

137×137 and a uniform sampling of viewpoints. The voxel

representations are of size 32× 32× 32. As preprocess-

ing step, we crop input images to 128× 128 and shuffle

color channels randomly during training. We train a single

network for all shape categories. We compare to different

representative approaches for predicting 3D shapes: (1) 3D-

R2N2 [5] features a dense 3D voxel decoder and an LSTM

to enable reconstruction from one or multiple views; (2) Oc-

tree Generating Networks (OGN) [27] operate on octrees to

exploit sparsity of occupancy maps; (3) Point Set Gener-

ation Networks (PSGN) [8] predict a point cloud using a

stacked hourglass network, a volume prediction network,

and a voxel-based post-processing network.

We show results in Tab. 2. Although conceptually sim-

pler, the dense voxel tube image version of our network out-

performs all voxel decoder-based approaches and is on par

with PSGN, which uses a more complex multi-stage (multi-

network) architecture. Moreover, it is not clear if PSGNs

scale to higher resolutions, whereas this is easily possi-

bly for our networks (see below). Interestingly, the sparse

Matryoshka version of our network, which predicts nested

shape layers, performs only slightly worse than its dense

counterpart and clearly outperforms all voxel decoder base-

lines. This demonstrates the power of our compact image-

based representation for 3D shape.
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Method Category 32
3

64
3

128
3

256
3

OGN [27] car 64.1 77.1 78.2 76.6

Ours (Matryoshka) car 68.3 78.4 79.4 79.6

airplane 36.7 48.8 58.0 59.6

table 38.6 42.3 43.5 41.3

Table 3. Single image 3D shape reconstruction for high resolu-

tions. We report IoU (in %) between predictions at several res-

olutions and ground truth shapes at 2563. Predictions at lower

resolution are up-sampled to 256
3.

Reconstructing higher resolutions. Low-resolution occu-

pancy maps are naturally limited to a low level of detail

they can represent. To assess the performance of our Ma-

tryoshka network at reconstructing shapes at high resolu-

tion, we compared it to Octree Generating Networks [27],

which are representative for Octree-based approaches. We

follow the experimental setup of Tatarchenko et al. [27]

and predict 3D shapes from ShapeNet-cars at resolutions

of 323, 643, 1283, and 2563 given a single RGB input im-

age. We then up-sample the predictions to a resolution of

2563 voxels and compute the intersection over union with

the ground truth shapes at that resolution. For fair com-

parison, we use dataset split and ground truth shapes pro-

vided by Tatarchenko et al. [27]. Furthermore, we provide

results for 2 additional classes from ShapeNet-core, which

pose different challenges; while the airplane class consists

of shapes with intricate structure, the table class contains

the most samples. We report quantitative results in Tab. 3

and show qualitative examples in Fig. 5. We find that both

methods predict more accurate shapes at higher resolutions.

However, OGN’s performance saturates at 1283 due to the

high complexity of the car class with 7496 samples. For our

method we only observe this effect in the even more com-

plex table category (8509 samples). For all resolutions, the

proposed method clearly outperforms the octree-based ap-

proach despite being based on standard 2D networks, which

can be easily implemented in all popular frameworks. The

benefits of higher resolutions are observed best for the air-

plane class, which shows the biggest relative improvements.

4.2. Ablation studies

To better understand the contribution of individual com-

ponents to the overall performance of our networks, we ex-

amine different base architectures and loss functions. For

our ablation study we use the dataset split and renderings

(64× 64 pixels) from Yan et al. [33], taken from the same

24 viewpoints for each object. For the study of loss func-

tions we train one network per class and for the study of

network architectures, we train one network for all classes.

Network architectures. We investigate several network ar-

chitectures that are known to perform well for dense 2D pre-

Base architecture car chair table mean

Encoder/decoder [19] 73.0 52.5 57.0 60.8

U-Net [23] 74.2 54.8 58.8 62.6

ResNet [12] 75.6 56.8 59.1 63.8

DenseNet [14] 72.3 49.4 55.8 59.2

Table 4. Evaluation of base architectures. Across all categories,

the ResNet-inspired architecture outperforms all other networks

with a significant margin.

Loss function car chair table mean

Binary cross-entropy 75.9 57.8 58.2 64.0

L1 73.6 57.2 57.4 62.7

L2 76.4 58.0 58.7 64.4

Cosine similarity LC 75.7 58.4 59.3 64.5

Approx. IoU LIoU 76.3 58.3 59.5 64.7

Table 5. Influence of loss functions. We report the IoU for our

voxel tube network trained with several loss functions on the car,

chair, and table categories.

diction tasks. As memory consumption is a dominating fac-

tor in the choice of a suitable architecture, we modified all

architectures to fit within 3 GB of GPU memory when pre-

dicting shapes at a resolution of 323 with a mini-batch size

of 128. This leaves sufficient memory budget for scaling

up any architecture to higher output resolutions on a single

GPU. Since some of the base architectures (ResNet [12],

DenseNet [14]) are designed to operate on images, but to

produce a single class label, they require adaptation to gen-

erate dense output. In the interest of space, we defer archi-

tectural details to the supplementary material. We take our

voxel tube network as ResNet-inspired baseline. Remov-

ing residual connections yields an Encoder/Decoder or De-

convolution Network [19]; the introduction of connections

between layers of the same spatial resolution to skip vary-

ing sequences of down- and up-sampling forms a U-Net in-

spired network, c.f . [23]. We report results in Tab. 4. Across

all categories, the ResNet-inspired architecture outperforms

all other networks with a significant margin. Note that, e.g.,

octree-based decoders, in contrast to our approach, cannot

take advantage of this as easily.

Loss functions. To assess how specific loss functions affect

the reconstruction quality for our voxel tube networks, we

evaluate the binary cross entropy, L1-norm, L2-norm, the

negative cosine similarity (Eq. 7), and the negative intersec-

tion over union (Eq. 8). We report results in Tab. 5. We find

that the binary cross entropy is a strong baseline, but per-

forms worse than all other evaluated loss functions except

for the L1-norm, which consistently performs worst. Since

the evaluated architecture constrains activations in the final

layer between 0 and 1, a robust loss is less important. For

all categories, the two proposed losses perform best.
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Figure 6. Sampling shapes. By supplying the SfSS-decoder with Gaussian noise, we can draw varied samples from the car distribution.

Figure 7. Shape interpolation. Linearly interpolating the descriptors we feed to the SfSS-decoder produces plausible interpolations of the

generated shapes.

4.3. Other applications

Shape from ID. To assess the ability of our method to

represent highly complex datasets, we follow Tatarchenko

et al. [27] and predict shapes from their Blendswap dataset

at 5123 voxels from a high-level shape ID. We find that our

method is able to reconstruct the dataset at a similar quality

level (97.8% IoU) as OGN [27] (96.9% IoU), but in contrast

to [27] using a 2D representation alone.

Shape from shape similarity and shape generation. We

aim to assess our model’s ability to reconstruct shapes from

high-level information without relying on a specific image

encoder architecture. To that end, we train our network

to generate shapes from a high-dimensional descriptor that

captures shape similarities within a semantic category. We

construct the descriptor by computing a pairwise similar-

ity matrix of 3D models such that an entry at (i, j) rep-

resents the intersection over union between models i and

j of resolution 323 in the ShapeNet-cars dataset. Reduc-

ing the dimensionality of the matrix with PCA while re-

taining 95% of the variance and removing duplicates yields

2424-dimensional descriptors for 7426 remaining shapes.

Trained on 80% of the descriptors to generate shapes at

1283 voxels resolution, our Matryoshka network reaches

a mean intersection over union of 81.1% on the held out

shapes. This Shape-from-Shape-Similarity (SfSS) decoder

can also be used for interpolating between shapes (Fig. 7)

and to synthesize new shapes by supplying a random noise

vector. As shown in Fig. 6, samples drawn from the model

are quite diverse (c.f . Fig. 5 of [25] in contrast).

Reconstruction from real images. To show the applicabil-

ity of our method to real-world images, we give a qualitative

example in Fig. 8, c.f . supplemental for more examples.

Shape from silhouette. In the supplemental material, we

additionally study the ability of our Matryoshka networks

to reconstruct a 3D shape from a single silhouette image.

Figure 8. Qualitative result for 3D shape reconstruction from

real-world images.

5. Conclusion

In this paper, we posed 3D shape reconstruction as a

2D prediction problem, allowing us to leverage well-proven

architectures for 2D pixel-prediction. Both proposed net-

works clearly outperform dense voxel-based approaches at

low resolutions. Our novel efficient encoding based on

nested shape layers, furthermore, allows to scale our Ma-

tryoshka networks to handle reconstruction of shapes at

a high resolution, while outperforming octree-based de-

coder architectures with a considerable margin, despite be-

ing based only on standard network layers. Applications to

shape from ID and shape similarity, as well as shape sam-

pling demonstrated the broad applicability of our approach.

The proposed shape layer encoding requires fewer than 5

layers even for high-resolution shapes. We consequently fix

the maximum number of components in our experiments.

To encode arbitrarily complex objects without requiring re-

training, the required number of components could be pre-

dicted per individual object in a recursive formulation. We

leave this and learning the shape fusion [21] for future work.
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