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Abstract

The goal of Deep Domain Adaptation is to make it pos-

sible to use Deep Nets trained in one domain where there

is enough annotated training data in another where there

is little or none. Most current approaches have focused

on learning feature representations that are invariant to

the changes that occur when going from one domain to

the other, which means using the same network parame-

ters in both domains. While some recent algorithms explic-

itly model the changes by adapting the network parameters,

they either severely restrict the possible domain changes, or

significantly increase the number of model parameters.

By contrast, we introduce a network architecture that in-

cludes auxiliary residual networks, which we train to pre-

dict the parameters in the domain with little annotated data

from those in the other one. This architecture enables us

to flexibly preserve the similarities between domains where

they exist and model the differences when necessary. We

demonstrate that our approach yields higher accuracy than

state-of-the-art methods without undue complexity.

1. Introduction

Given enough training data, Deep Neural Networks [1,

2] have proven extremely powerful. However, there are

many situations where sufficiently large training databases

are difficult or even impossible to obtain. In such cases, Do-

main Adaptation [3] can be used to leverage annotated data

from a source domain in which it is plentiful to help learn

the network parameters in a target domain in which there is

little, or even no, annotated data.

The simplest approach to Domain Adaptation is to use

the available annotated data in the target domain to fine-tune

a Convolutional Neural Network (CNN) pre-trained on the

source data [4, 5]. However, this can result in overfitting

when too little labeled target data is available and is not

applicable at all in the absence of any.

One way to overcome this problem is to design features

that are invariant to the domain shift, that is, the differ-
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Figure 1: Our two-stream architecture. One stream op-

erates on the source data and the other on the target one.

Their parameters are not shared. Instead, we introduce a

residual transformation network that relates the parameters

of the streams with each other.

ences between the statistics in the two domains. This is

usually done by introducing loss terms that force the statis-

tics of the features extracted from both domains to be simi-

lar [6, 7, 8, 9]. While effective when the domain shift is due

to lighting or environmental changes, enforcing this kind

of statistical invariance may discard information and nega-

tively impact performance. To overcome this, it has been

proposed to explicitly model the domain shift [10, 11]. In

particular, the method in [10] involves learning private and
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shared encoders for each of the domains, which increases

the number of parameters to be learned by a factor of 4. By

contrast, the approach in [11] relies on a two-stream archi-

tecture with related but non-shared parameters to model the

shift. This only require a 2-fold increase in the number of

parameters to be learned but at the cost of restricting corre-

sponding parameters in the two domains to approximately

be scaled and shifted versions of each other. Furthermore,

it requires selecting the layers that have non-shared param-

eters using a validation procedure that does not scale up to

modern very deep architectures such as those of [12, 13].

In this paper, we also explicitly model the domain shift

between the two domains using a two-stream architecture

with non-shared parameters. However, we allow for a much

broader range of transformations between the parameters in

both streams and automatically determine during training

how strongly related corresponding layers should be. As a

result, our approach can be used in conjunction with very

deep architectures.

Specifically, we start from a network trained on the

source data and fine-tune it while learning additional aux-

iliary, residual networks that adapt the layer parameters to

make the final target feature distribution as close as possible

to the final distribution of the source features. Furthermore,

we regularize the capacity of these auxiliary networks by

finding an optimal rank for their parameter matrices, and

thus learn the relationship between corresponding layers in

the two streams. Our contribution therefore is twofold:

• We model the domain shift by learning meta parame-

ters that transform the weights and biases of each layer

of the network. They are depicted by the horizontal

branches in Fig. 1.

• We propose an automated scheme to adapt the com-

plexity of these transformations during learning.

This results in a performance increase compared to the ap-

proaches of [10] and [11], along with a reduction in the

number of parameters to be learned by a factor 2.5 and 1.5
compared to the first and second, respectively. As demon-

strated by our experiments, we also outperform the state-

of-the-art methods that attempt to learn shift invariant fea-

tures [8, 14].

2. Related Work

Most approaches to domain adaptation (DA) that operate

on deep networks focus on learning features that are invari-

ant to the domain shift [6, 7, 8, 9, 15, 16]. This is usually

achieved by adding to the loss function used for training

a term that forces the distributions of the features extracted

from the source and target domains to be close to each other.

In [6], the additional loss term is the Maximum Mean

Discrepancy (MMD) measure [17]. This was extended

in [7] by using multiple MMD kernels to better model dif-

ferences between the two domains. In [16], this was further

extended by computing the loss function of [7] at multiple

levels, including on the raw classifier output. The MMD

measure [17] that underpins these approaches is based on

first order statistics. This was later generalized to second-

order statistics [18, 19] and to even higher-order ones [20].

In [21], the idea of learning domain invariant features was

pushed even further by an associative loss based on the ran-

dom walk algorithm.

In [8, 9, 22], a different approach was followed, involv-

ing training an additional classifier to predict from which

domain a sample comes. These methods then aim to learn

a feature representation that fools this classifier, or, in other

words, that carries no information about the domain a sam-

ple belongs to. This adversarial approach eliminates the

need to manually model the distance measure between the

final source and target feature distributions and enables the

network to learn it automatically.

While effective, all these methods aim to learn domain

invariant features, with a single network shared by the

source and target data. By contrast, in [23], a network

pre-trained on the source domain was refined on the tar-

get data by minimizing the adversarial loss of [9] between

the fixed source features and the trainable target representa-

tion. Furthermore, in [10], differences and similarities be-

tween the two domains are modeled separately using pri-

vate and shared encoders that generate feature representa-

tions, which are then given to a reconstruction network.

The intuition is that, by separating domain similarities and

differences, the network preserves some information from

the source data and learns the important properties of the

target data. While effective, this quadruples the total num-

ber of model parameters, thus restricting the applicability of

this approach to relatively small architectures. In the same

spirit, the approach of [11] relies on a two-stream archi-

tecture, one devoted to each domain. Some layers do not

share their parameters, which are instead encouraged to be

scaled and shifted versions of each other. While effective,

this severely restricts the potential transformations from one

domain to the other. Furthermore, the subsets of layers that

are shared or stream-specific are found using a validation

procedure, which scales poorly to the very deep architec-

tures that achieve state-of-the-art performance in many ap-

plications. In this paper, we introduce a two-stream archi-

tecture that suffers from none of these limitations.

Note that the use of pseudo-labels has proven effective at

improving DA algorithms [24, 25]. In essence, this consists

of predicting labels for the target data and using them in a

supervised manner. While such an approach could of course

be implemented within our framework, we believe this to be

secondary to the main focus of this paper and therefore keep

it as a direction of future research.
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Figure 2: Approach overview. We first pre-train the network on the source data. We then jointly learn the source stream

parameters and their transformations using adversarial domain adaptation. Finally, at test time, we use the network with

transformed parameters to predict the labels of images from the target domain. (Best seen in color)

3. Approach

We start from an arbitrary network that has been trained

on the source domain, which we refer to as source stream.

We then introduce auxiliary networks that transform the

source stream parameters to generate a target stream, as de-

picted by Fig. 1. We jointly train the auxiliary networks

and refine the original source stream using annotated source

data and either a small amount of annotated samples from

the target domain or unlabeled target images only. We refer

to the former as the supervised case and to the latter as the

unsupervised one.

Fig. 2 summarizes our approach. Its Domain Adaptation

component appears in the center, and we now describe it

in detail. To this end, we first introduce our auxiliary net-

works and then show that we can control the rank of their

weight matrices to limit the number of parameters that need

to be learned. In effect, during training, our network auto-

matically learns which layers should be different from each

other and which ones can have similar or equal parameters.

3.1. Adapting the Parameters of Corresponding
Layers

Let Ω be the set of all layers in a single stream of the

Deep Network architecture illustrated in Fig. 1. For each

layer i ∈ Ω, let us first consider a vector representation

of the source and target stream parameters as θs
i

and θt
i
,

respectively.

A natural way to transform the source parameters into

the target ones is to write

θti = Biσ(A
⊺

i
θsi + di) + θsi , ∀i ∈ Ω , (1)

for which the notation is given in Table 1. Note that ki, the

second dimension of the Ai and Bi matrices, controls the

complexity of the transformation by limiting the rank of the

matrices. ki = 0 corresponds to the degenerate case where

σ(·) ∈ {tanh,ReLU} nonlinear activation

Ai,Bi ∈ R
Mi×ki transformation matrices

ki ki ≥ 0 transformation rank

di ∈ R
ki bias term

Mi the number of parameters in the ith layer

Ω the set of all network layers

Table 1: Notation for Eq. 1.

the parameters of the source and target streams are identical,

that is, shared between the two streams.

In theory, we could learn all the coefficients of these ma-

trices for all layers, along with their rank, by minimizing a

loss function such as the one defined in Section 3.2. Unfor-

tunately, the formulation of Eq. 1 results in a memory in-

tensive implementation because each increase of the trans-

formation rank ki by 1 in any layer creates (2Mi + 1) ad-

ditional parameters, which quickly becomes impractically

large, especially when dealing with fully-connected layers.

To address this issue, we propose to rewrite the layer pa-

rameters in matrix form and represent them as Θ
s
i

and Θ
t
i

for each layer i of the source and target streams, respec-

tively. A more detailed explanation of this matrix represen-

tation can be found in the supplementary material.

We then propose to write the transformation from the

source to the target parameters as

Θ
t

i = B
1

iσ
(

(

A
1

i

)⊺

Θ
s

iA
2

i +Di

)

(

B
2

i

)⊺

+Θ
s

i , (2)

for which the notation is defined in Table 2. This formula-

tion is preferable to the one of Eq. 1 because A
1
i
, A2

i
, B1

i
,

and B
2
i

are small compared to Ai and Bi. This can be best

seen when formally computing the number of additional pa-

rameters for every layer i ∈ Ω. When using Eq. 1, this

number is (2NiCi + 1)ki. In the case of Eq. 2, it becomes
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Θ
s
i
∈ R

Ci×Ni source stream parameters

Θ
t
i
∈ R

Ci×Ni target stream parameters

A
1
i
,B1

i
∈ R

Ci×li

transformation parametersA
2
i
,B2

i
∈ R

Ni×ri

Di ∈ R
li×ri

Ni i ∈ Ω number of inputs in Θi

Ci i ∈ Ω number of outputs in Θi

li i ∈ Ω left transformation rank for Θi

ri i ∈ Ω right transformation rank for Θi

Ω – set of network layers

Table 2: Notation for Eq. 2.

2(Niri + Cili) + rili. Provided that {li, ri, ki} are of the

same magnitude, and typically much smaller than {Ni, Ci},
Eq. 2 results in significantly fewer parameters than Eq. 1.

In practice, to further reduce the number of parameters,

we limit the A and B matrices to being block diagonal

so that, for each pair of corresponding layers, the weights

are linear combinations of weights and the biases of biases.

Note that, now, the complexity of the source-target transfor-

mation depends on the values li and ri.

3.2. Fixed Transformation Complexity

Let us assume that the Θ
s
i

parameters of the source net-

work have been trained using a standard approach. To

achieve our goal of finding the best possible Θ
t
i
s, we use

Eq. 2 to express them as functions of the Θ
s
i
s, and define

a loss function L({Θs
i
}, {Θt

i
}) that we minimize with re-

spect to both the source stream parameters {Θs
i
} and the

parameters that define the mapping from the source to the

target weights

Γ = {{A1

i }, {A
2

i }, {B
1

i }, {B
2

i }, {Di}} . (3)

Let us further assume that the potential complexity of

the transformation between the source and target domains

is known a priori, that is, the values li and ri are given, an

assumption that we will relax in Section 3.3. Under these

assumptions, we write our loss function as

Lfixed = Lclass + Ldisc + Lstream , (4)

and describe its three terms below.

Classification Loss: Lclass. The first term in Eq. 4 is the

sum of standard cross-entropy classification losses, com-

puted on the annotated samples from the source and target

domains. If there is no annotated data in the target domain,

we use the classification loss from the source domain only.

Discrepancy Loss: Ldisc. This term aims to measure

how statistically dissimilar the feature vectors computed

from the source and target domains are. Minimizing this

discrepancy is important because the feature vectors pro-

duced by both streams are fed to the same classifier, as

shown in Fig. 1. Ideally, the final representations of the

samples from both domains should be statistically indistin-

guishable from each other. To this end, we take Ldisc to be

the adversarial domain confusion loss of [8], which is easy

to implement and has shown state-of-the-art performance

on a wide range of domain adaptation benchmarks.

Briefly, this procedure relies on an auxiliary classifier φ

that aims to recognize from which domain a sample comes,

based on the feature representation learned by the network.

Ldisc then favors learning features that fool this classifier.

In a typical adversarial fashion, the parameters of the classi-

fier and of the network are learned in an alternating manner.

More formally, given the feature representation f, the pa-

rameters θDC of the classifier are found by minimizing the

cross-entropy loss

LDC(yn) = −
1

N

N
∑

n=1

[yn log(ŷn)+(1−yn) log(1− ŷn)] , (5)

where N is the number of source and target samples, yn ∈
[0, 1] is the domain label, and ŷn = φ(θDC , fn). We then

take the domain confusion term of our loss function to be

Ldisc = LDC(1− yn) . (6)

Stream Loss: Lstream. The third term in Eq. 4 serves as a

regularizer to the residual part of the transformation defined

in Eq. 2. We write it as

Lstream = λs (Lω −Z (Lω)) ,

Lω =
∑

i∈Ω

∥

∥

∥
B

1

iσ
(

(

A
1

i

)⊺

Θ
s

iA
2

i +Di

)

(

B
2

i

)⊺
∥

∥

∥

2

Fro

.
(7)

λs controls the influence of this term andZ is a barrier func-

tion [26], which we take to be log(·) in practice. Since

Lstream is smallest when Lω = 1 and goes to infinity

when Lω becomes either very small or very large, it serves

a dual purpose. First, it prevents the network from learn-

ing the trivial transformation Lω ≡ 0. Second, it prevents

the source and target weights to become too different from

each other and thus regularizes the optimization. As will

be shown in Section 4, we have experimented with different

values of λs and found the results to be insensitive to its ex-

act magnitude. However, setting it to zero quickly leads to

divergence and failure to learn the correct parameter trans-

formations. In practice, we therefore set λs to 1.

3.3. Automated Complexity Selection

In the previous section, we assumed that the values li
and ri defining the shape of the transformation matrices

were given. These parameters are task dependent and even
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though it is possible to manually tune them for every layer

of the network, it is typically suboptimal, and even imprac-

tical for truly deep architectures. Therefore, we now intro-

duce additional loss terms that enable us to find the lis and

ris automatically while optimizing the network parameters.

As discussed below, these terms aim to penalize high-rank

matrices. To this end, let

Ti =
(

A
1

i

)⊺

Θ
s

iA
2

i +Di ∈ R
li×ri , (8)

which corresponds to the inner part of the transformation

in Eq. 2. To minimize the complexity of this transforma-

tion, we would like to find matrices A
1
i

and A
2
i

such that

the number of effective rows and columns in the transfor-

mation matrix Ti is minimized. By effective, we mean

rows and columns whose L2 norm is greater than a small ǫ,

and therefore have a real impact on the final transformation.

Given this definition, the non-effective rows and columns

can be safely removed without negatively affecting the per-

formance. In fact, their removal improves performance by

enabling the optimizer to focus on relevant parameters and

ignore the others. In effect, this amounts to reducing the

(li, ri) values.

To achieve our goal, we define a regularizer of the form

Rc({Ti}) =
∑

i∈Ω

(

√

Ni

∑

c

‖(Ti)•c‖2

)

, (9)

which follows the group Lasso formalism [27, 28], where

the groups for the ith layer, represented by (Ti)•c, corre-

spond to the columns of the transformation matrix Ti.

In essence, this regularizer encourages zeroing-out entire

columns of Ti, and thus automatically determines ri, pro-

vided that we start with a sufficiently large value. We can

define a similar regularizer Rr({Ti}) acting on the rows of

Ti, which thus lets us automatically find li.

We then incorporate these two regularizers in our loss

function, which yields the complete loss

L = Lfixed + λr (Rc +Rr) , (10)

where λr is a weighting coefficient and Lfixed is defined

in Eq. 4. As will be shown in Section 4, we have experi-

mented with various values of λr and found our approach

to be insensitive to it within a wide range. However, set-

ting λr too small or too big will result in preservation of the

starting transformation ranks or their complete reduction to

zero, respectively. In practice we set λr to 1.

3.3.1 Proximal Gradient Descent

In principle, given the objective function of Eq. 10, we

could directly use backpropagation to jointly learn all the

transformation parameters. In practice, however, we ob-

served that doing so results in slow convergence and ends

Algorithm 1: Optimization Procedure

Input:

1. The two-stream architecture depicted by Fig. 1

2. Randomly initialized transformation parameters Γ0

Output:

1. {Θs
i
} – the parameters of the source stream

2. Γ
res – parameters of the auxiliary networks

1: for epoch < Nepochs do

2: {Θs
i
}, Γ̂← N steps of Adam to minimize Lfixed

3: {T̂i} ←

{

{{Â1
i
}, {Â2

i
}, {D̂i}} ⊂ Γ̂

{Θs
i
}

(Eq. 8)

4: {Ti} ← group sparse projection of {T̂i} (Eq. 11)

5: {(A1
i
,A2

i
)} ← LS estimate from {Ti}

6: Γ
epoch ← {{A1

i
}, {A2

i
}, {B̂1

i
}, {B̂2

i
}, {D̂i}}

7: end for

8: Γ
res ← Γ

Nepochs

up removing very few columns or rows. Therefore, follow-

ing [28], we rely on a proximal gradient descent approach

to minimizing our loss function.

In essence, we use Adam [29] for a pre-defined number

of iterations to minimize Lfixed without the rank minimiz-

ing terms, which gives us an estimate of Γ̂, and thus of the

transformation matrices T̂i. We then update these matrices

using the proximal operator defined as

T
∗

i = argmin
Ti

1

2t

∥

∥

∥
Ti − T̂i

∥

∥

∥

2

2

+ λr (Rc(Ti) +Rr(Ti)) ,

(11)

where t is the learning rate. In contrast to [28], here, we

have two regularizers that share parameters of Ti. To han-

dle this, we solve Eq. 11 in two steps, as

T̄i = argmin
Ti

1

4t

∥

∥

∥
Ti − T̂i

∥

∥

∥

2

2

+ λrRc(Ti) ,

T
∗
i = argmin

Ti

1

4t

∥

∥Ti − T̄i

∥

∥

2

2
+ λrRr(Ti) .

(12)

for each layer i of the network. As shown in [27], these two

subproblems have a closed-form solution.

Given the resulting T = {Ti}i∈Ω, we need to compute

the corresponding matrices A1
i
, A2

i
and Di for every layer,

such that Eq. 8 holds. This is an under-constrained problem,

since li and ri are typically much smaller than Ni and Ci.

Therefore, we set Di to the value obtained after the Adam

iterations, and we compute A
1
i

and A
2
i

such that they re-

main close to the Adam estimates and satisfy Eq. 8 in the

least-squares sense. We observed empirically that this pro-

cedure stabilizes the learning process. More details are pro-

vided in the supplementary material. Algorithm 1 gives an

overview of our complete optimization procedure.
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SVHN:

MNIST:

Figure 3: Images from the SVHN and MNIST domains.

4. Experiments

In this section, we first discuss the baseline methods that

we used in our experiments. We then compare our approach

to them in three very different contexts, hand-written char-

acter recognition, drone detection, and office object recog-

nition, further demonstrating that our approach applies to

very deep architectures such as RESNETs [13].

4.1. Baseline Methods

As discussed in Section 2, deep domain adaptation tech-

niques can be roughly classified into those that attempt to

learn features that are invariant to the domain change and

those that modify the weights of the network that operates

on the target data to take into account the domain change.

The approach of [8] is an excellent representative of the

first class. Furthermore, since we incorporate its adversarial

domain confusion term Ldisc into our own loss function, it

makes sense to use it as a baseline to gauge the increase in

performance our complete framework brings about.

Our own method belongs to the second class of which

the works of [10, 11, 23] are the most recent representatives.

We therefore also use them as baselines.

4.2. SVHN to MNIST: Unsupervised Adaptation

In this section, we analyze our method’s unsupervised

behavior on the popular SVHN → MNIST domain adap-

tation benchmark for character recognition. As depicted

by Fig. 3, SVHN contains images of printed digits while

MNIST features hand-written ones. Following standard

practice [8, 23], we take SVHN to be the source domain

and MNIST the target one.

4.2.1 Evaluation

To show that our approach is not tied to a specific network

architecture, we tested two different ones, SVHNET [30]

and LENET [31], which are the architectures also used by

our baselines [8, 23]. Not only do these architectures have

different numbers of convolutional filters and neurons in the

fully connected layers, they also work with different image

sizes, 32× 32 for SVHNET and 28× 28 for LENET.

In both cases, to test the unsupervised behavior of our al-

gorithm, we used the whole annotated training set of SVHN

to train the network in the source domain. We then used all

SVHN → MNIST

model Accuracy: Mean [Std]

S
V

H
N

E
T

Trained on Source data 54.9

DC [6] 68.1 [0.03]

DANN [8] 73.9 [0.79]

Ours*: Lfixed, no layers shared 77.8 [0.09]

Ours 78.7 [0.12]

L
E

N
E

T

Trained on Source data 60.1 [1.10]

DANN [8] 80.7 [1.58]

ADDA [23] 76.0 [0.18]

Two-stream [11] 82.8 [0.20]

Ours 84.7 [0.17]

custom Domain Separation [10] 82.78

custom Tri-training [25] 1 85.0

k-NN Transductive [24] 77.4

Table 3: Comparison to the baseline DA techniques on the

SVHN to MNIST benchmark. The accuracy numbers for

the baseline methods are taken from the respective papers.

the training images of MNIST without annotations to per-

form domain adaptation in an unsupervised manner. Table 3

summarizes the results in terms of mean accuracy value and

its variance over 5 runs of the algorithm. From one run

to the next, the only difference is the order in which the

training samples are considered. Our method clearly out-

performs the others independently of the architecture we

tested it on. Note that, apart from [8, 11, 23] that use stan-

dard architectures, other methods [10, 25] rely on custom

ones, thus preventing a truly fair comparison of our results

to theirs. For the sake of completeness, we nevertheless re-

port their results in Table 3.

We also report the results of our approach without the

complexity reduction of Section 3.3, that is, by mininizing

the loss Lfixed of Eq. 4 instead of the full loss function

L of Eq. 10. Note that reducing the complexity helps im-

prove performance by reducing the number of parameters

that must be learned. In Table 4, we provide the transforma-

tion ranks for each feature-extracting layer of the LENET

architecture before and after complexity reduction. In this

case, the first layer retains its high rank while the others

are sharply reduced. This suggests a need to strongly adapt

the parameters of the first layer to the new domain, whereas

those of the other layers can remain more strongly related

to the source stream.

To show generality of our approach and its independence

from the used domain discrepancy term Ldisc, we further

modified our method to replace our domain discrepancy

loss with that of either [14] or [21]. In Table 5, we compare

1requires 1000 annotated target images for hyperparameter tunning
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Transformation ranks: [l, r]

before after

conv1 [32, 32] [31, 31]

conv2 [32, 32] [9, 7]

full3 [32, 32] [7, 7]

full4 [32, 32] [16, 16]

Table 4: Automated complexity selection. [LEFT] Reduc-

tion of the transformation ranks in each LENET layer. The

layers are shown on the x-axis and the corresponding ranks

before and after optimization on the y-axis. [RIGHT] The

same information expressed in terms of the li and ri param-

eters before and after complexity reduction.

Baseline Ours

model Domain discrepancy Accuracy

SVHNET RMAN [14] 81.0 84.6

LENET Associative [21] 95.6 96.2

Table 5: Comparison of the proposed technique with differ-

ent domain discrepancy loss terms on the SVHN to MNIST

benchmark.

our modified approach to these baselines. In either case, we

clearly outperform the original method of [14] or [21], de-

spite using the same network architecture. This shows that

our method is agnostic to the choice of domain discrepancy

loss term.

4.2.2 Hyperparameters

In Section 3, we introduced two hyper-parameters that con-

trol the relative influence of the different terms in the loss

function of Eq. 10. They are λs, the weight that determines

the influence of the regularization term in Eq. 7, and λr, the

weight of Eq. 10, which controls how much the optimizer

tries to reduce the complexity of the final network.

In Fig. 4, we plot the accuracy as a function of λs and λr.

It is largely unaffected over a large range of values, meaning

that the precise setting of these two hyper-parameters is not

critical. Only when λr becomes very large do we observe a

significant degradation because the optimizer then has a ten-

dency to reduce all transformation ranks to 0, which means

that the source and target stream parameters are then com-

pletely shared. In all other experiments reported in this pa-

per, we set λr and λs to 1.

4.3. Drone Detection: Supervised Adaptation

We now evaluate our approach on the UAV-200 dataset

of [11]. It comprises 200 labeled real UAV images and ap-

Stream Loss weight: λs

Group Sparsity weight: λr

Figure 4: Accuracy as a function of the values of hyperpa-

rameters λs and λr on the SVHN to MNIST benchmark. It

is shown in blue and changes little over a wide range. In

practice we take λs = λr = 1. We also plot in red the

performance of DANN [8] for comparison purposes.

Synthetic:

Real:

Figure 5: Synthetic and real UAV images.

proximately 33k synthetic ones, which are used as positive

examples at training time. It also includes about 190k real

images without UAVs, which serve as negative samples. To

better reflect a detection scenario, at test time, the quality

of the models is evaluated in terms of Average Precision

(AP) [32] on a set of 3k real positive UAV images and 135k

negative examples. The training and testing images are of

course kept completely separate.

We treat the synthetic data as the source domain and the

real images as the target one. Our goal is therefore to lever-

age what can be learned from the synthetic images to instan-

tiate the best possible network for real images even though

we have very few to train it. In other words, we tackle a

need in tasks where synthesizing images is becoming in-

creasingly easy but acquiring real ones in sufficient quantity

remains difficult.

We compare our method against several baselines. In

Table 6(right), we report the results in terms of mean and

standard deviation of the AP metric across 5 runs for each

method. Ours clearly outperforms the others. It is followed

by the two-stream architecture of [11] that requires approxi-

mately 1.5 times as many parameters at training time to per-

form domain adaptation. Table 6(left) depicts the reduction

in transformation ranks that we achieve by automatically

learning the complexity of our residual auxiliary networks.
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conv1
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conv3
full4

0

100

200

256

31

58

88

7

Rank before
Rank after Synth → Real

AP: Mean [Std]

Trained on Source data .377

DANN [8] .715 [.004]

ADDA [23] .731 [.005]

Two-stream [11] .732 [.003]

Ours .743 [.006]

Table 6: UAV detection. [LEFT] Reduction of the transfor-

mation ranks as in Table 4. [RIGHT] Comparison to base-

line domain adaptation techniques.

A:

D:

W:

Figure 6: Sample images from Amazon (A), DSLR (D) and

Webcam (W) domains of the Office dataset.

4.4. Adaptation with Very Deep Networks

To demonstrate that our method can work with very deep

architectures, we apply it to the RESNET-50 [13] model and

analyze its performance on the Office benchmark [33] for

unsupervised domain adaptation. Fig. 6 depicts this dataset.

As in [14], we regularize the final feature representation by

adding a ‘bottleneck’ layer to the original RESNET archi-

tecture right before the classification layer. The domain

classifier is then connected to the output of this ‘bottleneck’

layer. Since the DANN [8] baseline does not use a RESNET,

we reimplemented a version of it that does. It relies on the

domain confusion network used in [8] for the ALEXNET

model [34].

Since the RESNET is very deep, the method of [11] that

needs to validate all shared/non-shared combinations of lay-

ers becomes impractical. Furthermore, the method of [10]

relies on a custom architecture, which requires increasing

the number of parameters by at least a factor of 4 at training

time, thus making it impossible to integrate with RESNET

and train on a conventional GPU. Finally, we were unable

to make ADDA [23] converge in this case, presumably be-

cause when using the RESNET architecture, fine-tuning the

target stream with only the domain confusion loss becomes

too unconstrained.

Domain pair DANN [8] Ours

A → D 79.1 82.7 [0.3]

D → A 63.6 64.7 [0.2]

A → W 78.9 81.5 [0.7]

W → A 62.8 63.6 [0.2]

D → W 97.5 98.0 [0.1]

W → D 99.2 99.4 [0.1]

Table 7: Evaluation on the Office dataset using the fully-

transductive evaluation protocol of [33].
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Figure 7: Transformation ranks reduction on the Office

dataset for the A→W domain adaptation task. The ranks

significantly shrink for all layers of the RESNET-50 model.

In short, our method successfully handles a very difficult

domain adaptation task, which creates significant difficul-

ties for all the baselines except for DANN [8], which can

also deliver results. Nevertheless, as can be seen in Table 7,

our approach consistently does better. As before, Fig. 7 il-

lustrates the reduction in complexity that we obtain by auto-

matically adapting the ranks of the residual parameter trans-

formation networks.

5. Conclusion

We have shown that allowing deep architectures to adapt

to the specific properties of the source and target domains

improves the accuracy of the final model. To this end, we

have introduced a set of auxiliary residual networks that

transform the source stream parameters to generate the tar-

get stream ones. This, in conjunction with an automatic

determination of the complexity of these transformations,

has allowed us to outperform the state of the art on sev-

eral standard benchmark datasets. Furthermore, we have

demonstrated that this approach was directly applicable to

any network architecture, including the modern very deep

ones. In the future, we plan to investigate if adapting the

number of layers and of neurons in each layer can further

benefit adaptation under more severe domain shifts.
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