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learned recurrent visual servoing controller. Training is performed in simulation (left) to reach varied

objects from various viewpoints. The recurrent controller learns to implicitly calibrate the image-space motion of the arm with
respect to the actions issued in the unknown coordinate frame of the robot. The model is then transferred to the real world by
adapting the visual features, and can reach previously unseen objects from novel viewpoints (right).

Abstract

Humans are remarkably proficient at controlling
their limbs and tools from a wide range of viewpoints.
In robotics, this ability is referred to as visual servo-
ing: moving a tool or end-point to a desired location
using primarily visual feedback. In this paper, we pro-
pose learning viewpoint invariant visual servoing skills
in a robot manipulation task. We train a deep recur-
rent controller that can automatically determine which
actions move the end-effector of a robotic arm to a de-
sired object. This problem is fundamentally ambigu-
ous: under severe variation in viewpoint, it may be
impossible to determine the actions in a single feed-
forward operation. Instead, our visual servoing ap-
proach uses its memory of past movements to understand
how the actions affect the robot motion from the cur-
rent viewpoint, correcting mistakes and gradually mov-
ing closer to the target. This ability is in stark con-
trast to previous visual servoing methods, which assume
known dynamics or require a calibration phase. We
learn our recurrent controller using simulated data, syn-
thetic demonstrations and reinforcement learning. We
then describe how the resulting model can be trans-
ferred to a real-world robot by disentangling percep-
tion from control and only adapting the visual lay-
ers. The adapted model can servo to previously un-
seen objects from novel viewpoints on a real-world
Kuka IIWA robotic arm. For supplementary videos, see:
hitps://www.youtube.com/watch?v=0LgM2Bnb7fo
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1. Introduction

Humans and animals can quickly recognize the ef-
fects of their actions through visual perception: when
we see ourselves in a mirror, we quickly realize that the
motion of our reflected image is reversed as a function of
our muscle movements, and when we observe ourselves
on camera (e.g., a security camera in a grocery store), we
can quickly pick ourselves out from a crowd simply by
looking for the motions that correlate with our actions.
We can even understand the effects of our actions under
complex optical transformations, such as in the case of a
surgeon performing a procedure using a laparoscope. In
short, we can quickly discover our own ‘“end-effector”
(either our own hand, or even a tool) and visually guide
it to perform a desired task.

The ability to quickly acquire visual servoing skills of
this sort under large viewpoint variation would have sub-
stantial implications for autonomous robotic systems: if
a robot can learn to quickly adapt to any viewpoint, it
can be dropped without any calibration into novel sit-
uations and autonomously discover how to control its
joints to achieve a desired servoing goal. However,
this poses a substantial technical challenge: the prob-
lem of discovering how the controllable degrees of free-
dom affect visual motion can be ambiguous and under-
specified from a single frame. Consider the two scenes
shown on the right side of Figure[T} Which way should
the robot move its end-effector in order to reach the un-
seen query object? In the two settings, the action in the
robot’s (unknown) coordinate frame has almost the op-
posite effects on the observed image-space motion. Af-
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Figure 2. The input to our network is a query image (top-left) and the observed image at step ¢ (left). The images are processed
by separate convolutional stacks; their features are concatenated and are fed into an LSTM layer. The output is the policy (bottom
right) which is an end-effector movement in the frame of the robot . The previously selected action is provided to LSTM, enabling
it to implicitly calibrate the effects of actions on image-space motion. Value prediction: a separate head (top right) predicts the Q-
value of the action trained with Monte Carlo return estimates. Auxiliary loss: An auxiliary loss function minimizes the localization
error for the query object in the observed image. Also used in order to adapt the convolutional layers with a few labeled real images.

ter commanding an action and observing the movement,
it is possible to deduce this relationship. However, iden-
tifying the effect of actions on image-space motion and
successfully performing the servoing task requires a ro-
bust perception system augmented with the ability to
maintain a memory of past actions.

In this paper, we show that view invariant visual ser-
voing skills can be learned by deep neural networks,
augmented with recurrent connections for memory. In
classical robotics, visual servoing refers to controlling
a robot in order to achieve a positional target in image
space, typically specified by positions of hand-designed
keypoint features [35) [15]. We instead take an open-
world approach to visual servoing: the goal is specified
simply by providing the network with a small picture
of the desired object, and the network must select the
actions that will cause the robot’s arm to reach that ob-
ject, without any manually specified features, and in the
presence of severe viewpoint variation. This mechanism
automatically and implicitly learns to identify how the
actions affect image-space motion, and can generalize to
novel viewpoints and objects not seen during training.

The main contribution of our work is a novel recur-
rent convolutional neural network controller that learns
to servo a robot arm to previously unseen objects while
it is invariant to the viewpoint. To learn perception and
control for such viewpoint invariant servoing, we pro-
pose a training procedure that uses automatically gen-
erated demonstration trajectories in simulation as well
as reinforcement learning (RL) policy evaluation. We
train our viewpoint invariant controller primarily in a
randomized simulation setup where we generate diverse
scenes. Using a small amount of real-world images, we
adapt the visual features to enable successful servoing
on a real robotic arm while the overwhelming majority
of training data is generated in a randomized simulator.
Our experimental results evaluate the importance of re-
currence for visual servoing on an extensive simulated
benchmark and show that incorporating the value pre-
diction function improves the results. We also evaluate
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the effectiveness of our method in several real-world ser-
voing scenarios both quantitatively and qualitatively.

2. Related Work

Visual servoing has a long history in computer vi-
sion and robotics [6, [15]. Our proposed visual ser-
voing method aims to address a similar problem, but
differs in several important aspects of the visual ser-
voing problem formulation, with the aim of producing
a method that is more general and practical for open-
world settings. We depart from a common assump-
tion that the camera intrinsics and extrinsics are cali-
brated [23} 9], and make no assumptions about the 3D
structure of the scene [9, 123, [7]. Several prior visual ser-
voing methods also address servoing with uncalibrated
cameras [36, |16, 21], but all of them address an “eye-in-
hand” setting, where the goal is to servo the camera to-
ward a target view by using previously known geometric
features and estimate the image Jacobian within an im-
age based visual servoing setup. In contrast, our visual
servoing setting involves servoing a robotic arm to a vi-
sually indicated target, provided via a query image while
the camera viewpoint is unknown and changes between
trials. In contrast to the the eye-in-hand setup, the query
image is not the desired image that the camera should
see, but rather an object that arm should reach while the
camera observes the scene from an unknown viewpoint.
This requires the servoing mechanism to learn to match
visual features between the query object and current ob-
servation, recognize the motion of the arm, and account
for differences in viewpoint between trials.

Specifying the target by providing an image of the
query object, instead of specifying low-level keypoints,
is most similar to photometric visual servoing [5]. How-
ever, while photometric visual servoing aims to match a
target image (e.g., by moving the camera), our method
aims to direct the arm to approach the visually indicated
object. The query image provides no information about
how to approach the object, just which object is desired.



Our model must therefore both localize the object and
direct the robot’s motion.

Similarly to recent work on self-supervised robotic
learning [18], [26], our method uses observed
images and self-supervision to train deep convolutional
networks to predict action-conditioned task outcome. In
contrast to these prior methods, our camera viewpoint is
not fixed and can change drastically from one episode
to another. Our approach incorporates fast adaptation
via recurrence to adapt the visual servo to a novel view-
point within a single episode of task execution, in ad-
dition to an outer-level self-supervised learning process
performed with conventional gradient descent.

The use of recurrent networks for control has pre-
viously been used in a number of works on reinforce-
ment learning, including methods for visual naviga-
tion [22| 24]], continuous control [38]], and physics
simulation to real world transfer without visual ob-
servations. However, to our knowledge, no prior method
has demonstrated that recurrence can be used to en-
able real-world robotic visual servoing from novel view-
points. The closest work to this topic has taken a system
identification approach for unknown physical parame-
ters, such as masses and friction parameters and
does not use either of image observation or recurrence.

We use randomized simulated experience to train our
visual servoing system. In order to use it for visual ser-
voing in the real world, we also introduce an adapta-
tion procedure based on finetuning of the visual features
with an auxiliary objective. Most prior approaches to
domain adaptation either train domain invariant repre-
sentation [20] [3]], learn a representation transfor-
mation from one domain to another via transfer learn-
ing (12, 291, or employ domain randomization in
simulation which produces robust models that
can generalize broadly and can directly be deployed in
the real world. Our approach combines domain random-
ization with transfer learning: we learn the controller en-
tirely in a randomized simulation environment and then
finetune only the visual features with a small amount of
real world images, effectively transforming the model’s
representation into the real-world domain. We show that
our final finetuning procedure produces an effective vi-
sual servoing mechanism in the real world, even though
the recurrent motor control layers are not finetuned on
the real-world data.

3. Recurrent View Invariant Visual Servo

Our aim is to learn visual servoing policies that can
generalization to new viewpoints. To this end, our policy
network should implicitly learn to “self-calibrate” and
discover the relationship between motor commands and
motion in the image. We set up visual servoing scenarios
where a robot arm must reach objects using monocular
camera observations captured from an arbitrary view-
point. The reaching target is indicated by an image of
the query object, and the network must figure out where
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Figure 3. Our randomized simulated scenes and viewpoint ran-
domization to learn viewpoint invariant visual servoing skills.

this object is in the image and how to actuate the robot
arm in order to reach it.

The principal challenge in this problem setup comes
from the inherent ambiguity over the motion of the arm
in the image in terms of the actions. Most standard vi-
sual servoing methods assume knowledge of the Jaco-
bian — the relationship between actions and motion of
desired visual features. Our approach not only has no
initial knowledge of the Jacobian, but it does not even
have any prior visual features, and must learn everything
from data. Determining the right actions from a single
image is generally not possible. Instead, we must incor-
porate temporal context, using the outcomes of past ac-
tions to inform future ones. To that end, we use a recur-
rent neural net (RNN), whose internal state is trained to
extract and capture knowledge about hand-eye coordina-
tion during the course of a single episode. Our network
must take a few initial actions, observe their outcomes,
and implicitly “self-calibrate” to understand how actions
influence image-space motion.

Another challenging aspect of our problem is the vi-
sual scene complexity. We generate diverse simulated
scenes for each episode by randomly selecting a query
object and distractor objects from a set of 3D shapes and
rendering scene components(table, plane, objects) with
random textures and under varied lighting conditions.
The objects are placed on the table with random loca-
tion and orientation. This setup enforces the model to
learn to distinguish between objects and as such it needs
to implicitly perform object localization in 3D.

We denote our controller model as my. This model
is a function, with parameters 6, that accepts as input
the current image observation oy, the query image ¢ as
well as the previous internal state h;_; representing the
memory. The previously chosen action a;_ is also pro-
vided, so that it can infer how actions affect image-space
motion. The output consists of the action a; and the new
internal state hy, such that the policy is defined as

a1, b1 = mo(or, ar—1,q, he) (1)
We implemented recurrence in our controller using an
LSTM, and the action is defined as a displacement
a = (0, 0y, 0z) of the end-effector of the arm in the
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Figure 4. The set of objects used in the real-world experiments.
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natural images, while the unseen objects are used for testing.
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robot’s frame of reference (which is not known to the
model). For the purpose of exploration, the policy that
is used to collect experience during training is stochas-
tic, and corresponds to a Gaussian with mean given by
the model output. When the model is used to select ac-
tions for T steps, it produces a sequence of observation
and actions 7 = (01, az,- - ,or,ar). As illustrated in
Fig. P the observation o, and query image ¢ are pro-
cessed with separate convolutional stacks based on the
VGG16 architecture [31], with o, having an input size
of 256 x 256 and q resized to 32 x 32. These networks
are trained from scratch, without pretraining and pro-
duce vector representations of both images. The pre-
vious action a;_; is transformed via a fully connected
ReLU layer into a 64-dimensional feature vector. The
observation embedding at step t, the query embedding
and the action embeddings are concatenated in one vec-
tor as input to the recurrent motor control system, which
uses a single-layer LSTM with 512 units [14]. The state
of this LSTM corresponds to the memory h;_1, which
allows the model to capture information from past ob-
servations needed to perform implicit calibration.

4. Training

We train our visual servoing model with a combina-
tion of supervised learning, which is analogous to learn-
ing from demonstration, and outcome prediction, which
corresponds to RL objective. In our implementation,
the model is trained entirely in simulation (see Sec. EI)
which provides full access to object locations and robot
states. This allows us to produce supervision that cor-
responds to ground truth actions or synthetic “demon-
strations.” These demonstrations directly supervise the
action output a;. However, this supervision does not
directly teach the long term effects of an action to the
network. We found it beneficial to also augment the
training process with a value prediction loss for RL.
This loss trains the model to also predict the state-action
value function associated with each action using multi-
step Monte Carlo policy evaluation, which is the reward
that the model expects to obtain for the entire episode by
following its policy to take actions. As shown in our ex-
periments, this RL loss leads to improved performance,
since the resulting internal representations become bet-
ter adapted to the long-term goal of the task.
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4.1. Learning from Synthetic Demonstration

We synthesize demonstration trajectories by gener-
ating a large set of episodes with varied camera loca-
tions, objects, and textures as described in Sec. EL Each
episode contains ground truth actions that servo the arm
to the query object, perturbed by Gaussian noise to pro-
vide some degree of exploration, which we found ben-
eficial for producing robust polices. The training loss
corresponds to the sum of squared Euclidean distances
between the output action and the vector from the end-
effector to the target object and can be written as

T
Loss = Z [l
t=1

To keep the action magnitudes within a bound, we learn
normalized action direction vectors and use constant ve-
locity so that a; is independent of the number of steps.
Here, we are not proposing a planning method for arbi-
trary tasks (e.g. presence of obstacles, etc.), but specif-
ically aim to solve a visual servoing task, where the
robot should move directly toward an object. There-
fore, at each time ¢, the optimum action is the normal-
ized direction vector towards the object and is computed
by subtracting the end-effector position x; from the ob-
ject location y. The sampled trajectories provide starting
points of the arm and past actions from which the model
needs to recover. After unrolling the policy and formu-
lating the above loss we use stochastic gradient descend
over the parameters  to minimize Loss. Following the
DAgger framework [27], once our model converges, we
generate additional on-policy trajectories by running the
current policy and label them with the ground truth ac-
tions. This new data is then used to retrain the model
and we repeat this procedure for two iterations.

Yy— T

- 2
[y — ]

atHQ.

4.2. Learning the Value Function

The above supervised learning procedure can quickly
lead to a reasonable policy, but it is also myopic, in the
sense that it does not consider the long term effects of
an action. We found that the final performance of our
model could be improved by also incorporating an RL
objective, in the form of state-action value function pre-
diction, also known as the Q-function [32]]. This al-
lows us to then select the action that minimizes the pre-
dicted long term reward. We formulate a reward func-
tion that indicates whether the arm has reached the tar-
get at the end of the episode, such that 7(s;,a;) = 1
and r(s¢,a;) = 0 otherwise. Here, we use s; to denote
the (unobserved) underlying state of the system, which
includes the arm pose and query position. The target
Q-values are then computed according to

T
Qs ar) = 7(st,00) + Ereemy | D 7" r(serar)
t'=t+1

where +y is a discount factor. These target values are used
with a squared error regression loss applied to a second
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Figure 5. Comparing recurrent vs reactive control in test scenarios with different levels of difficulty and three random objects.

head of the model (see Fig.[2). The rewards and target Q-
values are computed along trajectories sampled by run-
ning the policy. In practice, we found it beneficial to un-
roll the policy multiple times from each visited state and
action and average together the corresponding returns to
estimate the expectation with respect to 7. This corre-
sponds to multi-step Monte Carlo policy evaluation [32],
which provides a simple and stable method for learn-
ing Q-functions [30]. We optimize with respect to the
input action a; to choose actions according to this Q-
function. In our implementation, we use cross-entropy
method (CEM) [28] to perform this optimization, which
provides a simple gradient-free optimization procedure
for choosing actions that maximize predicted Q-values.

We implement our models in TensorFlow [1]]. We use
a buffer of one million unrolls for each policy learning
round and deploy the Adam optimizer [17] with a learn-
ing rate of 1.5e — 5 and an exponential decay schedule.
Each round of training converges after one million steps.

S. Simulated Training and Transfer

One of the main challenges in robot learning is data
collection. While deep models are shown to work well
on huge amount of data, large scale robot data collec-
tion is infeasible in many scenarios and results in chal-
lenges for training models with high generalization. To
address this challenge, we train our controller in simu-
lation where we can generate a large, diverse range of
scenes captured from various viewpoints and obtain the
supervision needed to train our model efficiently. We
use domain randomization [30]] to learn robust visual
features and boost our performance in the real world by
also incorporating visual adaptation with small amount
of real world images.

Simulated Environment: We use the Bullet physics en-
gine simulator [8]], with a simulated 7 DoF Kuka ITWA
arm and a variety of objects placed on a table in front of
the arm. The objects are randomly selected from a set of
50 scanned objects of various dishware — plates, mugs,
cups, bowls, teapots and etc. The objects are dropped on
the table, so that their pose and location is randomized.
We also randomize textures, lighting, and the appear-
ance of the table and ground plane. This randomization
procedure serves two important purposes: first, it forces
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the controller to learn the underlying geometric patterns
that are actually important to the task, rather than pick-
ing up on extraneous aspects of object appearance that
might correlate with actions, and second, it serves to en-
able the model to generalize more easily to real-world
scenes, by essentially forcing it to solve a harder gen-
eralization task (widely different appearances), as dis-
cussed in prior work [30]. Each simulated trial consists
of a random camera viewpoint, up to three randomly se-
lected objects and randomized appearance parameters.
Fig.[3]shows examples of our randomized simulation en-
vironment from various robot camera viewpoints.
Adaptation to the Real World: To perform visual
servoing with a real robotic arm the model parameters
should be able to generalize to real world. The random-
ization procedure described in the previous section al-
ready provides some degree of generalization [33| [30].
We also found that an additional adaptation step can im-
prove generalization to real world scenarios. Obtaining
ground truth actions and rewards in the real world re-
quires costly manual labeling. Instead, we leverage the
fact that the motor control portion of our model can re-
main largely unchanged between simulation and the real
world, and only the visual features can be adapted using
a weaker form of supervision to finetune only the con-
volutional layers of the model.

To that end, we use the auxiliary adaptation loss at the
last layer of the visual stack (see Fig. 2] top-left), which
predicts the presence or absence of the query object on a
8 x 8 grid overlaid on the image, by using computed log-
its at the last fully convolutional layer. These logits are
fed into a cross entropy loss to finetune the vision stack.
We use 22 sequences of the arm executing random ac-
tions, and we annotate the first frame in each video with
bounding boxes for the objects that are present on the ta-
ble which resulted in a total of 76 bounding boxes. Some
of these scenes are shown in Fig.[I0] Since the episodes
remain stationary during each episode, we can prop-
agate the labels automatically through each sequence.
The actual loss is constructed by sampling a batch of
sequences, and for each sequence sampling one object
to use as the query object by cropping out one bound-
ing box. To make our localization robust against object
poses, for each sequence we randomly select the query
image from a pool of query images of the same query
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Figure 6. Comparison for different iterations of on-policy data collection, and the benefit of value prediction objective by using
Monte-Carlo policy evaluation with three object test scenarios. Test scenarios with different levels of difficulty from left to right.

object category. The loss then describes the error in lo-
calizing the query object in the spatial image frame.

6. Experiments

Our experiments consists of detailed evaluations in
simulation as as well as real-world evaluation with Kuka
ITWA arm to study generalization to real-world. Prior
visual servoing methods are not directly applicable to
our problem setting, since we do not assume knowl-
edge about the camera position or the action to image
Jacobian. Also our target is specified by a picture of
the object that the arm should reach for. Therefore, we
compare to ablated variants of our method. To evalu-
ate the importance of memory for learned implicit self-
calibration, we compare to non-recurrent visual servo
architectures trained in exactly the same way as our
method. We also analyze the importance of combining
supervised learning from demonstrated trajectories with
RL value prediction.

6.1. Simulated Reaching

In our simulation experiments, we aim to answer the
following questions: (1) How effective is our proposed
recurrent controller compared to a feedforward reactive
policy? (2) How robust is our model to viewpoint vari-
ation and visual diversity? (3) What is the benefit of
incorporating on-policy data? (4) How beneficial is the
value prediction objective?

Model setup: In addition to the recurrent controller, we
also train two reactive non-recurrent policies which may
or may not take the previous action as input and use a
feed-forward network which has same layers as in Fig.[2]
but has two fully connected layers instead of the recur-
rent LSTM layer. We call these baseline architectures as
reactive+action-in and reactive policies, respectively.

Test setup: For testing, we generate new simulated sce-
narios using the randomization procedure described in
Sec. 5} We generate scenes with two or three novel
objects not seen during training. The test viewpoints
are sampled uniformly at random in a region around
the workspace, with the orientation chosen to always
point toward the table, such that the query object is vis-
ible. We randomly select of the viewpoints for training
episodes, while keeping a held-out set of test viewpoints
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to test generalization. We evaluate the performance of
our method on test scenarios with different levels of dif-
ficulty: (a) Novel textures and novel viewpoints. (b) Pre-
viously seen textures and novel viewpoints. (c) Novel
textures and previously seen viewpoints.

Evaluation criteria: In each simulation experiment, we
run the policy for 300 trials, each with a fixed length of
10 steps. At the end of each trial, we compute the Eu-
clidean distance of the robot’s end-effector to the query
object, using the closest points on the arm and the object
mesh. This metric is in meters, and is zero when the arm
touches the object. We report the average distance to the
query object is the last time step over 300 test trials.

Reactive vs. recurrent policies: According to the final
distance distributions illustrated in Figure [5 both reac-
tive policies are substantially less proficient at reaching
the query objects. When the testing scenario is the most
challenging, with novel textures and novel viewpoints,
and without any on-policy data collection, the average fi-
nal distance obtained by the reactive policies are 0.10m
and 0.11m, while the recurrent policy reaches an aver-
age final average distance of 0.08m. Incorporating on-
policy data for training our proposed approach results in
a final distance of 0.07m in the novel viewpoint and un-
seen texture condition. The results also indicate that the
novel camera viewpoints are indeed more challenging
when it comes to generalization. According to Table [T]
there is ~ 4-6 cm difference between reactive and recur-
rent controller performance which is 57%-86% of the
open gripper (with width of 7cm), respectively. This is
significant for robotic applications.

Random policy: We also compared our performance
with random walk policy for commanding the end-
effector. The random policy obtains average euclidean
distance of 0.169m to the target object in 300 trials of
10 steps which validates the promising performance of
our learned recurrent policy.

The effect of using on-policy data: The effect of using
different numbers of iterations of on-policy training is
shown in Figure [6|and also summarized in Table[2] Per-
forming two iterations of retraining with on-policy data
produces the best performance on the seen viewpoints
and unseen texture scenarios, while resulting in poorer
performance in the scenarios with novel viewpoints. On



Table 1. Average distance to target in meter for various test settings with two and three objects scenes. (VP: Viewpoint, T: Texture)

Three objects Two objects
ove ove een ove ove een
Unseen T Seen T UnseenT  Unseen T Seen T Unseen T
Reactive w/ MC 0.1130 0.1031 0.1112 0.1062 0.1067 0.1051
Reactive + On policy w/ MC 0.1016 0.0952 0.0915 0.0935 0.0909 0.0950
Reactive+Action-in w/ MC 0.1001 0.0959 0.0884 0.0990 0.0938 0.0898
Recurrent w/ MC 0.0802 0.0769 0.0546 0.0730 0.0757 0.0461
Recurrent + On policy w/ MC 0.0685 0.0749 0.0307 0.0678 0.0741 0.0226

Table 2. Average distance to target in meter for evaluating the effect of the value prediction loss by using Monte-Carlo policy
evaluation (MC) and on-policy data. (VP: Viewpoint, T: Texture)

Three objects Two objects

Novel VP Novel VP Seen VP Novel VP Novel VP Seen VP

Unseen T Seen T Unseen T Unseen T Seen T Unseen T
Recurrent 0.0805 0.0773 0.0576 0.0729 0.0819 0.0437
Recurrent w/ MC 0.0802 0.0769 0.0546 0.0730 0.0757 0.0461
Recurrent + On policy 0.0844 0.0766 0.0346 0.0747 0.0751 0.0235
Recurrent + On policy w/ MC 0.0685 0.0749 0.0307 0.0678 0.0741 0.0226
Recurrent + On policy(iter:2) 0.0740 0.0946 0.0322 0.0883 0.0863 0.0270
Recurrent + On policy(iter:2) w/ MC 0.0844 0.0916 0.0265 0.0865 0.0903 0.0229

Grasp/Touch query object

el ».5
| L wv ¥

Close to query object

1
Figure 7. A successful reach occurs if the gripper touches the

query object or gets very close to it. Failure examples include
cases where the gripper ends up with a far distance from the
query object or approaching the wrong object.

the other hand, using one iteration of retraining with on-
policy data improves the performance in all scenarios.
This result suggests that one iteration of on-policy data
collection can address the distribution mismatch prob-
lem, though additional iterations can potentially result
in becoming more specialized to the training viewpoints.
Therefore, if the task emphasis is on mastery, using more
on-policy data can improve performance.

The effect using Monte Carlo policy evaluation for
value prediction : We conducted simulated experi-
ments with and without the value prediction loss. When
the value prediction loss is used, it is denoted by
w/Monte Carlo in Figure [6] and Table 2] When using
w/Monte Carlo, we compute the action based on the ac-
tion prediction output of the model, at each time step.
We then use CEM to perturb this action with Gaussian
noise with standard deviation o = 0.003 to generate 150
candidate actions and evaluate them via the value pre-
diction head. The executed action is sampled at random
from the top 5 actions with highest values. The results
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Figure 8. The network trained with only simulated data be-
comes confused between two objects with similar color and
fails in the reaching task, while the visually adapted network
can distinguish between the two object.

Query
object 1
—

WP

Query
object 2

in Figure[f]shows that, in most conditions, incorporating
the value prediction head which is trained using Monte-
Carlo return estimates results in improved performance.

6.2. Real-World Robotic Reaching

We evaluated the generalization capability of our
viewpoint invariant visual servoing model on a real
7DoF Kuka IIWA robotic arm. We used two sets of
novel objects for the test experiments. The test objects
include a variety of plush toys and dishware objects as
shown in Figure @ In the experiments, we placed the
camera at various locations and arranged the table with
objects at arbitrary locations and poses.

Quantitative Results: Here, we compare our recur-
rent controller with adapted visual layers to one that
was trained entirely in simulation without any additional
adaptation. The two models were compared head-to-
head on each viewpoint and object arrangement, to pro-
vide a low-variance comparison. The tests were divided
into scenarios with either one or two objects on the table.
Table [3] summarizes the performance on the real-world
reaching task. We performed a total of 42 trials, 18 with



Table 3. Real world reaching task results with novel viewpoints (Percentage of successful trials).

Simulation only controller

Visually adapted controller

Grasp/Touch Close to Grasp/Touch — Close to query object
Success rate . . Success rate . :

query object  query object query object query object
One object 88.9 55.6 333 94.4 61.1 333
Two objects 54.1 333 20.8 70.8 25.0 45.8

—_—

¥

Figure 9. In both scenarios, the arm successfully reaches the object. Note that, in the second sequence, the arm first moves to the
right, and then observes the effect of this action and corrects, moving toward the query object. This suggests that the controller can

observe action outcomes and incorporate these observations to correct servoing mistakes.

single objects, and 24 with two objects. These trials
were recorded from a total of 18 camera viewpoints. We
count the number of times the arm moves towards the
right query object and reaches it. A successful reach oc-
curs if the gripper touches the object or gets very close to
it. If the arm moves in the wrong direction or is confused
between the two objects, we count the trial as a failure.
We added a fixed procedure at the end of each robot trial
to model a pointing action. In this procedure, the gripper
is first closed and the arm is pulled up. Then the arm is
moved downward and the gripper is opened. Note that,
while our model is trained for reaching, and not partic-
ularly for the grasping task, using the aforementioned
procedure can sometimes result in a successful grasp.

Figure [§] illustrates examples of successful and un-
successful reaching attempts. The first row of this fig-
ure shows trials where the gripper touches the object or
grasps it. The second row shows successful reach at-
tempts where the gripper gets very closed to the query
object, and is far from the distractor object. The last
row shows several failure cases, where the controller is
confused between two objects and the trial ends with the
gripper at a considerable distance from the query object.

The single object scenarios provide a simpler test set-
ting, where success is mainly dependent on the ability of
the method to determine which actions move the arm to-
ward the object. On the other hand, the two-object sce-
narios require the model to both generalize to a novel
viewpoint and distinguish the query object from the dis-
tractor. This is significantly more challenging, espe-
cially since the test objects differ significantly from the
simulated objects seen during training. As seen in Ta-
ble[3] adapting the visual features with a small amount of
real-world data substantially improves the performance
of the network in both scenarios, with a success rate of
70.83% in the harder two-object setting. Table [3] sum-
marizes the outcome of successful trials in detail and
outlines the percentage of trials that result in the gripper
touching or grasping the object.
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Figure 10. Examp]es of real-world scenes used for testlﬁg

Qualitative Results:  We visualize two interesting
reaching sequences. In Figure [0] we see successful
reaches with exploratory motions, where the arm first
moves in the wrong direction, then observes the image-
space motion and corrects. In Figure 8] we observe that
the network that is entirely trained in simulation makes
more mistakes when the query object and distractor
object are visually similar. The network after adaptation
is more robust to these kinds of visual ambiguities. For
supplementary videos with more qualitative results, see:
https://fsadeghi.github.io/Sim2Real ViewInvariantServo.

7. Discussion and Future Work

In this paper, we described a learning-based visual
servoing approach which can automatically and implic-
itly “self-calibrate” a robot in the process of a manip-
ulation task from an unseen viewpoint. Our method is
based on training a deep convolutional recurrent neural
network that can control a robot to reach user-specified
query objects, implicitly learning to identify the effects
of actions in image-space from the past history of obser-
vations and actions. The network is trained primarily in
simulation, where supervised demonstrated data is easy
to obtain automatically, and a novel adaptation proce-
dure is used to adapt the visual layers of this model to
the real world, using only a small number of labeled im-
ages. An exciting direction to explore in future work
is how more complex manipulation skills can be per-
formed from any viewpoint using a similar approach as
well as incorporating meta learning for fast adaptation.
Acknowledgement We thank Erwin Coumans and Yun-
fei Bai for providing pybullet and Vincent Vanhoucke
for helpful discussions.
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