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Abstract

Recent advances in video super-resolution have shown

that convolutional neural networks combined with motion

compensation are able to merge information from multi-

ple low-resolution (LR) frames to generate high-quality im-

ages. Current state-of-the-art methods process a batch of LR

frames to generate a single high-resolution (HR) frame and

run this scheme in a sliding window fashion over the entire

video, effectively treating the problem as a large number of

separate multi-frame super-resolution tasks. This approach

has two main weaknesses: 1) Each input frame is processed

and warped multiple times, increasing the computational

cost, and 2) each output frame is estimated independently

conditioned on the input frames, limiting the system’s ability

to produce temporally consistent results.

In this work, we propose an end-to-end trainable frame-

recurrent video super-resolution framework that uses the pre-

viously inferred HR estimate to super-resolve the subsequent

frame. This naturally encourages temporally consistent re-

sults and reduces the computational cost by warping only

one image in each step. Furthermore, due to its recurrent

nature, the proposed method has the ability to assimilate a

large number of previous frames without increased compu-

tational demands. Extensive evaluations and comparisons

with previous methods validate the strengths of our approach

and demonstrate that the proposed framework is able to sig-

nificantly outperform the current state of the art.

1. Introduction

Super-resolution is a classic problem in image processing

that addresses the question of how to reconstruct a high-

resolution (HR) image from its downscaled low-resolution

(LR) version. With the rise of deep learning, super-resolution

has received significant attention from the research commu-

nity over the past few years [3, 5, 20, 21, 26, 28, 35, 36, 39].

While high-frequency details need to be reconstructed exclu-

sively from spatial statistics in the case of single image super-

resolution, temporal relationships in the input can be ex-
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Figure 1: Side-by-side comparison of bicubic interpolation,

our FRVSR result, and HR ground truth for 4x upsampling.

ploited to improve reconstruction for video super-resolution.

It is therefore imperative to combine the information from

as many LR frames as possible to reach the best video super-

resolution results.

The latest state-of-the-art video super-resolution methods

approach the problem by combining a batch of LR frames to

estimate a single HR frame, effectively dividing the task of

video super-resolution into a large number of separate multi-

frame super-resolution subtasks [3, 28, 29, 39]. However,

this approach is computationally expensive since each input

frame needs to be processed several times. Furthermore, gen-

erating each output frame separately reduces the system’s

ability to produce temporally consistent frames, resulting in

unpleasing flickering artifacts.

In this work, we propose an end-to-end trainable frame-

recurrent video super-resolution (FRVSR) framework to ad-

dress the above issues. Instead of estimating each video

frame separately, we use a recurrent approach that passes

the previously estimated HR frame as an input for the fol-

lowing iteration. Using this recurrent architecture has several

benefits. Each input frame needs to be processed only once,

reducing the computational cost. Furthermore, information

from past frames can be propagated to later frames via the

HR estimate that is recurrently passed through time. Pass-

ing the previous HR estimate directly to the next step helps

the model to recreate fine details and produce temporally

consistent videos.
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To analyze the performance of the proposed framework,

we compare it with strong single image and video super-

resolution baselines using identical neural networks as build-

ing blocks. Our extensive set of experiments provides in-

sights into how the performance of FRVSR varies with the

number of recurrent steps used during training, the size of

the network, and the amount of noise, aliasing or compres-

sion artifacts present in the LR input. The proposed approach

clearly outperforms the baselines under various settings both

in terms of quality and efficiency. Finally, we also com-

pare FRVSR with several existing video super-resolution

approaches and show that it significantly outperforms the

current state of the art on a standard benchmark dataset.

1.1. Our contributions

• We propose a recurrent framework that uses the HR es-

timate of the previous frame for generating the subsequent

frame, leading to an efficient model that produces temporally

consistent results.

• Unlike existing approaches, the proposed framework can

propagate information over a large temporal range without

increasing computations.

• Our system is end-to-end trainable and does not require

any pre-training stages.

• We perform an extensive set of experiments to analyze the

proposed framework and relevant baselines under various

different settings.

• We show that the proposed framework significantly out-

performs the current state of the art in video super-resolution

both qualitatively and quantitatively.

2. Video super-resolution

Let ILR
t ∈ [0, 1]H×W×C denote the t-th LR video frame

obtained by downsampling the original HR video frame

IHR
t ∈ [0, 1]sH×sW×C by scale factor s. Given a set of con-

secutive LR video frames, the goal of video super-resolution

is to generate HR estimates Iest
t that approximate the original

HR frames IHR
t under some metric.

2.1. Related work
Super-resolution is a classic ill-posed inverse problem

with approaches ranging from simple interpolation methods

such as Bilinear, Bicubic and Lanczos [9] to example-based

super-resolution [12, 13, 40, 42], dictionary learning [32,

43], and self-similarity approaches [16, 41]. We refer the

reader to Milanfar [30] and Nasrollahi and Moeslund [31]

for extensive overviews of prior art up to recent years.

The recent progress in deep learning, especially in con-

volutional neural networks, has shaken up the field of super-

resolution. After Dong et al. [5] reached state-of-the-art re-

sults with shallow convolutional neural networks, many oth-

ers followed up with deeper network architectures, advancing

the field tremendously [6, 21, 22, 25, 36, 37]. Parallel ef-

forts have studied alternative loss functions for more visually

pleasing reconstructions [26, 35]. Agustsson and Timofte [1]

provide a recent survey on the current state of the art in single

image super-resolution.

Video and multi-frame super-resolution approaches com-

bine information from multiple LR frames to reconstruct

details that are missing in individual frames which can lead

to higher quality results. Classical video and multi-frame

super-resolution methods are generally formulated as opti-

mization problems that are computationally very expensive

to solve [2, 11, 27, 38].

Most of the existing deep learning-based video super-

resolution methods divide the task of video super-resolution

into multiple separate sub-tasks, each of which generates

a single HR output frame from multiple LR input frames.

Kappeler et al. [20] warp video frames ILR
t−1 and ILR

t+1 onto

the frame ILR
t using the optical flow method of Drulea and

Nedevschi [8], concatenate the three frames and pass them

through a convolutional neural network that produces the

output frame Iest
t . Caballero et al. [3] follow the same ap-

proach but replace the optical flow model with a trainable

motion compensation network. Makansi et al. [29] follow an

approach similar to [3] but combine warping and mapping

to HR space into a single step.

Tao et al. [39] rely on a batch of up to 7 input LR

frames to estimate a single HR frame. After computing the

motion from neighboring input frames to ILR
t , they map

the frames onto high-resolution grids. In a final step, they

run an encoder-decoder style network with a Conv-LSTM

in the core yielding Iest
t . Liu et al. [28] process up to 5

LR frames using different numbers of input frames (ILR
t ),

(ILR
t−1, I

LR
t , ILR

t+1), and (ILR
t−2, . . . , I

LR
t+2) simultaneously to

produce separate HR estimates that are aggregated in a final

step with dynamic weights to produce a single output Iest
t .

While a number of the above mentioned methods are end-

to-end trainable, the authors often note that they first pre-train

each component before fine-tuning the system as a whole in

a final step [3, 28, 39].

Huang et al. [17] use a bidirectional recurrent architecture

for video super-resolution with shallow networks but do not

use any explicit motion compensation in their model. Recur-

rent architectures have also been used for other tasks such as

video deblurring [23] and stylization [4, 15]. While Kim et

al. [23] and Chen et al. [4] pass on a feature representation to

the next step, Gupta et al. [15] pass the previous output frame

to the next step to produce temporally consistent stylized

videos in concurrent work. A recurrent approach for video

super-resolution was proposed by Farsiu et al. [10] more

than a decade ago with motivations similar to ours. However,

this approach uses an approximation of the Kalman filter for

frame estimation and is constrained to translational motion.
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Figure 2: Overview of the proposed FRVSR framework (left) and the loss functions used for training (right). After computing

the flow F LR in LR space using FNet, we upsample it to FHR. We then use FHR to warp the HR-estimate of the previous

frame Iest
t−1 onto the current frame. Finally, we map the warped previous output Ĩest

t−1 to LR-space using the space-to-depth

transformation and feed it to the super-resolution network SRNet along with the current input frame ILR
t . For training the

networks (shown in red), we apply a loss on Iest
t as well as an additional loss on the warped previous LR frame to aid FNet.

3. Method

After presenting an overview of the FRVSR framework

in Sec. 3.1 and defining the loss functions used for training

in Sec. 3.2, we justify our design choices in Sec. 3.3 and

give details on the implementation and training procedure in

Sec. 3.4 and 3.5, respectively.

3.1. FRVSR Framework

The proposed framework is illustrated in Fig. 2. Trainable

components (shown in red) include the optical flow estima-

tion network FNet and the super-resolution network SRNet.
To produce the HR estimate Iest

t , our model makes use of

the current LR input frame ILR
t , the previous LR input frame

ILR
t−1, and the previous HR estimate Iest

t−1.

1. Flow estimation: As a first step, FNet estimates the flow

between the low-resolution inputs ILR
t−1 and ILR

t yielding the

normalized low-resolution flow map

F LR = FNet(ILR
t−1, I

LR
t ) ∈ [−1, 1]H×W×2 (1)

that assigns a position in ILR
t−1 to each pixel location in ILR

t .

2. Upscaling flow: Treating the flow map F LR as an image,

we upscale it using bilinear interpolation with scaling factor

s which results in an HR flow-map

FHR = UP(F LR) ∈ [−1, 1]sH×sW×2. (2)

3. Warping previous output: We use the high-resolution

flow map FHR to warp the previously estimated image Iest
t−1

according to the optical flow from the previous frame onto

the current frame.

Ĩest
t−1 = WP(Iest

t−1, F
HR) (3)

We implemented warping as a differentiable function using

bilinear interpolation similar to Jaderberg et al. [19].

4. Mapping to LR space: We map the warped previous

output Ĩest
t−1 to LR space using the space-to-depth transfor-

mation

Ss : [0, 1]
sH×sW×C → [0, 1]H×W×s2C (4)

which extracts shifted low-resolution grids from the image

and places them into the channel dimension, see Fig. 3 for

an illustration. The operator can be formally described as

Ss(I)i,j,k = Isi+k%s, sj+(k/s)%s, k/s2 (5)

with zero-based indexing, modulus % and integer division /.

5. Super-Resolution: In the final step, we concatenate the

LR mapping of the warped previous output Ĩest
t−1 with the cur-

rent low-resolution input frame ILR
t in the channel dimension,

and feed the result ILR
t ⊕ Ss(Ĩ

est
t−1) to the super-resolution

network SRNet.

Summary: The final estimate Iest
t of the framework is the

output of the super-resolution network SRNet:

SRNet(ILR
t ⊕Ss(WP(Iest

t−1,UP(FNet(ILR
t−1, I

LR
t ))))) (6)

3.2. Loss functions

We use two loss terms to train our model, see Fig. 2,

right. The loss Lsr is applied on the output of SRNet and is

backpropagated through both SRNet and FNet:

Lsr = ||Iest
t − IHR

t ||22 (7)

Since we do not have a ground truth optical flow for our

video dataset, we calculate the spatial mean squared error

on the warped LR input frames leading to the auxiliary loss

term Lflow to aid FNet during training.

Lflow = ||WP(ILR
t−1, F

LR)− ILR
t ||22 (8)

The total loss used for training is L = Lsr + Lflow.
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3.3. Justifications

The proposed FRVSR framework is motivated by the fol-

lowing ideas:

• Processing the input video frames more than once leads

to high computational cost. Hence, we avoid the sliding

window approach and process each input frame only once.

• Having direct access to the previous output can help

the network to produce a temporally consistent estimate

for the following frame. Furthermore, through a recurrent

architecture, the network can effectively use a large number

of previous LR frames to estimate the HR frame (see

Sec. 4.6) without tradeoffs in computational efficiency. For

this reason, we warp the previous HR estimate and feed it to

the super-resolution network.

• All computationally intensive operations should be per-

formed in LR space. To this end, we map the previous HR

estimate to LR space using the space-to-depth transforma-

tion, the inverse of which has been previously used by Shi et

al. [36] for upsampling. Running SRNet in LR space has

the additional advantages of reducing the memory footprint

and increasing the receptive field when compared to a super-

resolution network that would operate in HR space.

3.4. Implementation

The proposed model in Fig. 2 is a flexible framework that

leaves the choice for a specific network architecture open.

For our experiments, we use fully convolutional architectures

for both FNet and SRNet, see Fig. 4 for details. The design

of our optical flow network FNet follows a simple encoder-

decoder style architecture to increase the receptive field of

the convolutions. For SRNet, we follow the residual archi-

tecture used by Sajjadi et al. [35], but replace the upsampling

layers with transposed convolutions. Our choice of network

architectures strikes a balance between quality and complex-

ity. More recent methods for each subtask, especially more

complex optical flow estimation methods [7, 18, 33] can be

easily incorporated and will lead to even better results.

3.5. Training and Inference

Our training dataset consists of 40 high-resolution videos

(720p, 1080p and 4k) downloaded from vimeo.com. We

downsample the original videos by a factor of 2 to have a

clean high-resolution ground truth and extract patches of

size 256×256 to generate the HR videos. To produce the

input LR videos, we apply Gaussian blur to the HR frames

and downscale them by sampling every 4-th pixel in each

dimension for s = 4. Unless specified otherwise, we use a

Gaussian blur with standard deviation σ = 1.5 (see Sec. 4.2).

To train the recurrent system, we extract clips of 10 con-

secutive frames from the videos using FFmpeg. We avoid

cuts or large scene changes in the clips by making sure that

Figure 3: Illustration of the space-to-depth transformation S2.

Regular LR grids with varying offsets are extracted from an

HR image and placed into the channel dimension, see Eq. 5

for a formal definition.

the clips do not contain keyframes. All losses are backprop-

agated through both networks SRNet and FNet as well as

through time, i.e., even the optical flow network for the first

frame in a clip receives gradients from the super-resolution

loss on the 10th frame. The model directly estimates the full

RGB video frames, so no post-processing is necessary.

To estimate the first frame Iest
1 in each clip, we initialize

the previous estimate with a black image Iest
0 = 0 at both

training and testing time. The network will then simply up-

sample the input frame ILR
1 independently without additional

prior data, similar to a single image super-resolution network.

This has the additional benefit of encouraging the network

to learn how to upsample single images independently early

on during training instead of only relying on copying the

previously generated image Ĩest
t−1.

Our architecture is fully end-to-end trainable and does

not require component-wise pre-training. Initializing the net-

works with the Xavier method [14], we train the model on 2

million batches of size 4 using the Adam optimizer [24] with

a fixed learning rate of 10−4. Note that each sample in the

batch is a set of 10 consecutive video frames, i.e., 40 video

frames are passed through the networks in each iteration.

As training progresses, the optical flow estimation grad-

ually improves which gives the super-resolution network

higher-quality data to work with, helping it to rely more and

more on the warped previous estimate Ĩest
t−1. At the same

time, the super-resolution network automatically learns to

ignore the previous image Ĩest
t−1 when the optical flow net-

work cannot find a good correspondence between ILR
t−1 and

ILR
t , e.g., for the very first video frame in each batch or for

occluded areas. These cases can be detected by the network

through a comparison of the low frequencies in Ĩest
t−1 with

those in ILR
t . In areas where they do not match, the network

ignores the details in Ĩest
t−1 and simply upscales the current

input frame independently. Once the model has been trained,

it can be run on videos of arbitrary size and length due to the

fully convolutional nature of the networks. To super-resolve a

video, the network is applied frame by frame in a single feed-

forward pass. Benchmarks for runtimes of different model

sizes are reported in Sec. 4.7.
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Figure 4: Network architectures for SRNet (top) and FNet (bottom) for 4x upsampling. Both networks are fully convolutional

and work in LR space. For the inputs, ⊕ denotes the concatenation of images in the channel dimension. All convolutions in

both networks use 3×3 kernels with stride 1, except for the transposed convolutions in SRNet which use stride 2 for spatial

upsampling. The leaky ReLU units in FNet use a leakage factor of 0.2 and the notation 2x indicates that the corresponding

block is duplicated.

4. Evaluation

For a fair evaluation of the proposed framework on equal

ground, we compare our model with two baselines that use

the same optical flow and super-resolution networks. After

presenting the baselines in Sec. 4.1, we extensively investi-

gate the performance of FRVSR along with the baselines in

Sec. 4.2–4.7. All experiments are done for the challenging

case of 4x upsampling. For evaluation, we use a dataset of

ten 3–5s high-quality 1080p video clips downloaded from

youtube.com, which we refer to as YT10. Finally, we

compare our models with current state-of-the-art methods on

the standard Vid4 benchmark dataset [27] in Sec. 4.8. Fol-

lowing Caballero et al. [3], we compute video PSNR on the

brightness channel (ITU-R BT.601 YCbCr standard) using

the mean squared error over all pixels in the video.

For more results and video samples, we refer the reader

to our homepage at msajjadi.com.

4.1. Baselines

SISR: For the single image super-resolution baseline, we

omit optical flow estimation from FRVSR and disregard any

prior information, feeding only ILR
t into SRNet.

VSR: To compare with the sliding window approach for

video super-resolution, we include this baseline in which

a fixed number of input frames are processed to produce

a single output frame. Following Kappeler et al. [20] and

Caballero et al. [3], we warp the previous and next input

frames onto the current frame, concatenate all three frames

and feed them to SRNet. Note that this model is compu-

tationally more expensive than FRVSR since it runs FNet

Figure 5: Performance for different blur sizes on YT10. For

all blur sizes, FRVSR gives the best results. The best PSNR

of FRVSR (σ = 1.5) is 1.00 dB and 0.39 dB higher than the

best of SISR (σ = 2.0) and VSR (σ = 1.5), respectively.

twice for each frame while the computation for SRNet is

almost identical to that of FRVSR.

As with FRVSR, both baselines are trained starting from a

Xavier initialization [14] using the Adam optimizer [24] with

a fixed learning rate of 10−4. We trained the SISR network

for 500K steps and VSR for 2 million steps, both using a

batch size of 16. All networks are trained using the same

dataset, and their losses on a validation dataset have con-

verged at the end of the training.

4.2. Blur size

As mentioned in Sec. 3.5, we apply Gaussian blur to the

HR frames before downsampling them to generate the LR

input for the network. While a smaller blur kernel results in

6630
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aliasing, excessive blur leads to loss of high-frequency infor-

mation in the input, making it harder to reconstruct finer de-

tails. To analyze how different approaches perform for blurry

or aliased inputs, we trained SISR, VSR and FRVSR on video

frames that have been downscaled using different values of

standard deviation for the Gaussian blur ranging from σ = 0
to σ = 5, see Fig. 5. The proposed framework FRVSR sig-

nificantly outperforms SISR and VSR on all blur sizes. It is

interesting to note that SISR, which relies on a single LR

image for upsampling, benefits the most from larger blur ker-

nels compared to VSR and FRVSR which perform best with

σ = 1.5. This is due to the fact that video super-resolution

methods are able to blend information from multiple frames

and therefore benefit from sharper inputs. In the remaining

experiments, we use a value of σ = 1.5.

4.3. Training clip length

Since FRVSR is a recurrent network, it can be trained on

video clips of any length. To test the effect of the clip length

used to train the network on its performance, we trained the

same model using video clips of length 2, 5 and 10, yielding

average video PSNR values of 31.60, 32.01 and 32.10 on

YT10, respectively. These results show that the PSNR has

already started to saturate with a clip length of 5 and going

beyond 10 may not yield significant improvements.

4.4. Degraded inputs

To see how different models perform under input degra-

dations, we trained and evaluated FRVSR and the baselines

using noisy and compressed input frames. Table 1 shows the

performance of these models on YT10 for varying levels of

Gaussian noise and JPEG compression quality. The proposed

framework consistently outperforms both SISR and VSR by

0.36–0.91 dB and 0.18–0.48 dB, respectively.

4.5. Temporal consistency

Analyzing the temporal consistency of the results is best

done by visual inspection of the video results. However, to

compare the results on paper, we follow Caballero et al. [3]

and show temporal profiles, see Fig. 6. A temporal profile is

generated by taking the same horizontal row of pixels from

a number of frames in the video and stacking them vertically

into a new image. Flickering in the video will show up as

jitter and jagged lines in the temporal profile. While VSR

produces sharper results than SISR, it still has significant

flickering artifacts since each output frame is estimated sep-

arately. In contrast, FRVSR produces the most consistent

results while containing even finer details in each image.

4.6. Range of information flow

Existing approaches to video super-resolution often use

a fixed number (usually 3–7) of input frames to produce a

single output frame. Increasing this number increases the

SISR

VSR

FRVSR

HR

Figure 6: Temporal profiles for Calendar from Vid4. VSR

yields finer details than SISR, but it’s output still contains

temporal inconsistencies (see red boxes). Only FRVSR is

able to produce temporally consistent results while reproduc-

ing fine details. Best viewed on screen.

model σ = 0.025 σ = 0.075 JPG 40 JPG 70

SISR 29.93 28.20 27.94 28.88

VSR 30.36 28.42 28.12 29.07

FRVSR 30.84 28.62 28.30 29.29

Table 1: Average video PSNR of various models under Gaus-

sian noise (left) and JPEG artifacts (right) on YT10. In all

experiments, FRVSR achieves the highest PSNR.

maximum number of frames over which details can be prop-

agated. While this can result in higher-quality videos, it also

substantially increases the computational cost, leading to a

tradeoff between efficiency and quality. In contrast, due to its

recurrent nature, FRVSR can pass information across a large

number of frames without increasing computations. Figure 7

shows the performance of FRVSR as a function of the num-

ber of frames processed. In the normal mode (blue curve)

in which a black frame is used as the first frame’s previous

HR estimate, the performance steadily improves as more

frames are processed and it plateaus at 12 frames. When we

replace the first previous HR estimate with the correspond-

ing groundtruth HR frame (red curve), FRVSR carries the

high-frequency details across a large number of frames and

performs better than the normal mode even after 50 frames.

To investigate the maximum effective range of informa-

tion flow, we start the same model at different input frames

in the same video and compare the performance. Figure 8

shows such a comparison for the Foliage video from Vid4.

As we can see, the gap between the curves for the mod-

els that start at frame 1 and frame 11 only closes towards

the end of the clip, showing that FRVSR is propagating in-

formation over more than 30 frames. To propagate details

over such a large range, previous state-of-the-art methods

[3, 20, 28, 29, 39] would have to process an inhibiting num-

ber of input frames for each output image, which would be

computationally infeasible.
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Figure 7: Performance of FRVSR on YT10 as a function

of the number of previous frames processed. In the normal

mode (blue), PSNR increases up to 12 frames, after which

it remains stable. When the first HR image is given (red),

FRVSR propagates high-frequency details across a large

number of frames and performs better than the normal mode

even after 50 frames.

Figure 8: Performance of FRVSR started at the 1st and 11th

frame of Foliage from Vid4. The gap between the curves

only closes towards the end of the clip, showing FRVSR’s

ability to retain details over a large range of video frames.

4.7. Network size and computational efficiency

To see how the performance of different models varies

with the size of the network, we trained and evaluated FRVSR

and the baselines with different numbers of residual blocks

and convolution filters in SRNet, see Fig. 9. It is interest-

ing to note that the video super-resolution models FRVSR

and VSR clearly benefit from larger models while the per-

formance of SISR does not change significantly beyond 5

residual blocks. We can also see that FRVSR achieves better

results than VSR despite being faster: The FRVSR mod-

els with 5 residual blocks outperform the VSR models with

10 residual blocks, and the FRVSR models with 3 residual

blocks outperform the VSR models with 5 residual blocks

for the same number of convolution filters.

With our unoptimized TensorFlow implementation on an

Nvidia P100, producing a single Full HD frame for 4x up-
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Figure 9: Performance on YT10 for different numbers of

convolution filters (64 / 128) and residual blocks in SRNet.
FRVSR achieves better results than both baselines with sig-

nificantly smaller super-resolution networks and less compu-

tation time. For example, FRVSR with 5 residual blocks is

both faster and better than VSR with 10 residual blocks.

scaling takes 74ms for FRVSR with 3 residual blocks and 64

filters, and 191ms for FRVSR with 10 blocks and 128 filters.

4.8. Comparison with prior art

Table 2 compares the proposed FRVSR approach with

various state-of-the-art video super-resolution approaches on

the standard Vid4 benchmark dataset by PSNR and SSIM.

We report results for two FRVSR networks: FRVSR 10-128,

which is our best model with 10 residual blocks and 128 con-

volution filters, and FRVSR 3-64, which is our most efficient

model with only 3 residual blocks and 64 convolution filters.

For the baselines SISR and VSR, we report their best results

which correspond to 10 residual blocks and 128 convolution

filters. We also include RAISR [34] as an off-the-shelf single

image super-resolution alternative.

For all competing methods except [3, 17, 34], we used

the output images provided by the corresponding authors

to compute PSNR and SSIM. We did not use the first and

last two frames in our evaluation since Liu et al. [28] do not

produce outputs for these frames. Also, for each video, we

removed border regions such that the LR input image is a

multiple of 8. For [3, 17], we use the PSNR and SSIM values

reported in the respective publications since we could not

confirm them independently. For [34], we used the models

provided by the authors to generate the output images.

As shown in Tab. 2, FRVSR outperforms the current state

of the art by more than 0.5 dB. In fact, even our most effi-

cient model FRVSR 3-64 produces state-of-the-art results by

PSNR and beats all previous neural network-based methods

by SSIM. It it interesting that our small model, despite being

much more efficient, produces results that are very close to

the much larger model VSR 10-128 on the Vid4 dataset.

Figure 10 shows a visual comparison of the different ap-

proaches. We can see that our models are able to recover

fine details and produce visually pleasing results. Even our

most efficient network FRVSR 3-64 produces higher-quality

results than prior art.
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Bicubic Caballero et al. [3] Liu et al. [28] Tao et al. [39] Liu and Sun [27]

SISR VSR FRVSR 3-64 FRVSR 10-128 HR ground truth

Figure 10: Visual comparison with previous methods on Foliage from Vid4. Amongst prior art, Liu and Sun [27] recover the

finest details, but their result has blocky artifacts, and their method uses a slow optimization procedure. Between the remaining

methods, even the result of our smallest model FRVSR 3-64 is sharper and contains more details than prior art, producing

results similar to the much bigger VSR model. Our larger model FRVSR 10-128 recovers the most accurate image.

Method Bicubic
RAISR BRCN VESPCN B1,2,3+T DRVSR Bayesian SISR VSR FRVSR FRVSR

[34] [17] [3] [28] [39] [27] 10-128 10-128 3-64 10-128

PSNR 23.53 24.24 24.43* 25.35* 25.35 25.87 26.16 24.96 26.25 26.17 26.69

SSIM 0.628 0.665 0.662* 0.756* 0.738 0.772 0.815 0.721 0.803 0.798 0.822

Table 2: Comparison of average PSNR and SSIM on the standard Vid4 dataset for scaling factor s= 4. Our smallest model

FRVSR 3-64 already produces better results than all prior art including the computationally expensive optimization-based

method by Liu and Sun [27] by PSNR. Using a bigger super-resolution network helps FRVSR 10-128 to add an additional 0.5
dB on top and achieve state-of-the-art results by SSIM as well, showing that the proposed framework can greatly benefit from

more powerful networks. Values marked with a star have been copied from the respective publications.

5. Future work

Since our framework relies on the HR estimate Iest for

propagating information, it can reconstruct details and propa-

gate them over a large number of frames (see Sec. 4.6). At the

same time, any detail can only persist in the system as long

as it is contained in Iest, as it is the only way through which

SRNet can pass information to future iterations. Due to the

spatial loss on Iest, SRNet has no way to pass on auxiliary

information that could potentially be useful for future frames

in the video, e.g., for occluded regions. As a result, occlu-

sions irreversibly destroy all previously aggregated details in

the affected areas and the best our model can do for the pre-

viously occluded areas is to match the performance of single

image super-resolution models. In contrast, models that use

a fixed number of input frames can still combine information

from frames that do not have occlusions to produce better

results in these areas. To address this limitation, it is natural

to extend the framework with an additional memory channel.

However, preliminary experiments in this direction with both

static and motion-compensated memory did not improve the

overall performance of the architecture, so we leave further

investigations in this direction to future work.

Since the model is conceptually flexible, it can be easily

extended to other applications. As an example, one may plug

in the original HR frame IHR
t−1 in place of the estimated frame

Iest
t−1 for every K-th frame. This could enable an efficient

video compression method where only one in K HR-frames

needs to be stored while the remaining frames would be

reconstructed by the model.

A further extension of our framework would be the inclu-

sion of more advanced loss terms which have recently been

shown to produce more visually pleasing results [26, 35].

The recurrent architecture in FRVSR naturally encourages

the network to produce temporally consistent results, making

it an ideal candidate for further research in this direction.

6. Conclusion

We propose a flexible end-to-end trainable framework for

video super-resolution that is able to generate higher quality

results while being more efficient than existing sliding win-

dow approaches. In an extensive set of experiments, we show

that our model outperforms competing baselines in various

different settings. The proposed model also significantly out-

performs state-of-the-art video super-resolution approaches

both quantitatively and qualitatively on a standard bench-

mark dataset.
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