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Abstract

Visual Domain Adaptation is a problem of immense im-

portance in computer vision. Previous approaches show-

case the inability of even deep neural networks to learn in-

formative representations across domain shift. This prob-

lem is more severe for tasks where acquiring hand labeled

data is extremely hard and tedious. In this work, we focus

on adapting the representations learned by segmentation

networks across synthetic and real domains. Contrary to

previous approaches that use a simple adversarial objective

or superpixel information to aid the process, we propose

an approach based on Generative Adversarial Networks

(GANs) that brings the embeddings closer in the learned

feature space. To showcase the generality and scalability of

our approach, we show that we can achieve state of the art

results on two challenging scenarios of synthetic to real do-

main adaptation. Additional exploratory experiments show

that our approach: (1) generalizes to unseen domains and

(2) results in improved alignment of source and target dis-

tributions.

1. Introduction

Deep Convolutional Neural Networks (DCNNs) have

revolutionalized the field of computer vision, achieving the

best performance in a multitude of tasks such as image clas-

sification [12], semantic segmentation [20], visual ques-

tion answering [23] etc. This strong performance can be

attributed to the availability of abundant labeled training

data. While annotating data is relatively easier for certain

tasks like image classification, they can be extremely labo-

rious and time-consuming for others. Semantic segmenta-

tion is one such task that requires great human effort as it

involves obtaining dense pixel-level labels. The annotation

time for obtaining pixel-wise labels for a single image from
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Figure 1: Characterization of Domain Shift and effect of the

proposed approach in reducing the same

the CITYSCAPES dataset is about 1 hr., highlighting the

level of difficulty ([4], [26]). The other challenge lies in

collecting the data: While natural images are easier to ob-

tain, there are certain domains like medical imaging where

collecting data and finding experts to precisely label them

can also be very expensive.

One promising approach that addresses the above issues

is the utility of synthetically generated data for training.

However, models trained on the synthetic data fail to per-

form well on real datasets owing to the presence of domain

gap between the datasets. Domain adaptation encompasses

the class of techniques that address this domain shift prob-
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lem. Hence, the focus of this paper is in developing domain

adaptation algorithms for semantic segmentation. Specifi-

cally, we focus on the hard case of the problem where no

labels from the target domain are available. This class of

techniques is commonly referred to as Unsupervised Do-

main Adaptation.

Traditional approaches for domain adaptation involve

minimizing some measure of distance between the source

and the target distributions. Two commonly used measures

are Maximum Mean Discrepancy (MMD) ( [9], [21] [22]),

and learning the distance metric using DCNNs as done in

Adversarial approaches ( [7], [30]). Both approaches have

had good success in the classification problems; however,

as pointed out in [32], their performance improvement does

not translate well to the semantic segmentation problem.

This motivates the need for developing new domain adapta-

tion techniques tailored to semantic segmentation.

The method we present in this work falls in the cate-

gory of aligning domains using an adversarial framework.

Among the recent techniques that address this problem,

FCN in the wild [14] is the only approach that uses an ad-

versarial framework. However, unlike [14] where a discrim-

inator operates directly on the feature space, we project the

features to the image space using a generator and the dis-

criminator operates on this projected image space. Adver-

sarial losses are then derived from the discriminator. We

observed that applying adversarial losses in this projected

image space achieved a significant performance improve-

ment as compared to applying such losses directly in the

feature space (ref. Table 4).

The main contribution of this work is that we propose

a technique that employs generative models to align the

source and target distributions in the feature space. We first

project the intermediate feature representations obtained us-

ing a DCNN to the image space by training a reconstruction

module using a combination of L1 and adversarial losses.

We then impose the domain alignment constraint by forcing

the network to learn features such that source features pro-

duce target-like images when passed to the reconstruction

module and vice versa. This is accomplished by employing

a series of adversarial losses. As training progresses, the

generation quality gradually improves, while at the same

time, the features become more domain invariant.

2. Related Work

Fully Convolutional Networks (FCN) by Shelhamer et

al [20] signified a paradigm shift in how to fully exploit

the representational power of CNNs for the semantic pixel

labeling tasks. While performance has been steadily im-

proving for popular benchmarks such as PASCAL VOC [6]

and MS-COCO [18], they do not address the challenges of

domain shift within the context of semantic segmentation.

Domain adaptation has been widely explored in com-

puter vision primarily for the classification task. Some of

the earlier approaches involved using feature reweighting

techniques [5], or constructing intermediate representations

using manifolds ( [11], [10]). Since the advent of deep

neural networks, emphasis has been shifted to learning do-

main invariant features in an end-to-end fashion. A standard

framework for deep domain adaptation involves minimizing

a measure of domain discrepancy along with the task being

solved. Some approaches use Maximum Mean Discrepancy

and its kernel variants for this task ( [21], [22]), while oth-

ers use adversarial approaches ( [7], [2], [28]).

We focus on adversarial approaches since they are more

related to our work. Revgrad [7] performs domain adap-

tation by applying adversarial losses in the feature space,

while PixelDA [2] and CoGAN [19] operate in the pixel

space. While these techniques perform adaptation for the

classification task, there are very few approaches aimed at

semantic segmentation. To the best of our knowledge, [14]

and [32] are the only two approaches that address this prob-

lem. FCN in the wild [14] proposes two alignment strate-

gies - (1) global alignment which is an extension to the do-

main adversarial training proposed by [7] to the segmen-

tation problem and (2) local alignment which aligns class

specific statistics by formulating it as a multiple instance

learning problem. Curriculum domain adaptation [32] on

the other hand proposes curriculum-style learning approach

where the easy task of estimating global label distributions

over images and local distributions over landmark super-

pixels is learnt first. The segmentation network is then

trained so that the target label distribution follow these in-

ferred label properties.

One possible direction to address the domain adaptation

problem is to employ style transfer or cross domain map-

ping networks to stylize the source domain images as target

and train the segmentation models in this stylized space.

Hence, we discuss some recent work related to the style

transfer and unpaired image translation tasks. The popular

work of Gatys et al. [8] introduced an optimization scheme

involving backpropagation for performing content preserv-

ing style transfer, while Johnson et al. [15] proposed a feed-

forward method for the same. CycleGAN [33] performs un-

paired image-to-image translation by employing adversarial

losses and cycle consistency losses. In our experiments, we

compare our approach to some of these style-transfer based

data augmentation schemes.

3. Method

In this section, we provide a formal treatment of the pro-

posed approach and explain in detail our iterative optimiza-

tion procedure. Let X ∈ R
M×N×C be an arbitrary input

image (with C channels) and Y ∈ R
M×N be the corre-

sponding label map. Given an input X , we denote the out-

put of a CNN as Ŷ ∈ R
M×N×Nc , where Nc is the number
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the forward pass and gradient flow dotted arrows during

the backward pass of our iterative update procedure. Solid

blocks indicate that the block is frozen during that update

step while dotted block indicate that it is being updated.

Red denoted source information and Blue denotes target in-

formation.

of classes. Ŷ (i, j) ∈ R
Nc is a vector representing the class

probability distribution at pixel location (i, j) output by the

CNN. The source(s) or target (t) domains are denoted by a

superscript such as Xs or Xt.

First, we provide an input-output description of the dif-

ferent network blocks in our pipeline. Next, we describe

separately the treatment of source and target data, followed

by a description of the different loss functions and the cor-

responding update steps. Finally, we motivate the design

choices involved in the discriminator (D) architecture.

3.1. Description of network blocks

Our training procedure involves alternatively optimizing

the following network blocks:

(a) The base network, whose architecture is similar to a

pre-trained model such as VGG-16, is split into two parts:

the embedding denoted by F and the pixel-wise classifier

denoted by C. The output of C is a label map up-sampled

to the same size as the input of F .

(b) The generator network (G) takes as input the learned

embedding and reconstructs the RGB image.

(c) The discriminator network (D) performs two differ-

ent tasks given an input: (a) It classifies the input as real or

fake in a domain consistent manner (b) It performs a pixel-

wise labeling task similar to the C network. Note that (b) is

active only for source data since target data does not have

any labels during training.

3.2. Treatment of source and target data

Given a source image and label pair {Xs, Y s} as input,

we begin by extracting a feature representation using the F

network. The classifier C takes the embedding F (Xs) as

input and produces an image-sized label map Ŷ s. The gen-

erator G reconstructs the source input Xs conditioned on

the embedding. Following recent successful works on im-

age generation, we do not explicitly concatenate the genera-

tor input with a random noise vector but instead use dropout

layers throughout the G network. As shown in Figure 3, D

performs two tasks: (1) Distinguishing the real source input

and generated source image as source-real/source-fake (2)

producing a pixel-wise label map of the generated source

image.

Given a target input Xt, the generator network G takes

the target embedding from F as input and reconstructs the

target image. Similar to the previous case, D is trained

to distinguish between real target data (target-real) and the

generated target images from G (target-fake). However, dif-

ferent from the previous case, D performs only a single task

i.e. it classifies the target input as target-real/target-fake.

Since the target data does not have any labels during train-

ing, the classifier network C is not active when the system

is presented with target inputs.

3.3. Iterative optimization

Fig. 3 shows various losses used in our method. We be-

gin by describing these losses, and then describe our itera-

tive optimization approach.

The different adversarial losses used to train our mod-

els are shown in Table. 1. In addition to these adversarial

losses, we use the following losses: (1) Lseg and Laux -

pixel-wise cross entropy loss used in standard segmentation

networks such as in FCN and (2) Lrec - L1 loss between

input and reconstructed images.

The directions of flow of information across different

network blocks are listed in Figure 2. In each iteration, a

randomly sampled triplet (Xs, Y s, Xt) is provided to the

system. Then, the network blocks are updated iteratively in

the following order:

(1) D-update: For source inputs, D is updated using a

combination of within-domain adversarial loss Ls
adv,D and

auxiliary classification loss Ls
aux. For target inputs, it is

updated using only the adversarial loss Lt
adv,D. The overall

loss LD is given by LD = Ls
adv,D + Lt

adv,D + Ls
aux.

(2) G-update: In this step, the generator is updated us-

ing a combination of an adversarial loss Ls
adv,G + Lt

adv,G

intended to fool D and a reconstruction loss Lrec. The

adversarial loss encourages realistic output from the gen-

erator. The pixelwise L1 loss is crucial to ensure image

fidelity between the generator outputs and the correspond-

ing input images. The overall generator loss is given as:

LG = Ls
adv,G + Lt

adv,G + Ls
rec + Lt

rec.

(3) F-update: The update to the F network is the criti-

cal aspect of our framework where the notion of domain
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Figure 3: During training, the F and C networks are trained jointly with the adversarial framework(G-D pair). F is updated

using a combination of supervised loss and an adversarial component. In the bottom right, we show the test time usage. Only

the F and C network blocks are used. There is no additional overhead during evaluation compared to the base model.

Type Variants Description

Ls
adv,D Classify real source input as src-real; fake source input as src-fake

Within-domain Ls
adv,G Classify fake source input as src-real

Lt
adv,D Classify real target input as tgt-real; fake target input as tgt-fake

Lt
adv,G Classify fake target input as tgt-real

Cross-domain Ls
adv,F Classify fake source input as real target (tgt-real)

Lt
adv,F Classify fake target input as real source (src-real)

Table 1: Within-domain and Cross-domain adversarial losses that are used to update our networks during training. G and D

networks are updated using only the within-domain losses while F is updated only using the cross domain loss. All these

adversarial losses originate from the D network. Ladv,X implies that the gradients from the loss function L are used to update

X only, while the other networks are held fixed.

shift is captured. The parameters of F are updated using a

combination of several loss terms: LF = Lseg + αLs
aux +

β (Ls
adv,F +Lt

adv,F ). As illustrated in Table 1, the adversar-

ial loss terms used to update F account for the domain adap-

tation. More specifically, the iterative updates described

here can be considered as a min-max game between the F

and the G-D networks. During the D update step discussed

earlier, the adversarial loss branch of D learns to classify

the input images as real or fake in a domain consistent man-

ner. To update F , we use the gradients from D that lead

to a reversal in domain classification, i.e. for source em-

beddings, we use gradients from D corresponding to clas-

sifying those embeddings as from target domain (Ls
adv,F )

and for target embeddings, we use gradients from D cor-

responding to classifying those embeddings as from source

domain (Lt
adv,F ). Note that, this is similar to the min-max

game between the G-D pair, except in this case, the com-

petition is between classifying the generated image as from

source/target domains instead of them being real/fake.

3.4. Motivating design choice of D

• In traditional GANs that are derived from the DC-

GAN [25] implementations, the output of the discrim-

inator is a single scalar indicating the probability of

the input being fake or drawn from an underlying data

distribution. Recent works on image generation have

utilized the idea of Patch discriminator in which the

output is a two dimensional feature map where each

pixel carries a real/fake probability. This results in

significant improvement in the visual quality of their

generator reconstructions. We extend this idea to our

setting by using a variant of the Patch discriminator,

where each pixel in the output map indicates real/fake

probabilities across source and target domains hence
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resulting in four classes per pixel: src-real, src-fake,

tgt-real, tgt-fake.

• In general, GANs are hard to train on tasks which in-

volve realistic images of a larger scale. One promising

approach to training stable generative models with the

GAN framework is the Auxiliary Classifier GAN (AC-

GAN) approach by Odena et al. where they show that

by conditioning G during training and adding an aux-

iliary classification loss to D, they can realize a more

stable GAN training and even generate large scale im-

ages. Inspired by their results on image classification,

we extend their idea to the segmentation problem by

employing an auxiliary pixel-wise labeling loss to the

D network.

Both these components prove crucial to our performance.

The ablation study performed in Section 5.3 shows the ef-

fect of the above design choices on the final performance.

Specific details about the architectures of these network

blocks can be found in the supplementary material.

4. Experiments and Results

In this section, we provide a quantitative evaluation

of our method by performing experiments on benchmark

datasets. We consider two challenging synthetic datasets

available for semantic segmentation: SYNTHIA and GTA-

5. SYNTHIA [27] is a large dataset of photo-realistic

frames rendered from a virtual city with precise pixel-

level semantic annotations. Following previous works

( [14], [32]), we use the SYNTHIA-RAND-CITYSCAPES

subset that contains 9400 images with annotations that are

compatible with cityscapes. GTA-5 is another large-scale

dataset containing 24966 labeled images. The dataset was

curated by Richter et al. [26] and is generated by extracting

frames from the computer game Grand Theft Auto V.

We used CITYSCAPES [4] as our real dataset. This

dataset contains urban street images collected from a mov-

ing vehicle captured in 50 cities around Germany and neigh-

boring countries. The dataset comes with 5000 annotated

images split into three sets - 2975 images in the train set,

500 images in the val set and 1595 images in the test set. In

all our experiments, for training our models we used labeled

SYNTHIA or GTA-5 dataset as our source domain and un-

labeled CITYSCAPES train set as our target domain. We

compared the proposed approach with the only two con-

temporary methods that address this problem: FCN in the

wild [14] and Curriculum Domain adaptation [32]. Follow-

ing these approaches, we designate the 500 images from

CITYSCAPES val as our test set.

Architecture In all our experiments, we used FCN-8s as

our base network. The weights of this network were initial-

ized with the weights of the VGG-16 [29] model trained on

Imagenet [17].

Implementation details In all our experiments, images

were resized and cropped to 1024 × 512. We trained our

model for 100, 000 iterations using Adam solver [16] with a

batch size of 1. Learning rate of 10−5 was used for F and C

networks, and 2× 10−4 for G and D networks. While eval-

uating on CITYSCAPES dataset whose images and ground

truth annotations are of size 2048 × 1024, we first produce

our predictions on the 1024× 512 sized image and then up-

sample our predictions by a factor of 2 to get the final label

map, which is used for evaluation. Our training codes and

additional results are publicly available. 1

4.1. SYNTHIA ­> CITYSCAPES

In this experiment, we use the SYNTHIA dataset as our

source domain, and CITYSCAPES as our target domain.

We randomly pick 100 images from the 9400 labeled im-

ages of SYNTHIA dataset and use it for validation pur-

poses, the rest of the images are used for training. We use

the unlabeled images corresponding to the CITYSCAPES

train set for training our model. In order to ensure fairness

of experimental results, we followed the exact evaluation

protocol as specified by the previous works ( [14],[32]): The

16 common classes between SYNTHIA and CITYSCAPES

are chosen used as our labels. The predictions correspond-

ing to the other classes are treated as belonging to void class,

and not backpropagated during training. The 16 classes are:

sky, building, road, sidewalk, fence, vegetation, pole, car,

traffic sign, person, bicycle, motorcycle, traffic light, bus,

wall, and rider.

Table 2a reports the performance of our method in com-

parison with [14] and [32]. The source-only model which

corresponds to the no adaptation case i.e. training only us-

ing the source domain data achieves a mean IOU of 26.8.

The target-only values denote the performance obtained by

a model trained using CITYSCAPES train set (supervised

training), and they serve as a crude upper bound to the do-

main adaptation performance. These values were included

to put in perspective the performance gains obtained by the

proposed approach. We observe that our method achieves

a mean IOU of 36.1, thereby improving the baseline by 9.3

points, thus resulting in a higher performance improvement

compared to other reported methods.

4.2. GTA5 ­> CITYSCAPES

In this experiment, we adapt from the GTA-5 dataset to

the CITYSAPES dataset. We randomly pick 1000 images

from the 24966 labeled images of GTA-5 dataset and use

it for validation purpose and use the rest of the images for

1Training code: https://goo.gl/3Jsu2s
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Source only [14] Dilation-Frontend 6.4 17.7 29.7 1.2 0.0 15.1 0.0 7.2 30.3 66.8 51.1 1.5 47.3 3.9 0.1 0.0 17.4

FCN wild [14] [31] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2 2.8

Source only [32] FCN8s-VGG16 5.6 11.2 59.6 8.0 0.5 21.5 8.0 5.3 72.4 75.6 35.1 9.0 23.6 4.5 0.5 18.0 22.0

Curr. DA [32] [20] 65.2 26.1 74.9 0.1 0.5 10.7 3.5 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0 7.0

Ours - Source only FCN8s-VGG16 30.1 17.5 70.2 5.9 0.1 16.7 9.1 12.6 74.5 76.3 43.9 13.2 35.7 14.3 3.7 5.6 26.8

Ours - Adapted [20] 80.1 29.1 77.5 2.8 0.4 26.8 11.1 18.0 78.1 76.7 48.2 15.2 70.5 17.4 8.7 16.7 36.1 9.3

Target-only FCN8s-VGG16 96.5 74.6 86.1 37.1 33.2 30.2 39.7 51.6 87.3 90.4 60.1 31.7 88.4 52.3 33.6 59.1 59.5 -

(a) SYNTHIA → CITYSCAPES
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Source only [14] Dilation-Frontend 31.9 18.9 47.7 7.4 3.1 16.0 10.4 1.0 76.5 13.0 58.9 36.0 1.0 67.1 9.5 3.7 0.0 0.0 0.0 21.2

FCN wild [14] [31] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1 5.9

Source only [32] FCN8s-VGG16 18.1 6.8 64.1 7.3 8.7 21.0 14.9 16.8 45.9 2.4 64.4 41.6 17.5 55.3 8.4 5.0 6.9 4.3 13.8 22.3

Curr. DA [32] [20] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 16.6 28.9 6.6

Ours - Source only FCN8s-VGG16 73.5 21.3 72.3 18.9 14.3 12.5 15.1 5.3 77.2 17.4 64.3 43.7 12.8 75.4 24.8 7.8 0.0 4.9 1.8 29.6

Ours - Adapted [20] 88.0 30.5 78.6 25.2 23.5 16.7 23.5 11.6 78.7 27.2 71.9 51.3 19.5 80.4 19.8 18.3 0.9 20.8 18.4 37.1 7.5

Target-only FCN8s-VGG16 96.5 74.6 86.1 37.1 33.2 30.2 39.7 51.6 87.3 52.6 90.4 60.1 31.7 88.4 54.9 52.3 34.7 33.6 59.1 57.6 -

(b) GTA5 → CITYSCAPES

Table 2: Results of Semantic Segmentation by adapting from (a) SYTNHIA to CITYSCAPES and (b) GTA-5 to

CITYSCAPES. We compare with two approaches that use two different base networks. To obtain a fair idea about our

performance gain, we compare with the Curriculum DA approach that uses the same base network as ours. The Target-only

training procedure is the same for both the settings since in both cases the target domain is CITYSCAPES. However, the

results in (a) are reported over the 16 common classes while the results in (b) are reported over all the 19 classes.

training. We use the unlabeled images corresponding to the

CITYSCAPES train set for training our model. In order to

ensure fairness of experimental results, we followed the ex-

act evaluation protocol as specified by the previous works

( [14], [32]): we use 19 common classes between GTA-5

and CITYSCAPES as our labels. The results of this ex-

periment are reported in Table. 2b. Similar to the previous

experiment, our baseline performance (29.6) is higher than

the performance reported in [14], due to difference in net-

work architecture and experimental settings. On top of this,

the proposed approach yields an improvement of 7.5 points

to obtain a mIOU of 37.1. This performance gain is higher

than that achieved by the other compared approaches.

Note regarding different baselines: The baseline num-

bers reported by us do not match with the ones reported in

[32] and [14] due to different experimental settings (this

mismatch was also reported in [32]). However, we would

like to point out that we improve over a stronger baseline

compared to the other two methods in both our adaptation

experiments. In addition, [32] uses additional data from

PASCAL-CONTEXT [24] dataset to obtain the superpixel

segmentation. In contrast, our approach is a single stage

end-to-end learning framework that does not use any addi-

tional data and yet obtains better performance improvement.

5. Discussion

In this section, we perform several exploratory studies to

give more insight into the functionality and effectiveness of

the proposed approach. similar to the previous section, all

the evaluation results are reported on the CITYSCAPES val

set, unless specified otherwise. We denote this set as the test

set.

5.1. Effect of Image Size

The datasets considered in this paper consists of images

of large resolution which is atleast twice larger than the

most commonly used Segmentation benchmarks for CNNs

i.e. PASCAL VOC (500×300) and MSCOCO (640×480).

In this setting, it is instructive to understand the effect

of image size on the performance of our algorithm both

from a quantitative and computational perspective. Table

3 presents the results of our approach applied over three

different image sizes along with the training and evaluation

times. It should be noted that the Curriculum DA approach

[32] used a resolution of 640×320. By comparing with our

main results in Table 2a, we see that our approach provides

a higher relative performance improvement over a similar

baseline.
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Table 3: Mean IoU values and computation times across

different image size on the SYNTHIA → CITYSCAPES

setting. The numbers in bold indicate the absolute improve-

ment in performance over the Source-only baseline. The re-

ported training and evaluation times are for the proposed ap-

proach and are averaged over training and evaluation runs.

Image size 512× 256 640× 320 1024× 512
mIOU-Source-only 21.5 23.2 26.8

mIOU-Ours 31.3 (+9.8) 34.5 (+11.3) 36.1 (+9.3)

Train time (per image) 1.5s 2.1s 2.9s

Eval time (per image) 0.16s 0.19s 0.3s

5.2. Comparison with direct style transfer

Generative methods for style transfer have achieved a

great amount of success in the recent past. A simple ap-

proach to performing domain adaptation is to use such ap-

proaches as a data augmentation method: transfer the im-

ages from the source domain to target domain and use the

provided source ground truth to train a classifier on the com-

bined source and target data. In order to compare the pro-

posed approach with this direct data augmentation proce-

dure, we used a state of the art generative approach (Cycle-

GAN [33]) to transfer images from source domain to target

domain. From our experiment, using generative approaches

solely as a data augmentation method provides only a rel-

atively small improvement over the source-only baseline

and clearly suboptimal compared to the proposed approach.

However, as shown in a recent approach by Hoffman et al.

[13], such cross domain transfer can be performed by a care-

ful training procedure. The results obtained by the proposed

approach is comparable or better then [13]. Combining both

approaches to produce a much stronger domain adaptation

technique for segmentation is under progress.

5.3. Component­wise ablation

In this experiment, we show how each component in our

loss function affects the final performance. We consider the

following cases: (a) Ours(full): the full implementation of

our approach (b) Ours w/o auxiliary pixel-wise loss: Here,

the output of the D network is a single branch classify-

ing the input as real/fake. This corresponds to α = 0 in

the F -update step. Note that, setting both α and β as zero

corresponds to the source-only setting in our experiments.

Setting only β = 0 does not improve over the source-only

baseline as there is no cross domain adversarial loss. (c)

Ours w/o Patch discriminator: Instead of using the D net-

work as a Patch discriminator, we used a regular GAN-like

discriminator where the output is a 4-D probability vector

that the input image belongs to one of the four classes - src-

real, src-fake, tgt-real and tgt-fake. (d) Feature space based

D: In this setting, we remove the G-D networks and apply

an adversarial loss directly on the embedding. This is sim-

ilar to the global alignment setting in the FCN-in-the-wild

approach [14].

The mean IoU results on the test set are shown in Table.

4. It can be observed that each component is very important

to obtain the full improvement in performance.

Table 4: Ablation study showing the effect of each compo-

nent on the final performance of our approach on the SYN-

THIA → CITYSCAPES setting

Method mean IoU

Source-only 22.2

Feature space based D 25.3

Ours w/o Patch Discriminator 28.3

Ours w/o auxiliary loss (α = 0) 29.2

Ours 34.5

5.4. Cross Domain Retrieval

A crucial aspect of domain adaptation is in finding good

measures of domain discrepancy that provide a good illus-

tration of the domain shift. While there exist several clas-

sical measures such as A-distance [1] and MMD [9] for

the case of image classification, the extension of such mea-

sures for a pixel-wise problem such as semantic segmenta-

tion is non-trivial. In this section, we devise a simple ex-

periment in order to illustrate how the proposed approach

brings source and target distributions closer in the learnt

embedding space. We start with the last layer of the F net-

work, which we label as the embedding layer, whose output

is a spatial feature map. We perform an average pooling to

reduce this spatial map to a 4096 dimensional feature de-

scriptor for each input image.

We begin the cross domain retrieval task by choosing a

pool of N = Nsrc+Ntgt images from the combined source

and target training set. Let X denote these set of images

and FX denote the set of the feature descriptors computed

for X . Then, we choose two query sets, one consisting of

source images (S) and the other consisting of target images

(T ), each disjoint with X . Let the corresponding feature

sets be denoted as QS and QT . We retrieve k-NN lists

for each item in the query set from the combined feature

set FX . For each query point in QS , we count the num-

ber of target samples retrieved in the corresponding k-NN

list. |Ak| indicates the average number of target samples re-

trieved over the entire source query set QS . For each query

point in QT , we count the number of source samples re-

trieved in the corresponding k-NN list. |Bk| indicates the

average number of source samples retrieved over the entire

target query set QT . We used cosine similarity as a metric

to compute the k-NN lists. If more target samples are re-

trieved for a source query point (and vice-versa), it suggests

that source and target distributions are aligned well in the

feature space.
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(a) Target → Source, |Bk| (vs) k (b) Source → Target, |Ak| (vs) k

Figure 4: Illustration of Domain Adaptation achieved by the

proposed approach. The plot compares the average number

of retrieved sampled for the cross domain retrieval task de-

scribed in Section 5.4 between the source-only model and

the model adapted using the proposed approach. Target →
Source implies that the query set used belongs to target do-

main (QT ) and items queried for from the set X belong to

the source domain and vice-versa for Source → Target. In

general, the values plotted on the y-axis corresponds to the

number of samples retrieved from the set X that belong to

the opposite domain as to that of the query set.

For this experiment, the sizes of query sets and the fea-

ture set FX are as follows: Nsrc = Ntgt = 1000, |QS | =

1000, |QT | = 1000. The mean average precision (mAP)

was computed across the entire query sets for the respective

cross domain tasks. Figure 4 shows the plot of the quanti-

ties |Ak| (Fig.4b) and |Bk| (Fig.4a) for a range of values of

k. It can be observed from the plots in both the tasks that

for any given rank k, the number of cross domain samples

retrieved by the adapted model is higher than the source-

only model. This effect becomes more clear as k increases.

This observation is supported by better mAP values for the

adapted model as shown in Figure 4. While this by itself

is not a sufficient condition for better segmentation perfor-

mance, however this along with the results from Table 2

imply that the proposed approach performs domain adap-

tation in a meaningful manner. Owing to the difficulty in

visualizing the mapping learned for segmentation tasks, a

cross domain retrieval experiment can be seen as a reason-

able measure of how domain gap is reduced in the feature

space.

5.5. Generalization to unseen domains

A desirable characteristic of any domain adaptation algo-

rithm is domain generalization i.e. improving performance

over domains that are not seen during training. To test

the generalization capability of the proposed approach, we

test the model trained for the SYNTHIA → CITYSCAPES

setting on the CamVid dataset [3]. We choose to evalu-

ate our models on the 10 common classes among the three

datasets. Table 5 shows the mean IoU values computed for

the source-only baseline and the adapted model. The pro-

posed approach yields a raw improvement of 8.3 points in

performance which is a significant improvement consider-

ing the fact that CamVid images are not seen by the adapted

model during training. This experiment showcases the abil-

ity of the proposed approach to learn domain invariant rep-

resentations in a generalized manner.

Table 5: Mean IoU segmentation performance measured on

a third unseen domain (CamVid dataset) for the models cor-

responding to the SYNTHIA → CITYSCAPES setting

Method mean IoU

Source-only 36.1

Ours 44.4

6. Conclusion and Future Work

In this paper, we have addressed the problem of per-

forming semantic segmentation across different domains.

In particular, we have considered a very hard case where

abundant supervisory information is available for synthetic

data (source) but no such information is available for real

data (target). We proposed a joint adversarial approach

that transfers the information of the target distribution to

the learned embedding using a generator-discriminator pair.

We have shown the superiority of our approach over exist-

ing methods that address this problem using experiments on

two large scale datasets thus demonstrating the generality

and scalability of our training procedure. Furthermore, our

approach has no extra computational overhead during eval-

uation, which is a critical aspect when deploying such meth-

ods in practice. As future work, we would like to extend this

approach to explicitly incorporate geometric constraints ac-

counting for perspective variations and to adapt over tem-

poral inputs such as videos across different domains.
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