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Abstract

Fully supervised methods for semantic segmentation re-

quire pixel-level class masks to train, the creation of which

is expensive in terms of manual labour and time. In this

work, we focus on weak supervision, developing a method

for training a high-quality pixel-level classifier for seman-

tic segmentation, using only image-level class labels as the

provided ground-truth. Our method is formulated as a two-

stage approach in which we first aim to create accurate

pixel-level masks for the training images via a bootstrap-

ping process, and then use these now-accurately segmented

images as a proxy ground-truth in a more standard super-

vised setting. The key driver for our work is that in the target

dataset we typically have reliable ground-truth image-level

labels, while data crawled from the web may have unreli-

able labels, but can be filtered to comprise only easy images

to segment, therefore having reliable boundaries. These two

forms of information are complementary and we use this ob-

servation to build a novel bi-directional transfer learning

framework. This framework transfers knowledge between

two domains, target domain and web domain, bootstrap-

ping the performance of weakly supervised semantic seg-

mentation. Conducting experiments on the popular bench-

mark dataset PASCAL VOC 2012 based on both a VGG16

network and on ResNet50, we reach state-of-the-art perfor-

mance with scores of 60.2% IoU and 63.9% IoU respec-

tively1.

1. Introduction

Semantic image segmentation is a fundamental problem

in computer vision whose aim is to predict a category label

for each pixel of an image. Recent approaches [19, 18, 2,

17, 20, 33] based on Deep Convolutional Neural Networks

(DCNN) have achieved remarkable success. However, un-

like training classification networks [9, 28, 15, 32], which

1Our code is available at https://github.com/ascust/BDWSS

Model-T Model-W

Web domain

Filter

Enhance

Figure 1: Illustration of the bi-directional framework.

Model-T and Model-W are trained in the target domain and

the web domain respectively. Model-T uses the knowledge

in its domain to help Model-W to filter out image with in-

correct tags, yielding a set of high quality easy images.

Model-W trained with high quality web images transfers

the knowledge back to the target domain, helping Model-T

enhance the results.

only requires image-level labels, training a network for se-

mantic segmentation involves a large amount of pixel-level

labels.

As shown in [1], annotating pixel-level labels is very

time-consuming, taking an average of 239.7 seconds for a

single image. In contrast, obtaining image-level labels only

takes 20 seconds or less per image. This motivates explor-

ing the possibility of using partially annotated or weakly

annotated data to achieve reasonable performance. To this

end, a number of semi- or weakly supervised methods have

been proposed [24, 1, 26, 16, 13, 30, 6, 23]. These methods

utilize different levels of supervision including bounding

boxes, scribbles, points, image-level labels, etc. Points indi-

cate the location of the object; bounding boxes and scribbles

imply the extent of the object; image-level supervision only

indicates the presence of the object. Among various types

of supervision, image-level supervision is undoubtedly the

weakest one. In this paper, we focus explicitly on this task

of using the weakest supervision; i.e. semantic segmenta-

tion with only image-level labels.

We tackle the problem by focusing on generating the
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pixel-wise masks for the training images to create a proxy

ground-truth dataset. Using this proxy ground-truth dataset,

we train a Fully Convolutional Network (FCN) for the task.

Our framework is designed to generate high-quality masks,

close in accuracy to those created by humans, and to use

these masks to train a network.

Web data exist in large quantities and we can easily col-

lect a group of images associated with a particular class

label by using the label (and synonyms) as a query to a

search engine. The hope is that these extra data can be used

to boost the performance, and indeed a number of papers

[30, 11, 26] have previously explored this idea to improve

results of weakly supervised methods. There are two hur-

dles to overcome; the first is that the retrieved web data will

often be noisy, in the sense that the image labels (tags) may

not match the image content, or be inconsistent with the

concept/object we are trying to capture. The second is of

course that the retrieved images will not have the ground-

truth segmentation masks associated with them.

In this paper we describe a bootstrapping process, in

which we leverage bi-directional flow of information be-

tween two domains, a target domain (i.e. the set of classes

for which we want segmentation and a set of training images

with accurate image-level labels) and the web domain (i.e.

images crawled from the web using the target class labels

as search keywords). For simplicity, we use Model-T and

Model-W to represent models in the target and web domain

respectively (see Figure 1). The key insight is that we can

use a weakly supervised network (Model-T, trained on the

target domain using only image-level labels) to effectively

filter the web-retrieved images to eliminate labelling errors

and to retain only images that are relatively easy to seg-

ment, having a simple background, single semantic class,

and decent-sized objects. By doing this, we create a new

dataset with high quality images that are easier to segment

with only weak supervision. Figure 2 illustrates typical im-

ages and segmentation results from the two domains. Im-

ages in the target domain usually have a complex scene and

multiple, overlapping objects, whereas web images filtered

are simpler and therefore easier to segment using a weakly

supervised network.

Since the model trained with the target dataset can filter

the web data and provides us with a high quality dataset, we

propose to learn a model with these web images and in re-

turn help enhance our results. As shown in Figure 3, the first

two masks are estimated by the model trained with the target

dataset and web images respectively. We observe that the

model trained with the target dataset is good at distinguish-

ing semantic classes but provides bad boundaries, while the

model trained with web images gives good boundaries but

tends to merge different semantic regions. By our merg-

ing strategy, the enhanced mask, shown in right bottom of

Figure 3, takes advantage from both masks and makes high

Target domain

Web domain

Figure 2: Mask estimation in two domains. In the upper

part, the mask is given by the model trained in the target

domain, which is coarse due to complex scene and overlap-

ping objects of the images. The lower part shows an exam-

ple given by the model trained in the web domain, which is

better because of the simple context.

estimated mask 
(model with target dataset)

estimated mask 
(model with web dataset)

enhanced estimation

ground truth
(not available)

image
(in target training set)

Figure 3: Illustration of enhancing mask. The upper part

shows an image in the training set and ground truth (which

is not available in our weakly supervised setting). In the

lower part, the first two masks are estimated by the model

in the target domain and the web domain respectively and

the last one is the enhanced mask.

quality estimation. There is also the ground truth annotation

in upper right for visual comparison, which is not available

in our weakly supervised setting.

Our contributions can be summarized as follows:

• We propose a bidirectional transfer learning frame-

work for bootstrapping webly supervised semantic

segmentation.

• We propose an effective approach to filter web data and

find high quality images, which are suitable for weakly

supervised semantic segmentation.

• We transfer the knowledge learnt from the web domain

to the target domain and generate high quality masks.

• By using the high quality masks as proxy ground truth,

we train a standard FCN and achieve state-of-the-art
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performance. The gap between weakly supervised

methods and fully supervised methods is further re-

duced.

2. Related Work

Semantic segmentation has greatly benefited from FCN

based networks that enable training dense prediction mod-

els in an end-to-end fashion. Many methods have been pro-

posed [19, 18, 2, 17, 20, 33] and achieved remarkable suc-

cess. However these methods are designed in fully super-

vised setting and require pixel-level masks, which involves

a large amount of human labour and time to obtain.

In order to reduce the effort of annotation, many semi-

and weakly supervised methods have been proposed [24,

1, 26, 16, 13, 30, 6, 23]. In these methods, various forms

of supervision are investigated to achieve reasonable per-

formance compared with fully supervised methods. In [6],

Dai et al. propose a bounding box supervised method where

they extract object masks based on the bounding box by us-

ing MCG. In [16], Lin et al. use scribbles as supervision and

construct a graphical model to tackle the problem. In [1]

only points are used as supervision to train a model. Among

these supervisions, the most challenging one is image-level

annotation. Pathak et al. [23] introduce a constrained con-

volutional neural network with assumptions on object size,

foreground and background. Pinheiro et al. [24] propose

a Multiple Instance Learning (MIL) based method for the

problem. In [13], a ”seed, expand and constrain” (SEC)

framework is proposed using only image-level labels where

localization cues from classification networks are used to

find the object; a weighted rank pooling loss is used to con-

strain the object extent; CRF is used to refine the bound-

aries. Our method uses SEC model as a starting point and

use web images to learn better features.

Our method is closely related to webly supervised learn-

ing [4, 14, 31, 5], which is focused on extracting useful

knowledge or features from noisy web data. Many webly

based semantic segmentation methods have also been pro-

posed [11, 26, 30, 10]. In [11, 30], a network is firstly

trained with simple images from the internet and the cor-

responding masks estimated using saliency detection. Then

the network is adapted to the target domain with progressive

improvement. Shen et al. [26] use co-segmentation to ex-

tract the masks of web images and train the network. Hong

et al. [10] use data from the web crawled videos and extract

masks based on temporal information and attention cues.

3. Method

The pipeline of our framework is described in Figure 4.

Our goal is to estimate the masks for training images in

the target domain, which will then be used as a proxy for

ground truth to train the final segmentation network. The

models in two domains interact with each other to transfer

knowledge and finally provide us with high quality masks

for the training images.

In detail, our bi-directional framework is based on the

two domains:

• In the target domain, we train Initial-SEC on VOC

images with only image-level labels and get initial es-

timation of the masks. Details are presented in Section

3.1.

• In the web domain, we transfer the knowledge from

target domain by using Initial-SEC as a filter to clean

noisy web data. Then we have three steps to learn

the knowledge from the web domain by training Web-

SEC (Section 3.2.2), using Grabcut refinement (Sec-

tion 3.2.3) and training Web-FCN (Section 3.2.4).

• Back to the target domain, we transfer the knowledge

from the web domain back to enhance the initial es-

timation of the masks, which is described in Section

3.3.

• Finally Final-FCN is trained using the estimated

masks, as described in Section 3.4.

3.1. Training Initial­SEC in the Target Domain

Our framework starts in the target domain, where we

train a SEC model, termed Initial-SEC, on VOC images.

We first review the SEC architecture [13]. Let I =
{(Xn,Yn)}

N1 be our target dataset, e.g. PASCAL VOC

2012, which consists of N1 images. Each Image Xn is an-

notated by image-level labels Yn ∈ {0, 1}C where C is the

number of classes. The goal is to train a DCNN f(X), short

for f(X; θ), that is parameterized by θ and models category

probabilities for each pixel. The SEC model is trained by

three losses:

L =

N1
∑

n

Lseed(f(Xn),Yn) + Lexpand(f(Xn),Yn)

+Lconstrain(f(Xn),Xn)

(1)

Lseed supervises the network with localization cues

obtained from Class Activation Mapping (CAM) [34].

Lexpand controls how to aggregate the heat maps to be con-

sistent with image-level labels where a global weighted rank

pooling (GWRP) is proposed. Lconstrain makes the predic-

tions respect the boundaries of objects.

In the original paper, the trained model is the final model.

Unlike their approach, we apply the model back to the train-

ing images to generate their masks. These masks are coarse,

as shown in left bottom of Figure 3, and will be enhanced

by the model trained in the web domain.
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VOC training images
(image-level labels)

noisy
web images

Initial-SEC 
filter
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web images
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Web-SEC

rough masks
(web images)

Grabcut
refine

fine masks
(web images)
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Web-FCN

enhanced masks

train
Final-FCN

Web domain

Target domain

masks with web
knowledge 

filter

enhance

Figure 4: Illustration of our pipeline. Assuming the target dataset is PASCAL VOC 2012, the target domain contains the

training images in VOC with image-level labels, shown in the lower rectangle with dashed lines. The web domain has noisy

(i.e. incorrectly labelled) images, represented in the upper rectangle with dashed lines. Beginning with the target domain,

we first train Initial-SEC to generate rough initial masks. We then use this model as a filter to clean the noisy web data and

remove complex images, retaining easy-to-segment ones. In the (filtered) web domain, we train another SEC model (Web-

SEC) to get rough masks for the web images and Grabcut refinement to further refine the masks. Then a FCN (Web-FCN) is

trained on these data to represent the knowledge in the web domain. This model in turn enhances the estimation of the initial

masks to generate high quality masks. The last step is to train Final-FCN using the proxy ground truth.

Since we have access to image-level labels, we use them

to further refine the masks of the training images as follows:

mi = argmax
j∈{1,..,C}

yifij (2)

where mi is the mask prediction for ith pixel (i.e. we choose

the class label as the most likely one from the set of valid

labels). An example is illustrated in Figure 5. Compared

with the raw prediction on left bottom, the confusion is re-

moved in the refined prediction shown on right bottom. We

also use the ground truth annotation for visual comparison,

which is not available in our setting.

3.2. Training Models in the Web Domain

The masks estimated from Section 3.1 are still too rough

to be used as the ground truth, as shown in right upper of

Figure 2. In this section we show how we can leverage

web-crawled data, transferring knowledge from the target

domain to the web domain and learn new knowledge in the

web domain.

3.2.1 Crawl and Filter Web Images

High quality web data processed by good filtering methods

are crucial to learning good segmentation models. In this

image ground truth

raw prediction refined prediction

Figure 5: Illustration of removing confusions of the initial

masks by using image-level labels. Given an image in up-

per left, the raw estimation is shown in lower left. Using

this information, we get cleaned estimation in right bottom.

We also use the ground truth annotation for visual compar-

ison(not available in our setting).

section, we show how to transfer the knowledge from the

target domain to filter web data.

We first search for images based on class names using

search engines (Bing in our experiments). The class names

are used as seeds, along with synonyms, and similar words
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suggested by the search engines. For example, when search-

ing for “dog”, “German Shepherd dog”, “Pitbull dog” etc.

are also suggested. After greedily crawling all related im-

ages, we use the Initial-SEC model trained on VOC images

as our filter to clean the web data.

Applying the SEC model to web images, we are able

to obtain masks with per-pixel class labels. Based on

the dense masks information, we can easily identify qual-

ified images by scene complexity of the image, extent of

the object and semantic relevance. Specifically, we select

the images according to two criteria: (i) the number of

pixels for the target class must lie in a predefined range,

t1 < 1
N

∑

i ✶(mi = c) < t2; and (ii) the number of

other foreground pixels should be lower than a threshold,
1
N

∑

i ✶(mi 6= c and mi 6= background) < t3. The in-

tuition is we want to select images with a “proper” size for

the foreground. It is expected that such images can be eas-

ily segmented. Different from existing filtering approaches

[30, 10], our method is based on dense masks and provides

richer information of the images.

3.2.2 Training of Web-SEC

The filtering process described above creates a dataset of

accurately labelled, high quality web images from a noisy

web search. Our goal now is to improve the estimates of

their masks. To this end, we train another SEC model on the

web data which we term “Web-SEC”. Unlike in the target

domain, where images are associated with multiple class

labels, images in the web domain are much simpler, filtered

to be likely to contain only one class, and therefore easier

to segment.

The Web-SEC model is able to generate masks for these

web images of higher quality than Initial-SEC. Figure 6

shows a qualitative comparison between these two mod-

els (Initial-SEC and Web-SEC). The middle masks are from

Initial-SEC trained in the target domain. It gives basic se-

mantic information and rough extent of the object. Clearly

the masks on the right, outputs from Web-SEC, are well

adapted to the web domain and provide more accurate esti-

mation.

3.2.3 Grabcut Refinement

The masks generated by Web-SEC are good at capturing the

whole object but sometimes overestimate the object, as il-

lustrated in the second column of Figure 7. To further refine

the masks, we develop a Grabcut based refinement method.

It is similar to [12], but we use the mask as prior knowl-

edge to indicate the foreground and background instead of

the bound box. We simply jitter the window that tightly

surrounds the mask and perform Grabcut [25]. By multiple

samples, we are able to get a probability heat map of the

foreground as shown in the third column of Figure 7, and

image Initial-SEC Web-SEC

Figure 6: Comparison of the estimated mask for web im-

ages between Initial-SEC model and Web-SEC model. The

middle column shows the masks estimated from Initial-SEC

model, which are coarse. The masks on the right are from

the Web-SEC model, which provide more accurate estima-

tion.

image Web-SEC Grabcut refinementGrabcut heatmap

Figure 7: Illustration of Grabcut refinement. The second

column shows the masks from Web-SEC model. The third

column shows the probability heat map after Grabcut. The

last column shows the refined masks.

we retain as foreground only the pixels with high probabil-

ity.

For a mask estimated by Web-SEC, li ∈ {1, ..., C} is

the label for ith pixel. After Grabcut refinement, we have

pi ∈ [0, 1] for ith pixel representing the probability of being

kept. The refined mask is defined as:

l̂i =











li if pi ≥ t

background if pi < t and li = background

void if pi < t and li 6= background

(3)

where l̂i is the new label for ith pixel; t is the threshold;

void indicates unclear regions.

We are able to control the balance between precision

and recall by choosing a proper threshold. By using a high

threshold, we have high confidence about the pixels being

kept. Since those with low probability are set to void, they

will be ignored during the training and not have a big im-

pact.
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3.2.4 Training of Web-FCN

After Section 3.2.3, we obtain a web image dataset with

estimated masks. Let W = {(Xn,Mn)}
N2 be the dataset

with N2 images, where Xn and Mn are the image and the

estimated mask respectively. We now are able to train a

standard FCN (Web-FCN), which is used to estimate masks

for our target dataset. The architecture we adopt here is a

1/8 resolution FCN with dilated convolution kernels, similar

to DeepLab [2]. This becomes a “fully supervised” problem

and the objective is to minimize a softmax loss:

L =

N2
∑

n

Lsoftmax(f(Xn),Mn) (4)

The Web-FCN trained in the web domain encodes the

knowledge in this domain. The knowledge will be trans-

ferred to the target domain by applying this model to the

target dataset.

3.3. Enhancing the Initial Estimation

In this section, we describe how to transfer the knowl-

edge learnt from the web domain to the target domain and

improve the estimation. Recall that in lower part of Figure

3, the first two masks are from models in the target and the

web domain respectively. We observe that the model in the

target domain is good at distinguishing classes because it is

trained with confident image-level labels. In contrast, the

model in the web domain provides better boundaries and

captures more complete extent but is prone to making mis-

takes about the class labels. We address this by fusing the

estimations from both domains and get the final enhanced

mask, shown in right bottom of Figure 3.

More specifically, let M (t) be the mask from the target

domain and M
(t)
i ∈ {1, ..., C} represent the category for ith

pixel. Likewise, M (w) and M (f) represent the mask from

the web domain and the final enhanced mask respectively.

The fusion strategy is as follows:

M
(f)
i =























M
(t)
i if M

(w)
i 6= background

M
(t)
i if M

(w)
i = background

and
∑

k ✶(M
(w)
k = M

(t)
i ) < ǫ

M
(w)
i otherwise

(5)

where ǫ is a small number.

The intuition for this strategy is that for foreground pix-

els in M (w), the category labels will follow M (t) because

it has better ability to distinguish classes. For background

pixels in M (w), if the number of pixels for a valid class is

lower than a threshold, we also follow the label in M (t).

This indicates if a class is shown in image-level labels, we

should guarantee some pixels for this class, otherwise the

information for this class will be lost. In any other cases,

we follow M (w).

3.4. Training Final­FCN

After obtaining the enhanced masks, the problem is sim-

ilar to a “fully supervised” problem. The target dataset be-

comes I = {(Xn,Yn,Mn)}
N1 , where we have pixel-wise

masks besides image-level labels. This enables us to train a

standard FCN model. The structure we adopt in our experi-

ment is a FCN with dilated kernels, similar to DeepLab [2].

Besides, we also adopt a global-multi label branch for scene

consistency, as in [27]. We train Final-FCN by minimizing

two loss functions:

L =

N1
∑

n

Lsoftmax(f(Xn),Mn) + Lmulti(g(Xn),Yn)

(6)

where g(Xn) is the output for global multi-label and

Lmulti is a logistic multi-label loss.

4. Experiments

4.1. Dataset

Retrieved Dataset: We retrieve images from Bing based

on class names. We use class names as seeds and greedily

search for related images, including synonyms, words sug-

gested by the searching engine. By using our Initial-SEC

as a filter and setting a threshold for each class as the max-

imum number of images, we obtain a retrieved dataset with

76683 images. All images are resized so that the larger di-

mension is 500. In term of the parameters mentioned in

Section 3.2.1, t1 = 0.3, t2 = 0.7 and t3 = 0.1.

PASCAL VOC 2012: We use this dataset as our tar-

get dataset and evaluate the performance based on this. The

original dataset [7] contains 1464 training images, 1449 val-

idation images and 1456 testing images. As common prac-

tice, we also use the augmented data from [8], which gives

10582 training images in total. There are 21 classes includ-

ing a background class. The result is evaluated with Inter-

section over Union (IoU) averaged over 21 classes.

4.2. Implementation Details

The implementation is based on MXNet [3]. For details

of training SEC models, Initial-SEC and Web-SEC, please

refer to the original paper [13]. We follow the same param-

eters except that for training Web-SEC, we use a smaller

initial learning rate of 1e-4. For Grabcut refinement, Sec-

tion 3.2.3, we set the threshold t = 0.7. For Web-FCN

we use DeepLab-based [2] structure, which has output res-

olution of 1/8. For Final-FCN, apart from the basic struc-

ture, a global multi-label branch is also introduced to en-

courage scene consistency, similar to [27]. We use standard
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Method val test Extra Supervision

Chen et al. [2] 63.7 66.4 Fully supervised

Lin et al. [16] 63.1 - Scribble

Dai et al. [6] 62.0 64.6 Bounding box+MCG

Oh et al. [21] 55.7 56.7 Bounding box

Bearman et al. [1] 46.1 - Point

Wei et al. [29] 55.0 55.7 Supervised saliency

STC [30] 49.8 51.2 Supervised saliency

EM-Adapt [22] 33.8 39.6 -

CCNN [23] 35.3 35.6 -

SEC [13] 50.7 51.7 -

Hong et al. [10] 58.1 58.7 -

Ours-VGG16 58.8 60.2 -

Ours-Res50 63.0 63.9 -

Table 1: Comparison with methods using other supervi-

sions.

T-domain Web-domain

Initial-SEC Web-SEC GC Web-FCN post IoU

✦ 49.3

✦ ✦ 52.6

✦ ✦ ✦ 55.7

✦ ✦ ✦ ✦ 56.6

✦ ✦ ✦ ✦ ✦ 58.8

Table 2: Comparison under different settings on the PAS-

CAL VOC 2012 validation set.

Stochastic Gradient Descent (SGD) for optimization. For

post-processing, multi-scale inference and dense-CRF are

used as common practice.

4.3. Experiment Results

The results on PASCAL VOC validation set and test set

are shown in Table 4 and Table 5 respectively. According

to the tables, the one with VGG16 [28], same as the other’s

base network, already achieves state of the art performance,

60.22. By using another base net, Resnet 50 [9], we achieve

much better result 63.93, which significantly outperforms

other methods.

Table 1 also shows a comparison with methods using dif-

ferent supervision, where the extra supervision is explained

in the last column. In the upper half of the table, we list

methods with stronger supervision than image-level labels.

It is worth noting that our method does not use any other

auxiliary methods that involve extra supervision. Some

qualitative examples are shown in Figure 8.

4.4. Ablation Study

4.4.1 Analysis of Different Modules

To analyse the effectiveness of our bi-directional transfer

learning framework, we conduct ablation study with differ-

2http://host.robots.ox.ac.uk:8080/anonymous/X0CH0F.html
3http://host.robots.ox.ac.uk:8080/anonymous/GKJXB6.html

Number of web images IoU

76.7k 56.6

58.1k 56.4

39.1k 56.3

20.0k 56.4

10.0k 56.4

6k 55.7

2k 55.3

80.0k without filtering 49.8

Table 3: Ablation study using different number of web im-

ages on the PASCAL VOC 2012 validation set.

ent settings. Recall that our goal is to generate high quality

masks for the training images and train a FCN using the

estimated masks. Therefore, the quality of the masks di-

rectly affects the final performance. Table 2 shows a com-

parison under different settings. Starting with the simplest

one where only target domain is involved, we only get 49.3

by using Initial-SEC. With the web domain introduced, we

train Web-SEC for the web images, which gives us 3.3 point

improvement. This indicates the effectiveness of the knowl-

edge transferred from the web domain. We continue train-

ing Web-FCN without using Grabcut refinement and further

improve the result to 55.7. By using Grabcut refinements,

we get almost one more point of improvement. The final

score is obtained by post-processing including multi-scale

inference and dense-CRF as common practice.

4.4.2 Analysis of Number of Web Images

It is also interesting to analyse how the number of web im-

ages involved affects the result. Table 3 shows an ablation

study using different numbers of web images.The best per-

formance is obtained by using 76.7k images. We also run

experiments with different numbers of images by varying

the threshold of maximum images for each class. It is inter-

esting that the performance does not drop much with the

number of web images decreasing. Even the number of

images is decreased to 2k, the performance only drops by

1.3%. This indicates that our bi-directional framework is

pretty robust to noise and the filtered images are high qual-

ity. Furthermore, we also show an experiment without fil-

tering the images, which is shown in the last row. Using

80k noisy web images, we only get score of 49.8, which is

6.8 lower than the best one. This again indicates the impor-

tance of using knowledge learnt in target domain to filter

web data.

5. Conclusion

In this paper, we tackle the problem of weakly super-

vised semantic segmentation using only image-level labels.

Apart from the target dataset with confident image-level la-

bels, we propose to use noisy web data to boost the perfor-
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Method bk plane bike bird boat bottle bus car cat chair cow table dog horse motorpersonplant sheep sofa train tv mean

EM-Adapt [22] 67.2 29.2 17.6 28.6 22.2 29.6 47.0 44.0 44.2 14.6 35.1 24.9 41.0 34.8 41.6 32.1 24.8 37.4 24.0 38.1 31.6 33.8

CCNN [23] 68.5 25.5 18.0 25.4 20.2 36.3 46.8 47.1 48.0 15.8 37.9 21.0 44.5 34.5 46.2 40.7 30.4 36.3 22.2 38.8 36.9 35.3

MIL+seg [24] 79.6 50.2 21.6 40.9 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0

SEC [13] 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.3 52.5 32.5 62.6 32.1 45.4 45.3 50.7

STC [30] 84.5 68.0 19.5 60.5 42.5 44.8 68.4 64.0 64.8 14.5 52.0 22.8 58.0 55.3 57.8 60.5 40.6 56.7 23.0 57.1 31.2 49.8

WebS [11] 84.3 65.3 27.4 65.4 53.9 46.3 70.1 69.8 79.4 13.8 61.1 17.4 73.8 58.1 57.8 56.2 35.7 66.5 22.0 50.1 46.2 53.4

Hong et al. [10] 87.0 69.3 32.2 70.2 31.2 58.4 73.6 68.5 76.5 26.8 63.8 29.1 73.5 69.5 66.5 70.4 46.8 72.1 27.3 57.4 50.2 58.1

Ours-VGG16 85.0 74.4 24.9 76.2 20.7 58.2 82.3 73.6 81.0 25.9 71.3 37.4 71.8 69.6 70.3 71.0 44.1 73.8 34.1 48.4 40.0 58.8

Ours-Resnet50 86.8 71.2 32.4 77.0 24.4 69.8 85.3 71.9 86.5 27.6 78.9 40.7 78.5 79.1 72.7 73.1 49.6 74.8 36.1 48.1 59.2 63.0

Table 4: Results on the PASCAL VOC 2012 validation set.

Method bk plane bike bird boat bottle bus car cat chair cow table dog horse motorpersonplant sheep sofa train tv mean

EM-Adapt [22] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6

CCNN [23] 70.1 24.2 19.9 26.3 18.6 38.1 51.7 42.9 48.2 15.6 37.2 18.3 43.0 38.2 52.2 40.0 33.8 36.0 21.6 33.4 38.3 35.6

MIL+seg [24] 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6

SEC [13] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7

STC [30] 85.2 62.7 21.1 58.0 31.4 55.0 68.8 63.9 63.7 14.2 57.6 28.3 63.0 59.8 67.6 61.7 42.9 61.0 23.2 52.4 33.1 51.2

WebS [11] 85.8 66.1 30.0 64.1 47.9 58.6 70.7 68.5 75.2 11.3 62.6 19.0 75.6 67.2 72.8 61.4 44.7 71.5 23.1 42.3 43.6 55.3

Hong et al. [10] 87.2 63.9 32.8 72.4 26.7 64.0 72.1 70.5 77.8 23.9 63.6 32.1 77.2 75.3 76.2 71.5 45.0 68.8 35.5 46.2 49.3 58.7

Ours-VGG16 85.3 77.6 26.2 76.6 17.3 61.4 82.4 74.8 83.8 25.7 66.9 46.2 74.0 75.6 79.2 70.8 48.3 73.1 40.5 38.8 39.0 60.2

Ours-Resnet50 87.2 76.8 31.6 72.9 19.1 64.9 86.7 75.4 86.8 30.0 76.6 48.5 80.5 79.9 79.7 72.6 50.1 83.5 48.3 39.6 52.2 63.9

Table 5: Results on the PASCAL VOC 2012 test set.

input ground truth prediction input ground truth prediction

Figure 8: Qualitative results on PASCAL VOC 2012 validation set.

mance. To leverage the data in two domains, target domain

and web domain, we propose a novel bi-directional trans-

fer learning framework that is able to generate high quality

masks for the training images. Using these masks as proxy

ground truth, we achieve state-of-the-art performance and

further narrow down the gap between weakly and fully su-

pervised methods.
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