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Abstract

Person re-identification aims at finding a person of inter-

est in an image gallery by comparing the probe image of this

person with all the gallery images. It is generally treated as

a retrieval problem, where the affinities between the probe

image and gallery images (P2G affinities) are used to rank

the retrieved gallery images. However, most existing meth-

ods only consider P2G affinities but ignore the affinities be-

tween all the gallery images (G2G affinity). Some frame-

works incorporated G2G affinities into the testing process,

which is not end-to-end trainable for deep neural networks.

In this paper, we propose a novel group-shuffling random

walk network for fully utilizing the affinity information be-

tween gallery images in both the training and testing pro-

cesses. The proposed approach aims at end-to-end refin-

ing the P2G affinities based on G2G affinity information

with a simple yet effective matrix operation, which can be

integrated into deep neural networks. Feature grouping

and group shuffle are also proposed to apply rich supervi-

sions for learning better person features. The proposed ap-

proach outperforms state-of-the-art methods on the Market-

1501, CUHK03, and DukeMTMC datasets by large mar-

gins, which demonstrate the effectiveness of our approach.

1. Introduction

Person re-identification (Re-ID) is a challenging prob-

lem. Given one probe image of a person of interest, the

task requires to identify images of the same person from a

large gallery image database. It is an important and active

research field and has vital roles in video surveillance sys-

tems. In recent years, deep learning methods achieved huge

success in various computer vision tasks. There have been

attempts on solving the person re-ID task with deep learn-

ing methods, which focus on learning discriminative fea-

ture representations of person images. The re-identification

problem is solved as an image retrieval task, where the
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Figure 1. (a) Most conventional approaches only utilize informa-

tion between pairs of probe and gallery images for P2G affinity es-

timation. (b) Proposed approach with end-to-end group-shuffling

random walk integrates G2G affinities for P2G affinity estimation.

gallery images are ranked according to their affinities (e.g.,

Euclidean distances between image features) to the probe

image. Such probe-to-gallery affinities are called P2G

affinities in this paper.

However, relying only on P2G affinities to rank the

gallery images is not robust enough. For instance, if the

probe image shows a person’s frontal view. When com-

paring with the same person’s back-view image, it is un-

likely to obtain a high affinity score with the probe due to

the large viewing angle difference. However, if there ex-

ists a side-view image of the person, which has high affini-

ties with both the same person’s frontal-view and back-view

images. The frontal-view and back-view images could then

be matched with high confidence. This indicates that the

affinities between gallery images (named G2G affinities) are

valuable for determining the final P2G affinities between the

probe and gallery images.

Incorporating G2G affinities to improve the initial rank-

ing of gallery images is considered as a re-ranking prob-

lem. There were some previous attempts on re-ranking with
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affinities between top-ranked gallery images [44, 10, 14,

36, 37]. Most of these re-ranking approaches utilized the

k-nearest neighbors of the gallery image. They assumed

that if the probe image is contained in the nearest neigh-

bor set of a gallery image, their affinity should be large.

There were also manifold ranking methods [23, 3] for re-

ranking gallery images. The G2G affinities between gallery

images are incorporated to refine the initial P2G affinities

based on the random walk algorithm. However, all above

mentioned methods conduct the re-ranking as a separate

post-processing stage. The affinities between gallery im-

ages are not taken into account for better learning features

in the training phase.

To address the problem, we propose a novel group-

shuffling random walk (GSRW) layer for deep neural net-

works, which integrates the random walk operation in

both training and testing process for generating accurate

probe-to-gallery affinities and discriminative person fea-

tures. Given a probe and a group of gallery images, the neu-

ral network first generates the initial P2G and G2G affinities

between them. The GSRW layer takes the affinities as in-

puts and propagates information among images via the ran-

dom walk operation to generate the refined P2G affinities.

For better training individual feature dimensions, the fea-

ture dimensions are divided into several groups to generate

multiple groups of initial P2G and G2G affinities. By ap-

plying the random walk algorithm with the pairwise com-

binations of the grouped P2G and G2G affinities, the per-

son feature learning is better regularized. Extensive experi-

ments on three public datasets demonstrate the effectiveness

of our proposed approach and the individual components.

The contribution of this paper is threefold. (1) We pro-

pose a novel group-shuffling random walk layer that inte-

grates the P2G and G2G affinities to obtain more accurate

probe-to-gallery affinities. Unlike existing methods that

treat re-ranking as a separate post-process stage, the pro-

posed GSRW layer can be end-to-end trained within deep

neural networks and results in more discriminative feature

representations. (2) We propose to divide feature dimen-

sions into several groups and apply supervision signals sep-

arately to each group. This simple strategy could force each

feature dimension to contribute to capturing discriminative

information for affinity estimation. (3) Based on the group

feature sub-vectors, we propose a group-shuffling operation

that combines multiple pairs of initial P2G and G2G affini-

ties for training. This operation implicitly applies rich su-

pervision signals on both P2G and G2G affinities and better

regularizes the feature learning process.

2. Related Work

Deep learning based person re-identification. In re-

cent years, person re-identification gains increasing atten-

tion from both industry and academia [23, 1, 17, 4, 44]. It

is a challenging computer vision task because of the drastic

variations of human poses, various camera views, and oc-

clusions. With the emergence of deep learning techniques,

state-of-the-art person re-identification methods adopted

Convolutional Neural Networks (CNN) for learning person

features. Li et al. [17] designed a filter pairing neural net-

work to jointly handle misalignment and geometric trans-

formations. Ahmed et al. [1] proposed a Cross-Input Dif-

ference CNN to capture local relationships between the two

input images based on mid-level features from each input

image. Ding et al. [8] exploited triplet samples for train-

ing CNNs to minimize the feature distance between positive

samples and maximize the distance between negative sam-

ples. Xiao et al. [33] proposed a Domain Guided Dropout

technique to mitigate the domain gaps between different

person Re-ID datasets. Chen et al. [7] proposed quadru-

plet loss to train a deep network, which aims to learn fea-

tures with large inter-class variations and smalle intra-class

variations. Zhao et al. [40] and Su et al. [29] integrated hu-

man pose information for tackling the pose variation prob-

lem and improving feature learning capability. Besides deep

learning based person Re-ID methods, a large number of

metric learning based approaches [5, 22, 38, 39] were also

proposed to learn better distance metrics to measure simi-

larities between person images.

Re-ranking for person re-identification. There were

some preliminary attempts on incorporating affinities be-

tween gallery images into the ranking process [21, 32, 36,

37, 44, 3, 23]. Some approaches require human interac-

tion [21, 32], which are not automatic and label-free. Ye

et al. [37] utilized local and global features as additional

probes. The initial ranking is improved by integrating new

ranking of the local and global features. Zhong et al. [44]

exploited k-reciprocal neighbors in person Re-ID. Com-

pared with k-nearest neighbors, the k-reciprocal neighbors

of gallery image are more related to the probe image. Fur-

thermore, to avoid calculating Jaccard Distance between k-

reciprocal neighbors sets of probe and gallery, a feature dis-

tance equivalent to Jaccard Distance was proposed, which

could be computed in parallel on GPUs.

Directly propagating the G2G affinities to P2G affinities

was also proposed to refine P2G affinities. Loy et al. [23]

and Bai et al. [3] adopted random walk operation to ad-

just P2G affinities. Compared with [23], [3] exploited the

training data and their labels to output the revised match-

ing probabilities. However, all the above methods only con-

ducted re-ranking as a separate post-processing stage during

testing, which is not end-to-end trainable and cannot help to

learn better features. In contrast, our proposed framework

integrates the novel group-shuffling random walk operation

into deep neural networks, which benefits feature learning

and significantly improves test accuracy.

Random walk algorithms. Random walk is a well-

known graphical model [2]. It has extensive applicatons in

webpage ranking [24] and image segmentation [6]. Berta-

sius et al. [6] incorporated random walk in deep neural net-

works for image segmentation. An affinity learning branch

is designed to regularize the pixel prediction results based
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Figure 2. Illustration of the proposed approach with group-shuffling random walk operation. Given a probe and a set of gallery images,

their initial P2G and G2G affnities are estimated by a pairwise affinity CNN. With our proposed feature grouping and group-shuffling

random walk, the P2G affinities are refined as the final results.

on inter-pixel affinities. This method considered pixel-to-

pixel relations within a single image, while our proposed

method focuses on using inter-image relations for improv-

ing image affinity ranking. As discussed above, the random

walk algorithm [23], [3] was also used as a post-processing

step for person re-ID but was not end-to-end trained with

deep neural networks.

3. Approach

Given a probe person image and multiple gallery im-

ages, the goal of person re-ID is to estimate accurate affinity

scores between the probe image and gallery images (P2G

affinities), which represent the probabilities that each probe-

gallery image pair belong to the same person. The gallery

images could then be ranked according to the P2G affini-

ties as the final results. As shown in Figure 2, our proposed

approach aims at exploiting the similarities between gallery

images (G2G affinities) to improve the accuracy of the ini-

tial P2G affinities. This is achieved by integrating a novel

group-shuffling random walk layer into an end-to-end train-

able deep neural network for learning discriminative fea-

tures and accurately estimating P2G affinities.

The basis of the random walk algorithm will be reviewed

in Section 3.1. We then present the end-to-end random walk

operation in deep neural networks for person re-ID in Sec-

tion 3.2, and discuss the rich supervisions brought by in-

tegrating the random walk algorithm in Section 3.3. The

feature grouping and group shuffle for further boosting the

feature learning is introduced in Section 3.4.

3.1. Random walk algorithm

The random walk algorithm [2] is well-known for being

the foundation of the PageRank algorithm [24] on webpage

ranking. Let G = (V,E) denote an undirected graph where

V denotes the vertices and E denotes the edges. The ran-

dom walk operation on the graph can be modeled with an

n × n square matrix W , where n is the number of ver-

tices. W (i, j) ∈ [0, 1] can be viewed as the similarity

probability between the i-th and j-th nodes with constraints∑
j W (i, j) = 1 for all j. In the context of person Re-ID,

W (i, j) can be considered as the normalized affinity scores

between the i-th and j-th person gallery images and each

gallery image is a node on the graph.

Given the probe image and n gallery images. Let y(t) be

an n × 1 vector denoting the P2G affinity scores between

the probe image and all gallery images at random walk it-

eration t. With the matrix W storing normalized pairwise

affinities between pairs of gallery images, the random walk

operation can be characterized as y(t+1) = Wy(t), where

y(t+1) denotes the refined P2G affinities at iteration t + 1.

Such operation diffuses the information of G2G affinities

to P2G affinities to refine the P2G affinities. The iteration

can be conducted recursively until the refined P2G affinities

converge.

3.2. Random walk in deep neural networks

In this section, we introduce the integration of the ran-

dom walk operation into deep Convolution Neural Net-

works (CNN) for learning more discriminative features and

for estimating accurate P2G affinities with the assistance of

G2G affinities.

Given a probe image and a set of n gallery images,

the pairwise affinity scores between images could be es-

timated by a state-of-the-art person re-ID Siamese-CNN,

which takes a pair of images as inputs and estimates the

probability that the two images belong to the same person.

We call the affinity scores between the probe and gallery im-

ages by the CNN the initial P2G affinities y(0) ∈ R
n. We

introduce a random walk layer for deep neural networks,

which takes the initial P2G affinities and G2G affinities as

inputs and outputs the refined P2G affinities. Let S ∈ R
n×n

denote the matrix that stores original G2G affinity scores

between the n gallery images. To fulfill the normalization

constraints that
∑

j W (i, j) = 1 for all j, we normalize

each row of the original affinity matrix S with a softmax

function, i.e.,

W (i, j) =
exp(S(i, j))∑
j 6=i exp(S(i, j))

, for all i = 1, · · · , n.

(1)
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Note that all the diagonal entries of W are set to zero, i.e.,

W (i, i) = 0, for avoiding self-reinforcement during ran-

dom walk iterations. Therefore, the diagonal entries are

not involved in the softmax normalization in Eq. (1). The

one iteration of random walk refinement on the initial P2G

affinities can be formulated as

y(1) = Wy(0), (2)

where y(1) is the refined P2G affinities based on the initial

P2G affinities y(0) and normalized G2G affinities W . In-

tuitively, if gallery images i and j are similar, their P2G

affinities to the probe image should also be similar. For the

ith image’s refined affinity score y(1)(i), it is calculated as

y(1)(i) = W (i, 1) · y(0)(1) + · · ·+W (i, n) · y(0)(n).
(3)

From the equation, we can see that if gallery images i and j
are more similar (W (i, j) is large), the P2G affinity of im-

age j, y(0)(j), has a higher weight W (i, j) to be propagated

to the P2G affinity score y(1)(i).
In practice, we would like the refined P2G affinities not

to deviate too far away from the initial P2G affinity estima-

tions. We therefore weightedly combine the random walk

refinements y(1) with the initial P2G affinity y(0) as

y(1) = λWy(0) + (1− λ)y(0), (4)

where λ ∈ [0, 1] is the weighting parameter that balances

the two terms. The random walk operation is generally con-

ducted multiple times until convergence,

y(t+1) = λWy(t) + (1− λ)y(0), (5)

where t represent the tth iteration. Expanding Eq. (5) leads

to

y(t+1) = (λW )t+1y(0) + (1− λ)

t∑

i=0

(λW )iy(0). (6)

As t → ∞, since λ ∈ [0, 1],

lim
t→∞

(λW )t+1y = 0 (7)

For
∑t

i=0(αW )i, the matrix series can be expanded as

lim
t→∞

t∑

i=0

(λW )i = (I − λW )−1. (8)

Eq. (5) could then be formulated as

y(∞) = (1− λ)(I − λW )−1y(0), (9)

where I is the identity matrix. The calculation of Eq. (9)

can be modeled as a neural layer. By combining it with

deep neural networks, it could be trained with the networks

via back-propagation in an end-to-end manner. The super-

visions could be directly applied to the output y(∞), where

each of its element represents the similarity probability of

the probe image matching one of the gallery images.

3.3. Rich supervisions from random walk

Integrating the random walk layer into the deep neural

networks not only helps propagate G2G affinities between

gallery images to refine the P2G affinities, more impor-

tantly, it also provides rich supervisions for training the vi-

sual features of the input images.

Let L(i) denote the prediction loss of predicting the

affinity between the probe features p and the i-th gallery im-

age’s features G(i). Given the single affinity prediction er-

ror L(i), conventional Siamese-CNNs only back-propagate

the prediction errors to the two related images. In contrast,

by introducing the random walk operation into the deep

neural networks, the error L(i) would be back-propagated

to all P2G and G2G affinities, y(0) and W , providing rich

supervisions for learning discriminative visual features.

To show it, we analyze the gradients of the error L(i)
w.r.t. all P2G and G2G affinities. The affinity score y(0)(i)
of p and G(i) is computed as

y(0)(i) = h(p−G(i)), (10)

where h denotes a non-linear function for computing the

affinity score (e.g., Euclidean distance). The gradients of

L(i) w.r.t. y(0) is calculated as

∂L(i)

∂y(0)
=

[
∂L(i)

∂y(∞)(i)
Ŵ (i, 1), · · · , ∂L(i)

∂y(∞)(i)
Ŵ (i, n)

]T
,

(11)

where Ŵ represents (1− λ)(I − λW )−1.

The gradients of L(i) w.r.t all G2G affinities W (i, j) can

be calculated as

∂L(i)

∂W (i, j)
= −tr

(
λ
∂L(i)

∂y(∞)
y(0)T ŴEijŴ

)
, (12)

where Eij denotes an n×n matrix with 1 at entry (i, j) and

0s elsewhere. Both Eqs. (11) and (12) demonstrate that the

error L(i) for a single probe-gallery image pair would back-

propagate to all P2G affinities y(0) and all G2G affinities W ,

and further to visual features of the probe and all gallery

images, p and G(1), · · · , G(n).
In contrast, for conventional Siamese-CNNs which do

not involve the random walk operation. The loss L(i) would

be back-propagated to only the P2G affinity y(0)(i) as

∂L(i)

∂y(0)
=

[
0, . . . ,

∂L(i)
∂y(0)(i)

, . . . , 0
]T

, (13)

and
∂L(i)

∂W (i,j) = 0 for all i, j = 1, · · · , n, providing much

less supervision information for feature learning.

3.4. Group­shuffling random walk

As shown in the previous subsection, with the random

walk layer, even the error of predicting a single probe-

gallery pair’s affinity is shown to provide rich supervisions

to all images. However, the supervisions are in image-level
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and are applied to their whole visual feature vectors. During

training, the training data might overfit the visual neurons

in the neural network. Some neurons (feature dimensions)

might be always inactive. For instance, for person im-

ages whose upper-body regions are more distinct than their

lower-body regions. After training, the neurons for upper-

body are well trained and those for lower-body might be al-

ways inactive because the upper-body features dominate the

loss computation. One possible solution is the dropout tech-

nique [28], which randomly drops the responses of a portion

of neurons at each training iteration. Based on the prop-

erty of the random walk layer, we propose a novel group-

shuffling operation to solve this problem, which is shown to

be complementary to the dropout technique.

We first divide all persons visual features (neurons) into

K different groups along the feature dimension. The vi-

sual features of the probe image p are divided into feature

sub-vectors p1, · · · , pK . Similarly, Gk(i) denotes the kth

feature sub-vector of G(i) and Wk denotes the normalized

affinity matrix of the kth feature group. Instead of directly

predicting the affinity based on the whole feature vectors,

p and G(i), as in Eq. (10), we now require to predict the

affinity scores based on each feature group with much fewer

number of features, i.e.

y
(0)
k (i) =h (pk −Gk(i)) for k = 1, · · · , N. (14)

In this way, the prediction tasks are more challenging and

each feature dimension has a greater chance to contribute

to the affinity prediction. We could apply the random walk

operation to each feature group by substituting y(0) and W

in Eq. (9) with y
(0)
k and Gk.

As shown in Eq. (9), to make accurate predictions on

the final P2G affinity scores y
(∞)
k , it is important that both

y
(0)
k and Wk are accurate. Otherwise the errors would be

back-propagated to update them. Since y
(0)
k and Wk only

represent affinity scores, y
(0)
k and Wk from different feature

groups can be pairwisely combined. For instance, if K = 2,

we create 4 pairs of {y
(0)
1 ,W1}, {y

(0)
1 ,W2}, {y

(0)
2 ,W1},

{y
(0)
2 ,W2} as inputs for the random walk layer to gener-

ate the refined P2G affinities y
(∞)
11 , y

(∞)
12 , y

(∞)
21 , y

(∞)
22 . The

supervisions are independently applied to the refined P2G

affinities of each combined pair. The group-shuffling op-

eration is able to generate rich supervisions for training all

feature groups. For instance, even if only the 2nd feature

group is not well trained, all y
(∞)
12 , y

(∞)
21 , y

(∞)
22 would have

large prediction errors to generate much supervisions for

training the 2nd feature group. The algorithm for group-

shuffling random walk is illustrated in Algorithm 1.

3.5. Overall network structure

The overall deep neural network is illustrated in Figure

2. It consists of a pairwise affinity CNN and the proposed

group-shuffling random walk layer.

Algorithm 1 Group-shuffling random walk

Require: probe features p; features of n gallery images

G(1), · · · , G(n); group number K;

Ensure: Refined P2G affinities y
(∞)
jk for j, k = 1,· · · ,K;

1: Divide p into K groups, p1, · · · , pK ;

2: Divide G into K groups, G1, · · · , GK ;

3: for k = 1 to K do

4: Calculate P2G affinities y
(0)
k with pk and Gk;

5: Calculate G2G affinities Wk with Gk;

6: end for

7: for j = 1 to K do

8: for k = 1 to K do

9: y
(∞)
jk = (1− λ)(I − λWj)

−1y
(0)
k ;

10: end for

11: end for
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Figure 3. Illustration of the pairwise affinity CNN. The result-

ing feature vector is divided into several groups, each of which

is mapped to an affinity score.

The pairwise affinity CNN takes a pair of images as in-

puts and outputs K affinity scores between the two im-

ages for K feature groups. The network structure for the

pairwise affinity CNN is shown in Figure 3. The Siamese

part adopts the ResNet-50 [11] structure until the global

pooling layer. The two 2048-d feature vectors of the two

images are then subtracted and processed by elementwise

square and Batch Normalization [13]. The final feature vec-

tor is divided into K sub-feature vectors, each of which

is mapped to an affinity score by a fully-connected (FC)

layer and a sigmoid function. Note that dividing the fea-

tures in the last layer is equivalent to dividing the output

features from the average pooling layer. Given a probe im-

age and n gallery images, the pairwise affinity CNN esti-

mates initial P2G affinities y
(0)
k ∈ R

n and G2G affinities

Wk ∈ R
n×n for k = 1, · · · ,K. The group-shuffling ran-

dom walk layer takes the initial P2G and G2G affinities as

inputs and output K2 groups of refined P2G affinities y
(∞)
jk

for j, k = 1, · · · ,K. The supervisions are applied to the

refined P2G affinities with cross-entropy loss functions.

4. Experiments

To validate the effectiveness of our proposed approach

on person Re-ID, we conduct experiments and ablation

studies on three public datasets.
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4.1. Datasets and metric

Datasets. 1) Market-1501 [42] consists of 12,936 im-

ages for training and 19,732 images for testing. There

are 1,501 different persons in this dataset, which are cap-

tured from a real city market. The person images are

cropped from original images by the DPM detector [9].

2) CUHK03 [17] contains 14,097 images of 1,467 per-

sons captured by two cameras on a campus. The person

images are manually cropped from the scene images. 3)

DukeMTMC-ReID [26] is also collected from a campus.

Manually drawn bounding boxes are used to crop person

images from the surveillance images. we follow the setup

in [43] to divide DukeMTMC-ReID dataset into train and

test splits, which contain 16,522 images of 702 persons for

training and 18,363 images of other 702 persons for testing.

Evaluation metrics. Mean average precision (mAP) and

CMC top-1, top-5, top-10 accuracies are adopted as evalu-

ation metrics. For each dataset, different mAP, and CMC

computation methods are used following their original setup

to calculate the final performance.

4.2. Implementation details

The pairwise affinity CNN in our network adopts the

ResNet-50 [11] network structure and is pretrained on the

ImageNet dataset. All the input person images are resized

to 256 × 128. For data augmentation, random horizontal

flipping and random erasing [45] are adopted. We empiri-

cally set group number K = 4 and λ = 0.95 for our final

model. The network is trained in an end-to-end manner with

Stochastic Gradient Descent (SGD). For each mini-batch,

we randomly sample training images according to their per-

son identities. There are 64 persons’ images in each batch

and each person has 4 images, resulting in a batch size

of 256. Among the images of each identity, we randomly

choose 1 image as the probe and the remaining 3 images

are used as gallery images. Note that the 192 gallery im-

ages are shared by all probe images. The initial learning

rate is set to 10−4 and decreases to 10−5 after 50 epochs.

The training generally converges after another 50 epochs.

In testing, given a probe image, we first utilize the trained

pairwise affinity CNN to identify the top-75 gallery images.

The group-shuffling random walk operation is then utilized

to refine the P2G affinities with their G2G affinities. The

K = 4 groups of refined P2G affinities are averaged as the

final results. When random walk is not allowed in testing

(e.g., for evaluating the learned person features), we directly

use P2G affinities estimated by the pairwise affinity CNN

for person image ranking.

4.3. Ablation study

In this section, we investigate the effectiveness of each

component in our proposed group-shuffling random walk

by conducting a series of experiments on the Market-1501,

CUHK03, and DukeMTMC datasets.

Baseline model and comparison with triplet loss [12].

We utilize the pairwise affinity CNN in our framework with

the group number K = 1 as our baseline model. To fully

utilize all available information in each mini-batch of size

256, unlike our final model that uses only 256 ground-truth

P2G affinity scores as training supervisions, 64 × 192 P2G

pairs and all 1922 G2G pairs are used for training. The

P2G-to-G2G ratio is therefore 1:3. We compare the baseline

with verification loss to the same ResNet-50 structure with

the improved triplet loss [12] (denoted by baseline+triplet).

Results in Table 2 show our baseline outperforms the state-

of-the-art triplet loss by 13.7% in terms of mAP with the

same ResNet-50 structure.

Feature grouping versus/plus dropout. We investi-

gate the influence of feature grouping on Market-1501 and

CUHK03 datasets, and compare/combine it with the fea-

ture dropout techqniue [28] (see Table 2). We first test

only applying dropout to the features of the last FC layer

in the baseline (denoted by baseline+dropout). Note that

we set different dropout ratios to the two datasets, i.e., 0.5

for Market-1501 and 0.3 for CUHK03, to achieve the op-

timal performance. As shown by the results, the dropout

leads to marginal improvements. We then test dividing

the 2048-d feature vector into K = 4 feature groups and

applying the P2G affinity supervisions to each of them

(denoted by baseline+group). It results in better perfor-

mance than baseline+dropout. We further combine the

proposed feature grouping with dropout (denoted by base-

line+group+dropout). The results show further improve-

ments over baseline+group and demonstrate that the feature

grouping is complementary with feature dropout.

Comparison with re-ranking as post-processing. We

then compare our approach with k-reciprocal re-ranking

[44] that treats the re-ranking as a separate post-processing

step. For fair comparison, we implement k-reciprocal re-

ranking with the features learned by our baseline model.

The initial affinities are calculated as pairwise feature dis-

tances. The performance outperforms the original results in

the paper but is inferior to our proposed approach with end-

to-end random walk without feature grouping and group-

shuffling (denoted by baseline+RW). To validate the effec-

tiveness of end-to-end random walk for training, we apply

a separate random walk operation as post-processing to the

affinity scores from our baseline (denoted by baseline+RW

w/o train). The performance outperforms k-reciprocal re-

ranking but is still inferior to our end-to-end approach,

which demonstrates the importance of training the deep

neural network with end-to-end random walk operation.

Feature group number K. We then investigate the in-

fluence of different feature group numbers K. As shown by

in Table 1, utilizing 4 feature groups generally outperforms

those without feature groups by ∼1% in terms of mAP.

Random walk with feature grouping. When incorpo-

rating the random walk operation with no group-shuffling

into the network (rows 4-6 in Table 1), the mAP on Market-

1501, CUHK03, DukeMTMC datasets increase by 2.9%,

1.3%, and 2.7%. Grouping to 4 feature sub-vectors im-
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Components Market-1501 [42] CUHK03 [17] DukeMTMC [26]

#groups RW shuffle mAP top-1 top-5 top-10 mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

1 × × 76.4 91.2 97.1 98.2 88.9 91.1 97.6 98.7 61.8 78.8 88.5 91.0

2 × × 77.5 91.1 97.1 98.2 90.0 92.2 98.2 98.9 62.6 79.2 88.7 91.0

4 × × 77.7 91.1 96.9 97.9 91.6 93.0 98.8 99.3 62.7 78.9 88.7 91.2

1
√ × 81.4 91.4 96.8 98.2 91.5 92.4 97.4 98.8 65.2 79.2 88.8 91.1

2
√ × 81.4 91.5 97.0 98.0 91.4 92.3 97.0 98.5 65.2 79.0 88.4 91.1

4
√ × 81.6 91.5 97.2 98.3 92.9 93.8 97.3 98.2 65.4 79.7 88.9 91.4

2
√ √

82.0 91.8 96.9 98.0 93.1 93.9 98.2 99.0 65.4 78.6 88.1 90.8

4
√ √

82.5 92.7 96.9 98.1 94.0 94.9 98.7 99.3 66.4 80.7 88.5 90.8

Table 1. Ablation studies on the Market-1501 [42], CUHK03 [17] and DukeMTMC [26] datasets with different numbers of feature groups,

end-to-end random walk (RW), and group-shuffle.

Model
Market-1501 CUHK03

mAP top-1 mAP top-1

baseline 76.4 91.2 88.9 91.1

baseline+triplet [12] 68.3 84.5 - -

baseline+dropout 77.6 91.3 89.1 91.2

baseline+group 77.7 91.1 91.6 93.0

baseline+group+dropout 78.1 91.3 91.3 93.3

baseline+k-reciprocal [44] 78.5 91.5 89.9 92.2

baseline+RW w/o train 79.2 91.5 90.2 92.3

baseline+random walk 81.4 91.4 91.5 92.4

Table 2. Results of using the improved triplet loss [12], dropout

[28] and proposed feature grouping on the Market-1501 [42] and

CUHK03 [17] datasets

Components Market-1501 [42]

#groups RW shuffle mAP top-1 top-5 top-10

1 × × 74.6 90.4 96.9 98.1

2 × × 74.7 90.0 96.6 98.1

4 × × 75.9 90.5 96.9 98.3

1
√ × 75.6 90.8 97.0 98.2

2
√ × 76.3 91.2 97.1 98.2

4
√ × 76.7 91.4 96.9 98.2

2
√ √

77.0 91.3 97.1 98.2

4
√ √

76.9 91.3 97.3 98.4

Table 3. Results of estimating P2G affinities as feature distances

by our trained ResNet-50 on the Market-1501 [42] dataset.

Components DukeMTMC [26]

#groups RW shuffle mAP top-1 top-5 top-10

1 × × 60.3 77.6 87.6 90.1

2 × × 60.4 77.2 87.3 90.2

4 × × 61.5 77.7 87.5 90.4

1
√ × 60.8 77.8 87.6 90.4

2
√ × 61.0 77.8 87.7 90.3

4
√ × 61.7 77.9 87.6 90.5

2
√ √

61.2 77.7 88.0 90.8

4
√ √

62.1 78.1 87.8 90.3

Table 4. Results of estimating P2G affinities as feature distances

by our trained ResNet-50 on the DukeMTMC [26] dataset.

prove the mAP on CUHK03 by 1.4% but shows marginal

improvements on Market-1501 and DukeMTMC datasets.

Group-shuffling random walk. For validating the ef-

fectiveness of group-shuffling, we conduct random walk

Methods Reference
Market-1501 [42]

mAP top-1 top-5 top-10

OIM Loss [34] CVPR 2017 60.9 82.1 - -

CADL [20] CVPR 2017 47.1 73.8 - -

P2S [47] CVPR 2017 44.3 70.7 - -

MSCAN [15] CVPR 2017 53.1 76.3 - -

SSM [3] CVPR 2017 68.8 82.2 - -

DCA [16] CVPR 2017 57.5 80.3 - -

SpindleNet [40] CVPR 2017 - 76.9 91.5 94.6

k-reciprocal [44] CVPR 2017 63.6 77.1 - -

VI+LSRO [43] ICCV 2017 66.1 84.0 - -

OL-MANS [46] ICCV 2017 - 60.7 - -

PDC [29] ICCV 2017 63.4 84.1 92.7 94.9

PA [41] ICCV 2017 63.4 81.0 92.0 94.7

SVDNet [30] ICCV 2017 62.1 82.3 92.3 95.2

JLML [18] IJCAI 2017 65.5 85.1 - -

Proposed 82.5 92.7 96.9 98.1

Table 5. mAP, top-1, top-5, and top-10 accuracies of compared

methods on the Market-1501 dataset [42].

with group-shuffling as described in Section 3.4. Note that

K = 2 and 4 results in 4 and 16 groups of refined P2G

affinities for applying supervisions. Comparing results in

rows 5-6 and rows 7-8 of Table 1 shows the group-shuffling

operation with K = 4 generally brings ∼1% improvements

in terms of mAP on the three datasets.

Better features with group-shuffling random walk.

Our approach does not only improve the final accuracy

on person re-ID, but also learns better person features via

the proposed group-shuffling random walk. To show this,

we directly utilize the trained ResNet-50 from our network

to extract visual features of the test images. Image pair-

wise affinities are estimated as the Euclidean distances be-

tween them. The results on Market-1501 and DukeMTMC

datasets are recorded in Tables 3-4, which show that all our

proposed operations, i.e., feature grouping, end-to-end ran-

dom walk, and group shuffling, contribute to learning better

visual features. Incorporating the proposed operations in

the testing phase could further boost the final accuracy (Ta-

bles 1 vs. 3-4).

4.4. Comparison with state­of­the­art methods

Results on Market-1501 dataset. Table 5 shows the

results of our proposed group-shuffling random walk ap-
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Methods Reference
CUHK03 [17]

mAP top-1 top-5 top-10

OIM Loss [34] CVPR 2017 72.5 77.5 - -

MSCAN [15] CVPR 2017 - 74.2 94.3 97.5

DCA [16] CVPR 2017 - 74.2 94.3 97.5

SSM [3] CVPR 2017 - 76.6 94.6 98.0

SpindleNet [40] CVPR 2017 - 88.5 97.8 98.6

k-reciprocal [44] CVPR 2017 67.6 61.6 - -

Quadruplet [7] CVPR 2017 - 75.5 95.2 99.2

OL-MANS [46] ICCV 2017 - 61.7 88.4 95.2

PA [41] ICCV 2017 - 85.4 97.6 99.4

SVDNet [30] ICCV 2017 84.8 81.8 95.2 97.2

VI+LSRO [43] ICCV 2017 87.4 84.6 97.6 98.9

PDC [29] ICCV 2017 - 88.7 98.6 99.6

MuDeep [25] ICCV 2017 - 76.3 96.0 98.4

JLML [18] IJCAI 2017 - 83.2 98.0 99.4

Proposed 94.0 94.9 98.7 99.3

Table 6. mAP, top-1, top-5, and top-10 accuracies by compared

methods on the CUHK03 dataset [17].

Methods Reference
DukeMTMC [26]

mAP top-1 top-5 top-10

BoW+KISSME [42] ICCV 2015 12.2 25.1 - -

LOMO+XQDA [19] CVPR 2015 17.0 30.8 - -

OIM Loss [35] CVPR 2015 47.4 68.1 - -

ACRN [27] CVPR 2017 52.0 72.6 84.8 88.9

OIM Loss [34] CVPR 2017 47.4 68.1 - -

Basel+LSRO [43] ICCV 2017 47.1 67.7 - -

SVDNet [30] ICCV 2017 56.8 76.7 86.4 89.9

Proposed 66.4 80.7 88.5 90.8

Table 7. mAP, top-1, top-5, and top-10 accuracies by compared

methods on the DukeMTMC dataset [26].

proach and state-of-the-art methods on the Market-1501

dataset. Our approach outperforms all compared meth-

ods in terms of meanAP, top-1, top-5, and top-10 accura-

cies, which demonstrate the effectiveness of the proposed

method on this dataset.

Consistent-aware deep learning [20] (CADL) aims to ob-

tain the maximal correct matches for the whole camera net-

work. It regularizes the matching results of a probe image to

be similar across different cameras. Compared with CADL,

our approach improves by 35.4% and 18.9% in terms of

meanAP and top-1 accuracy. Supervised Smoothed Mani-

fold (SSM) [3] utilized random walk operation as a post-

processing stage during testing, which estimates the similar-

ity value between two instances in the context of other pairs

of instances. Our approach outperforms SSM by 13.7%

and 20.5% in terms of meanAP and top-1 accuracy. k-

reciprocal encoding rerank (k-reciprocal) [44] encoded each

probe image’s k-reciprocal nearest neighbors into a single

vector, which is utilized for re-ranking under the Jaccard

distance. Our approach outperforms k-reciprocal by 18.9%

and 15.4% in terms of meanAP and top-1 accuracy. Un-

like existing methods that learn a single global metric for

all probes. Online local metric adaptation (OL-MANS) ex-

ploits negative samples to learn a dedicated local metric for

each online probe. Our proposed method outperforms OL-

MANS by 32.0% in terms of top-1 accuracy.

Results on CUHK03 dataset. The Re-ID results on

CUHK03 dataset is shown in Table 6. The meanAP and top-

1 accuracy of our framework are 94.0% and 94.9%, which

outperform those by state-of-the-art methods. For top-10

accuracy, PDC [29] yields slightly better performance than

ours. However, PDC needs human pose information for

better aligning visual features, which is not utilized in our

framework. SpindleNet [40] and PA [41] also utilize sim-

ilar human pose information. The gain on top-1 accuracy

by our method is 19.4% compared to Quadruplet loss [7],

which aims to enforce the minimum inter-class distance be-

ing greater than the maximum intra-class distance in sam-

pled quadruplets. MuDeep [25] utilized a GoogLeNet-

like [31] structure to learn discriminative features with dif-

ferent spatial scales and locations of person images. Our

method improves the top-1 accuracy by 18.6% compared

with MuDeep. Verif-Identif.+LSRO (VI+LSRO) [43] uti-

lizes additional training data generated by GAN, while our

method does not utilize any additional training data but still

outperforms it.

Results on DukeMTMC dataset. In Table 7, we show

the results of our framework and those by state-of-the-art

ones on the DukeMTMC dataset. Our method outperforms

all the compared frameworks. Compared with the state-

of-the-art SVDNet [30]. The gains on meanAP and top-1

accuracy by our proposed framework are 9.6% and 14.0%

respectively.

5. Conclusion

In this paper, we proposed a novel group-shuffling ran-

dom walk operation for fully utilizing the affinities between

gallery images (G2G affinities) to refine the affinities be-

tween probe and gallery images (P2G affinities). Compared

with the previous re-ranking methods, our approach inte-

grates random walk operation into the training process of

deep neural networks. Furthermore, by grouping and shuf-

fling the features, discriminative person features could be

learned with rich supervisions. The overall performance of

our approach outperforms baseline methods and state-of-

the-art approaches by large margins, which demonstrates

the effectiveness of our proposed approach.
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