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Abstract

An analysis of different techniques for recognizing and

detecting objects under extreme scale variation is pre-

sented. Scale specific and scale invariant design of de-

tectors are compared by training them with different con-

figurations of input data. By evaluating the performance

of different network architectures for classifying small ob-

jects on ImageNet, we show that CNNs are not robust to

changes in scale. Based on this analysis, we propose to

train and test detectors on the same scales of an image-

pyramid. Since small and large objects are difficult to rec-

ognize at smaller and larger scales respectively, we present

a novel training scheme called Scale Normalization for Im-

age Pyramids (SNIP) which selectively back-propagates the

gradients of object instances of different sizes as a function

of the image scale. On the COCO dataset, our single model

performance is 45.7% and an ensemble of 3 networks ob-

tains an mAP of 48.3%. We use off-the-shelf ImageNet-1000

pre-trained models and only train with bounding box su-

pervision. Our submission won the Best Student Entry in

the COCO 2017 challenge. Code will be made available at

http://bit.ly/2yXVg4c.

1. Introduction

Deep learning has fundamentally changed how comput-

ers perform image classification and object detection. In

less than five years, since AlexNet [20] was proposed, the

top-5 error on ImageNet classification [9] has dropped from

15% to 2% [16]. This is super-human level performance for

image classification with 1000 classes. On the other hand,

the mAP of the best performing detector [18] (which is only

trained to detect 80 classes) on COCO [25] is only 62%

– even at 50% overlap. Why is object detection so much

harder than image classification?

Large scale variation across object instances, and espe-

cially, the challenge of detecting very small objects stands

out as one of the factors behind the difference in perfor-

mance. Interestingly, the median scale of object instances

relative to the image in ImageNet (classification) vs COCO

Figure 1. Fraction of RoIs in the dataset vs scale of RoIs relative

to the image.

(detection) are 0.554 and 0.106 respectively. Therefore,

most object instances in COCO are smaller than 1% of im-

age area! To make matters worse, the scale of the small-

est and largest 10% of object instances in COCO is 0.024

and 0.472 respectively (resulting in scale variations of al-

most 20 times!); see Fig. 1. This variation in scale which

a detector needs to handle is enormous and presents an ex-

treme challenge to the scale invariance properties of con-

volutional neural networks. Moreover, differences in the

scale of object instances between classification and detec-

tion datasets also results in a large domain-shift while fine-

tuning from a pre-trained classification network. In this pa-

per, we first provide evidence of these problems and then

propose a training scheme called Scale Normalization for

Image Pyramids which leads to a state-of-the-art object de-

tector on COCO.

To alleviate the problems arising from scale variation

and small object instances, multiple solutions have been

proposed. For example, features from the layers near

to the input, referred to as shallow(er) layers, are com-

bined with deeper layers for detecting small object in-

stances [23, 34, 1, 13, 27], dilated/deformable convolution

is used to increase receptive fields for detecting large objects

[32, 7, 37, 8], independent predictions at layers of different

resolutions are used to capture object instances of different

scales [36, 3, 22], context is employed for disambiguation

[38, 39, 10], training is performed over a range of scales

[7, 8, 15] or, inference is performed on multiple scales of
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an image pyramid and predictions are combined using non-

maximum suppression [7, 8, 2, 33].

While these architectural innovations have significantly

helped to improve object detection, many important issues

related to training remain unaddressed:

• Is it critical to upsample images for obtaining good

performance for object detection? Even though the

typical size of images in detection datasets is 480x640,

why is it a common practice to up-sample them to

800x1200? Can we pre-train CNNs with smaller

strides on low resolution images from ImageNet and

then fine-tune them on detection datasets for detecting

small object instances?

• When fine-tuning an object detector from a pre-trained

image classification model, should the resolution of the

training object instances be restricted to a tight range

(from 64x64 to 256x256) after appropriately re-scaling

the input images, or should all object resolutions (from

16x16 to 800x1000, in the case of COCO) participate

in training after up-sampling input images?

We design controlled experiments on ImageNet and

COCO to seek answers to these questions. In Section 3,

we study the effect of scale variation by examining the per-

formance of existing networks for ImageNet classification

when images of different scales are provided as input. We

also make minor modifications to the CNN architecture for

classifying images of different scales. These experiments

reveal the importance of up-sampling for small object de-

tection. To analyze the effect of scale variation on object

detection, we train and compare the performance of scale-

specific and scale invariant detector designs in Section 5.

For scale-specific detectors, variation in scale is handled by

training separate detectors - one for each scale range. More-

over, training the detector on similar scale object instances

as the pre-trained classification networks helps to reduce

the domain shift for the pre-trained classification network.

But, scale-specific designs also reduce the number of train-

ing samples per scale, which degrades performance. On the

other hand, training a single object detector with all train-

ing samples makes the learning task significantly harder be-

cause the network needs to learn filters for detecting object

instances over a wide range of scales.

Based on these observations, in Section 6 we present a

novel training paradigm, which we refer to as Scale Nor-

malization for Image Pyramids (SNIP), that benefits from

reducing scale-variation during training but without paying

the penalty of reduced training samples. Scale-invariance

is achieved using an image-pyramid (instead of a scale-

invariant detector), which contains normalized input rep-

resentations of object instances in one of the scales in the

image-pyramid. To minimize the domain shift for the clas-

sification network during training, we only back-propagate

gradients for RoIs/anchors that have a resolution close to

that of the pre-trained CNN. Since we train on each scale

in the pyramid with the above constraint, SNIP effectively

utilizes all the object instances available during training.

The proposed approach is generic and can be plugged into

the training pipeline of different problems like instance-

segmentation, pose-estimation, spatio-temporal action de-

tection - wherever the “objects” of interest manifest large

scale variations.

Contrary to the popular belief that deep neural networks

can learn to cope with large variations in scale given enough

training data, we show that SNIP offers significant im-

provements (3.5%) over traditional object detection training

paradigms. Our ensemble with a Deformable-RFCN back-

bone obtains an mAP of 69.7% at 50% overlap, which is an

improvement of 7.4% over the state-of-the-art on the COCO

dataset.

2. Related Work

Scale space theory [35, 26] advocates learning represen-

tations that are invariant to scale and the theory has been

applied to many problems in the history of computer vision

[4, 30, 28, 21, 14, 5, 23]. For problems like object detection,

pose-estimation, instance segmentation etc., learning scale

invariant representations is critical for recognizing and lo-

calizing objects. To detect objects at multiple scales, many

solutions have been proposed.

The deeper layers of modern CNNs have large strides

(32 pixels) that lead to a very coarse representation of the

input image, which makes small object detection very chal-

lenging. To address this problem, modern object detectors

[32, 7, 5] employ dilated/atrous convolutions to increase the

resolution of the feature map. Dilated/deformable convolu-

tions also preserve the weights and receptive fields of the

pre-trained network and do not suffer from degraded per-

formance on large objects. Up-sampling the image by a

factor of 1.5 to 2 times during training and up to 4 times

during inference is also a common practice to increase the

final feature map resolution [8, 7, 15]. Since feature maps of

layers closer to the input are of higher resolution and often

contain complementary information (wrt. conv5), these fea-

tures are either combined with shallower layers (like conv4,

conv3) [23, 31, 1, 31] or independent predictions are made

at layers of different resolutions [36, 27, 3]. Methods like

SDP [36], SSH [29] or MS-CNN [3], which make indepen-

dent predictions at different layers, also ensure that smaller

objects are trained on higher resolution layers (like conv3)

while larger objects are trained on lower resolution layers

(like conv5). This approach offers better resolution at the

cost of high-level semantic features which can hurt perfor-

mance.

Methods like FPN, Mask-RCNN, RetinaNet [23, 13, 24],

which use a pyramidal representation and combine features
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Figure 2. The same layer convolutional features at different scales

of the image are different and map to different semantic regions in

the image at different scales.

of shallow layers with deeper layers at least have access to

higher level semantic information. However, if the size of

an object was 25x25 pixels then even an up-sampling factor

of 2 during training,will scale the object to only 50x50 pix-

els. Note that typically the network is pre-trained on images

of resolution 224x224. Therefore, the high level seman-

tic features (at conv5) generated even by feature pyramid

networks will not be useful for classifying small objects (a

similar argument can be made for large objects in high reso-

lution images). Hence, combining them with features from

shallow layers would not be good for detecting small ob-

jects, see Fig. 2. Although feature pyramids efficiently ex-

ploit features from all the layers in the network, they are not

an attractive alternative to an image pyramid for detecting

very small/large objects.

Recently, a pyramidal approach was proposed for de-

tecting faces [17] where the gradients of all objects were

back-propagated after max-pooling the responses from each

scale. Different filters were used in the classification layers

for faces at different scales. This approach has limitations

for object detection because training data per class in object

detection is limited and the variations in appearance, pose

etc. are much larger compared to face detection. We ob-

serve that adding scale specific filters in R-FCN for each

class hurts performance for object detection. In [33], an im-

age pyramid was generated and maxout [12] was used to se-

lect features from a pair of scales closer to the resolution of

the pre-trained dataset during inference. A similar inference

procedure was also proposed in SPPNet and Fast-RCNN

[14, 11]: however, standard multi-scale training (described

in Section 5) was used. We explore the design space for

training scale invariant object detectors and propose to se-

lectively back-propagate gradients for samples close to the

resolution of the pre-trained network.

Figure 3. Both CNN-B and CNN-B-FT are provided an upsampled

low resolution image as input. CNN-S is provided a low resolu-

tion image as input. CNN-B is trained on high resolution images.

CNN-S is trained on low resolution images. CNN-B-FT is pre-

trained on high resolution images and fine-tuned on upsampled

low-resolution images. ResNet-101 architecture is used.

3. Image Classification at Multiple Scales

In this section we study the effect of domain shift, which

is introduced when different resolutions of images are pro-

vided as input during training and testing. We perform

this analysis because state-of-the-art detectors are typically

trained at a resolution of 800x1200 pixels 1, but inference

is performed on an image pyramid, including higher reso-

lutions like 1400x2000 for detecting small objects [8, 7, 2].

Naı̈ve Multi-Scale Inference: Firstly, we obtain im-

ages at different resolutions, 48x48, 64x64, 80x80, 96x96

and 128x128, by down-sampling the original ImageNet

database. These are then up-sampled to 224x224 and pro-

vided as input to a CNN architecture trained on 224x224

size images, referred to as CNN-B (see Fig. 3). Fig. 4

(a) shows the top-1 accuracy of CNN-B with a ResNet-

101 backbone. We observe that as the difference in resolu-

tion between training and testing images increases, so does

the drop in performance. Hence, testing on resolutions on

which the network was not trained is clearly sub-optimal, at

least for image classification.

Resolution Specific Classifiers: Based on the above ob-

servation, a simple solution for improving the performance

of detectors on smaller objects is to pre-train classification

networks with a different stride on ImageNet. After-all, net-

work architectures which obtain best performance on CI-

FAR10 [19] (which contains small objects) are different

from ImageNet. The first convolution layer in ImageNet

classification networks has a stride of 2 followed by a max

pooling layer of stride 2x2, which can potentially wipe out

most of the image signal present in a small object. There-

fore, we train ResNet-101 with a stride of 1 and 3x3 con-

volutions in the first layer for 48x48 images (CNN-S, see

1original image resolution is typically 480x640
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Figure 4. All figures report accuracy on the validation set of the ImageNet classification dataset. We upsample images of resolution 48,64,80

etc. and plot the Top-1 accuracy of the pre-trained ResNet-101 classifier in figure (a). Figure (b,c) show results for different CNNs when

the original image resolution is 48,96 pixels respectively.

Fig. 3), a typical architecture used for CIFAR. Similarly, for

96x96 size images, we use a kernel of size 5x5 and stride of

2. Standard data augmentation techniques such as random

cropping, color augmentation, disabling color augmentation

after 70 epochs are used to train these networks. As seen

in Fig. 4, these networks (CNN-S) perform significantly

better than CNN-B. Therefore, it is tempting to pre-train

classification networks with different architectures for low

resolution images and use them for object detection for low

resolution objects.

Fine-tuning High-Resolution Classifiers: Yet another

simple solution for small object detection would be to fine-

tune CNN-B on up-sampled low resolution images to yield

CNN-B-FT ( Fig. 3). The performance of CNN-B-FT on

up-sampled low-resolution images is better than CNN-S,

Fig. 4. This result empirically demonstrates that the filters

learned on high-resolution images can be useful for recog-

nizing low-resolution images as well. Therefore, instead of

reducing the stride by 2, it is better to up-sample images 2

times and then fine-tune the network pre-trained on high-

resolution images.

While training object detectors, we can either use differ-

ent network architectures for classifying objects of different

resolutions or use the a single architecture for all resolu-

tions. Since pre-training on ImageNet (or other larger clas-

sification datasets) is beneficial and filters learned on larger

object instances help to classify smaller object instances,

upsampling images and using the network pre-trained on

high resolution images should be better than a specialized

network for classifying small objects. Fortunately, existing

object detectors up-sample images for detecting smaller ob-

jects instead of using a different architecture. Our analysis

supports this practice and compares it with other alterna-

tives to emphasize the difference.

4. Background

In the next section, we discuss a few baselines for de-

tecting small objects. We briefly describe the Deformable-

RFCN [8] detector which will be used in the following

analysis. D-RFCN obtains the best single model results on

COCO and is publicly available, so we use this detector.

Deformable-RFCN is based on the R-FCN detector [7].

It adds deformable convolutions in the conv5 layers to adap-

tively change the receptive field of the network for creat-

ing scale invariant representations for objects of different

scales. At each convolutional feature map, a lightweight

network predicts offsets on the 2D grid, which are spatial

locations at which spatial sub-filters of the convolution ker-

nel are applied. The second change is in Position Sensitive

RoI Pooling. Instead of pooling from a fixed set of bins on

the convolutional feature map (for an RoI), a network pre-

dicts offsets for each position sensitive filter (depending on

the feature map) on which Position Sensitive RoI (PSRoI)-

Pooling is performed.

For our experiments, proposals are extracted at a sin-

gle resolution (after upsampling) of 800x1200 using a pub-

licly available Deformable-RFCN detector. It has a ResNet-

101 backbone and is trained at a resolution of 800x1200.

5 anchor scales are used in RPN for generating proposals

[2]. For classifying these proposals, we use Deformable-

RFCN with a ResNet-50 backbone without the Deformable

Position Sensitive RoIPooling. We use Position Sensitive

RoIPooling with bilinear interpolation as it reduces the

number of filters by a factor of 3 in the last layer. NMS

with a threshold of 0.3 is used. Not performing end-to-end

training along with RPN, using ResNet-50 and eliminating

deformable PSRoI filters reduces training time by a factor

of 3 and also saves GPU memory.

5. Data Variation or Correct Scale?

The study in section 3 confirms that differences in reso-

lutions between the training and testing phase leads to a sig-

nificant drop in performance. Unfortunately, this difference

in resolution is part of the current object detection pipeline -

due to GPU memory constraints, training is performed on a

lower resolution (800x1200) than testing (1400x2000) (note

that original resolution is typically 640x480). This section

analyses the effect of image resolution, the scale of object

instances and variation in data on the performance of an ob-

ject detector. We train detectors under different settings and
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Figure 5. Different approaches for providing input for training the classifier of a proposal based detector.

evaluate them on 1400x2000 images for detecting small ob-

jects (less than 32x32 pixels in the COCO dataset) only to

tease apart the factors that affect the performance. The re-

sults are reported in Table 1.

Training at different resolutions: We start by training

detectors that use all the object instances on two different

resolutions, 800x1400 and 1400x2000, referred to as 800all
and 1400all, respectively, Fig 5.1. As expected, 1400all out-

performed 800all, because the former is trained and tested

on the same resolution i.e. 1400x2000. However, the im-

provement is only marginal. Why? To answer this question

we consider what happens to the medium-to-large object

instances while training at such a large resolution. They be-

come too big to be correctly classified! Therefore, training

at higher resolutions scales up small objects for better clas-

sification, but blows up the medium-to-large objects which

degrades performance.

Scale specific detectors: We trained another detector

(1400<80px) at a resolution of 1400x2000 while ignoring

all the medium-to-large objects (> 80 pixels, in the origi-

nal image) to eliminate the deleterious-effects of extremely

large objects, Fig 5.2. Unfortunately, it performed signif-

icantly worse than even 800all. What happened? We lost

a significant source of variation in appearance and pose by

ignoring medium-to-large objects (about 30% of the total

object instances) that hurt performance more than it helped

by eliminating extreme scale objects.

Multi-Scale Training (MST): Lastly, we evaluated the

common practice of obtaining scale-invariant detectors by

using randomly sampled images at multiple resolutions dur-

ing training, referred to as MST 2 , Fig 5.3. It ensures train-

ing instances are observed at many different resolutions, but

it also degraded by extremely small and large objects. It per-

formed similar to 800all. We conclude that it is important

to train a detector with appropriately scaled objects while

capturing as much variation across the objects as possible.

In the next section we describe our proposed solution that

achieves exactly this and show that it outperforms current

2MST also uses a resolution of 480x800

1400<80px 800all 1400all MST SNIP

16.4 19.6 19.9 19.5 21.4

Table 1. mAP on Small Objects (smaller than 32x32 pixels) under

different training protocols. MST denotes multi-scale training as

shown in Fig. 5.3. R-FCN detector with ResNet-50 (see Section

4).

training pipelines.

6. Object Detection on an Image Pyramid

Our goal is to combine the best of both approaches i.e.

train with maximal variations in appearance and pose while

restricting scale to a reasonable range. We achieve this by a

novel construct that we refer to as Scale Normalization for

Image Pyramids (SNIP). We also discuss details of training

object detectors on an image pyramid within the memory

limits of current GPUs.

6.1. Scale Normalization for Image Pyramids

SNIP is a modified version of MST where only the ob-

ject instances that have a resolution close to the pre-training

dataset, which is typically 224x224, are used for training

the detector. In multi-scale training (MST), each image is

observed at different resolutions therefore, at a high resolu-

tion (like 1400x2000) large objects are hard to classify and

at a low resolution (like 480x800) small objects are hard to

classify. Fortunately, each object instance appears at sev-

eral different scales and some of those appearances fall in

the desired scale range. In order to eliminate extreme scale

objects, either too large or too small, training is only per-

formed on objects that fall in the desired scale range and

the remainder are simply ignored during back-propagation.

Effectively, SNIP uses all the object instances during train-

ing, which helps capture all the variations in appearance and

pose, while reducing the domain-shift in the scale-space for

the pre-trained network. The result of evaluating the detec-

tor trained using SNIP is reported in Table 1 - it outperforms

all the other approaches. This experiment demonstrates the
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Figure 6. SNIP training and inference is shown. Invalid RoIs which fall outside the specified range at each scale are shown in purple. These

are discarded during training and inference. Each batch during training consists of images sampled from a particular scale. Invalid GT

boxes are used to invalidate anchors in RPN. Detections from each scale are rescaled and combined using NMS.

effectiveness of SNIP for detecting small objects. Below we

discuss the implementation of SNIP in detail.

For training the classifier, all ground truth boxes are used

to assign labels to proposals. We do not select proposals

and ground truth boxes which are outside a specified size

range at a particular resolution during training. At a partic-

ular resolution i, if the area of an RoI ar(r) falls within a

range [sci , e
c
i ], it is marked as valid, else it is invalid. Sim-

ilarly, RPN training also uses all ground truth boxes to as-

sign labels to anchors. Finally, those anchors which have

an overlap greater than 0.3 with an invalid ground truth box

are excluded during training (i.e. their gradients are set to

zero). During inference, we generate proposals using RPN

for each resolution and classify them independently at each

resolution as shown in Fig 6. Similar to training, we do

not select detections (not proposals) which fall outside a

specified range at each resolution. After classification and

bounding-box regression, we use soft-NMS [2] to combine

detections from multiple resolutions to obtain the final de-

tection boxes, refer to Fig. 6.

The resolution of the RoIs after pooling matches the pre-

trained network, so it is easier for the network to learn dur-

ing fine-tuning. For methods like R-FCN which divide RoIs

into sub-parts and use position sensitive filters, this becomes

even more important. For example, if the size of an RoI is

48 pixels (3 pixels in the conv5 feature map) and there are

7 filters along each axis, the positional correspondence be-

tween features and filters would be lost.

6.2. Sampling Sub­Images

Training on high resolution images with deep networks

like ResNet-101 or DPN-92 [6] requires more GPU mem-

ory. Therefore, we crop images so that they fit in GPU

memory. Our aim is to generate the minimum number of

chips (sub-images) of size 1000x1000 which cover all the

small objects in the image. This helps in accelerating train-

ing as no computation is needed where there are no small

objects. For this, we generate 50 randomly positioned chips

of size 1000x1000 per image. The chip which covers the

maximum number of objects is selected and added to our

set of training images. Until all objects in the image are

covered, we repeat the sampling and selection process on

the remaining objects. Since chips are randomly gener-

ated and proposal boxes often have a side on the image

boundary, for speeding up the sampling process we snap the

chips to image boundaries. We found that, on average, 1.7

chips of size 1000x1000 are generated for images of size

1400x2000. This sampling step is not needed when the im-

age resolution is 800x1200 or 480x640 or when an image

does not contain small objects. Random cropping is not the

reason why we observe an improvement in performance for

our detector. To verify this, we trained ResNet-50 (as it re-

quires less memory) using un-cropped high-resolution im-

ages (1400x2000) and did not observe any change in mAP.

7. Datasets and Evaluation

We evaluate our method on the COCO dataset. COCO

contains 123,000 images for training and evaluation is per-

formed on 20,288 images in test-dev. Since recall for pro-

posals is not provided by the evaluation server on COCO,

we train on 118,000 images and report recall on the re-

maining 5,000 images (commonly referred to as minival

set). Unless specifically mentioned, the area of small ob-

jects is less than 32x32, medium objects range from 32x32

to 96x96 and large objects are greater than 96x96.
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Method AP APS APM APL

Single scale 34.5 16.3 37.2 47.6

MS Test 35.9 19.5 37.3 48.5

MS Train/Test 35.6 19.5 37.5 47.3

SNIP 37.8 21.4 40.4 50.1

Table 2. MS denotes multi-scale. Single scale is (800,1200). R-

FCN detector with ResNet-50 (as described in Section 4).

7.1. Training Details

We train Deformable-RFCN [8] as our detector with 3

resolutions, (480, 800), (800, 1200) and (1400,2000), where

the first value is for the shorter side of the image and the

second one is the limit on the maximum size of a side.

Training is performed for 7 epochs for the classifier while

RPN is trained for 6 epochs. Although it is possible to com-

bine RPN and RCN using alternating training which leads

to slight improvement in accuracy [23], we train separate

models for RPN and RCN and evaluate their performance

independently. This is because it is faster to experiment

with different classification architectures after proposals are

extracted. We use a warmup learning rate of 0.0005 for

1000 iterations after which it is increased to 0.005. Step

down is performed at 4.33 epochs for RPN and 5.33 epochs

otherwise. For our baselines which did not involve SNIP,

we also evaluated their performance after 8 or 9 epochs but

observed that results after 7 epochs were best. For the clas-

sifier (RCN), on images of resolution (1400,2000), the valid

range in the original image (without up/down sampling) is

[0, 80], at a resolution of (800,1200) it is [40, 160] and at

a resolution of (480,800) it is [120, ∞]. We have an over-

lap of 40 pixels over adjacent ranges. These ranges were

design decisions made during training, based on the consid-

eration that after re-scaling, the resolution of the valid RoIs

does not significantly differ from the resolution on which

the backbone CNN was trained. Since in RPN even a one

pixel feature map can generate a proposal we use a validity

range of [0,160] at (800,1200) for valid ground truths for

RPN. For inference, the validity range for each resolution

in RCN is obtained using the minival set. Training RPN is

fast so we enable SNIP after the first epoch. SNIP doubles

the training time per epoch, so we enable it after 3 epochs

for training RCN.

7.2. Improving RPN

In detectors like Faster-RCNN/R-FCN, Deformable R-

FCN, RPN is used for generating region proposals. RPN

assigns an anchor as positive only if overlap with a ground

truth bounding box is greater than 0.7 3. We found that

when using RPN at conv4 with 15 anchors (5 scales - 32,

3If there does not exist a matching anchor, RPN assigns the anchor with

the maximum overlap with ground truth bounding box as positive.

Method AR AR50 AR75 0-25 25-50 50-100

Baseline 57.6 88.7 67.9 67.5 90.1 95.6

+ Improved 61.3 89.2 69.8 68.1 91.0 96.7

+ SNIP 64.0 92.1 74.7 74.4 95.1 98.0

DPN-92 65.7 92.8 76.3 76.7 95.7 98.2

Table 3. For individual ranges (like 0-25 etc.) recall at 50% overlap

is reported because minor localization errors can be fixed in the

second stage. First three rows use ResNet-50 as the backbone.

Recall is for 900 proposals, as top 300 are taken from each scale.

64, 128, 256, 512, stride 16, 3 aspect ratios), only 30% of

the ground truth boxes match this criterion when the im-

age resolution is 800x1200 in COCO. Even if this thresh-

old is changed to 0.5, only 58% of the ground truth boxes

have an anchor which matches this criterion. Therefore, for

more than 40% of the ground truth boxes, an anchor which

has an overlap less than 0.5 is assigned as a positive (or ig-

nored). Since we sample the image at multiple resolutions

and back-propagate gradients at the relevant resolution only,

this problem is alleviated to some extent. We also concate-

nate the output of conv4 and conv5 to capture diverse fea-

tures and use 7 anchor scales. A more careful combination

of features with predictions at multiple layers like [23, 13]

should provide a further boost in performance.

7.3. Experiments

First, we evaluate the performance of SNIP on classifica-

tion (RCN) under the same settings as described in Section

4. In Table 2, performance of the single scale model, multi-

scale testing, and multi-scale training followed by multi-

scale testing is shown. We use the best possible validity

ranges at each resolution for each of these methods when

multi-scale testing is performed. Multi-scale testing im-

proves performance by 1.4%. Performance of the detec-

tor deteriorates for large objects when we add multi-scale

training. This is because at extreme resolutions the recep-

tive field of the network is not sufficient to classify them.

SNIP improves performance by 1.9% compared to standard

multi-scale testing. Note that we only use single scale pro-

posals common across all three scales during classification

for this experiment.

For RPN, a baseline with the ResNet-50 network was

trained on the conv4 feature map. Top 300 proposals are se-

lected from each scale and all these 900 proposals are used

for computing recall. Average recall (averaged over multi-

ple overlap thresholds, just like mAP) is better for our im-

proved RPN, as seen in Table 3. This is because for large

objects (> 100 pixels), average recall improves by 10% (not

shown in table) for the improved baseline. Although the

improved version improves average recall, it does not have

much effect at 50% overlap. Recall at 50% is most impor-

tant for object proposals because bounding box regression
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Method Backbone AP AP50 AP75 APS APM APL

D-RFCN [8, 2] ResNet-101 38.4 60.1 41.6 18.5 41.6 52.5

Mask-RCNN [13] ResNext-101 (seg) 39.8 62.3 43.4 22.1 43.2 51.2

D-RFCN [8, 2] ResNet-101 (6 scales) 40.9 62.8 45.0 23.3 43.6 53.3

G-RMI [18] Ensemble 41.6 62.3 45.6 24.0 43.9 55.2

D-RFCN DPN-98 41.2 63.5 45.9 25.7 43.9 52.8

D-RFCN + SNIP (RCN) DPN-98 44.2 65.6 49.7 27.4 47.8 55.8

D-RFCN + SNIP (RCN+RPN) DPN-98 44.7 66.6 50.2 28.5 47.8 55.9

Faster-RCNN + SNIP (RPN) ResNet-101 43.1 65.3 48.1 26.1 45.9 55.2

Faster-RCNN + SNIP (RPN+RCN) ResNet-101 44.4 66.2 49.9 27.3 47.4 56.9

ResNet-101 (ResNet-101 proposals ) 43.4 65.5 48.4 27.2 46.5 54.9

D-RFCN + SNIP DPN-98 (with flip) 45.7 67.3 51.1 29.3 48.8 57.1

Ensemble 48.3 69.7 53.7 31.4 51.6 60.7

Table 4. Comparison with state-of-the-art detectors. (seg) denotes that segmentation masks were also used. We train on train+val and

evaluate on test-dev. Unless mentioned, we use 3 scales and DPN-92 proposals. Ablation for SNIP in RPN and RCN is shown.

can correct minor localization errors, but if an object is not

covered at all by proposals, it will clearly lead to a miss.

Recall for objects greater than 100 pixels at 50% overlap is

already close to 100%, so improving average recall for large

objects is not that valuable for a detector. Note that SNIP

improves recall at 50% overlap by 2.9% compared to our

improved baseline. For objects smaller than 25 pixels, the

improvement in recall is 6.3%. Using a stronger classifica-

tion network like DPN-92 also improves recall. In last two

rows of Table 4, we perform an ablation study with our best

model, which uses a DPN-98 classifier and DPN-92 pro-

posals. If we train our improved RPN without SNIP, mAP

drops by 1.1% on small objects and 0.5% overall. Note that

AP of large objects is not affected as we still use the classi-

fication model trained with SNIP.

Finally, we compare with state-of-the-art detectors in Ta-

ble 4. For these experiments, we use the deformable posi-

tion sensitive filters and Soft-NMS. Compared to the single

scale deformable R-FCN baseline shown in the first line of

Table 4, multi-scale training and inference improves overall

results by 5% and for small objects by 8.7%! This shows

the importance of an image pyramid for object detection.

Compared to the best single model method (which uses 6

instead of 3 scales and is also trained end-to-end) based on

ResNet-101, we improve performance by 2.5% overall and

3.9% for small objects. We observe that using better back-

bone architectures further improves the performance of the

detector. When SNIP is not used for both the proposals and

the classifier, mAP drops by 3.5% for the DPN-98 classi-

fier, as shown in the last row. For the ensemble, DPN-92

proposals are used for all the networks (including ResNet-

101). Since proposals are shared across all networks, we

average the scores and box-predictions for each RoI. Dur-

ing flipping we average the detection scores and bounding

box predictions. Finally, Soft-NMS is used to obtain the

final detections. Iterative bounding-box regression is not

used. All pre-trained models are trained on ImageNet-1000

and COCO segmentation masks are not used. Faster-RCNN

was not used in the ensemble. On 100 images, it takes 90

seconds for to perform detection on a Titan X GPU using

a ResNet-101 backbone. Speed can be improved with end-

to-end training (we perform inference for RPN and RCN

separately).

We also conducted experiments with the Faster-RCNN

detector with deformable convolutions. Since the detector

does not have position-sensitive filters, it is more robust to

scale and performs better for large objects. Training it with

SNIP still improves performance by 1.3%. Note that we

can get an mAP of 44.4% with a single head faster-RCNN

without using any feature-pyramid!

8. Conclusion

We presented an analysis of different techniques for rec-

ognizing and detecting objects under extreme scale varia-

tion, which exposed shortcomings of the current object de-

tection training pipeline. Based on the analysis, a train-

ing scheme (SNIP) was proposed to tackle the wide scale

spectrum of object instances which participate in training

and to reduce the domain-shift for the pre-trained classifi-

cation network. Experimental results on the COCO dataset

demonstrated the importance of scale and image-pyramids

in object detection. Since we do not need to back-propagate

gradients for large objects in high-resolution images, it is

possible to reduce the computation performed in a signif-

icant portion of the image. We would like to explore this

direction in future work.
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