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Abstract

We propose a modular approach towards large-scale

real-time object detection by decoupling objectness detec-

tion and classification. We exploit the fact that many object

classes are visually similar and share parts. Thus, a univer-

sal objectness detector can be learned for class-agnostic

object detection followed by fine-grained classification us-

ing a (non)linear classifier. Our approach is a modifica-

tion of the R-FCN architecture to learn shared filters for

performing localization across different object classes. We

trained a detector for 3000 object classes, called R-FCN-

3000, that obtains an mAP of 34.9% on the ImageNet detec-

tion dataset. It outperforms YOLO-9000 by 18% while pro-

cessing 30 images per second. We also show that the object-

ness learned by R-FCN-3000 generalizes to novel classes

and the performance increases with the number of training

object classes - supporting the hypothesis that it is possible

to learn a universal objectness detector. Code will be made

available.

1. Introduction

With the advent of Deep CNNs [16, 20], object-detection

has witnessed a quantum leap in the performance on bench-

mark datasets. It is due to the powerful feature learning ca-

pabilities of deep CNN architectures. Within the last five

years, the mAP scores on PASCAL [9] and COCO [24]

have improved from 33% to 88% and 37% to 73% (at 50%

overlap), respectively. While there have been massive im-

provements on standard benchmarks with tens of classes

[13, 12, 31, 6, 14], little progress has been made towards

real-life object detection that requires real-time detection of

thousands of classes. Some recent efforts [30, 17] in this

direction have led to large-scale detection systems, but at

the cost of accuracy. We propose a solution to the large-

scale object detection problem that outperforms YOLO-

9000 [30] by 18% and can process 30 images per second

*Equal Contribution. Work done during H. Li’s internship at UMD.

Figure 1. We propose to decouple classification and localization

by independently predicting objectness and classification scores.

These scores are multiplied to obtain a detector.

while detecting 3000 classes, referred to as R-FCN-3000.

R-FCN-3000 is a result of systematic modifications to

some of the recent object-detection architectures [6, 5,

23, 25, 29] to afford real-time large-scale object detec-

tion. Recently proposed fully convolutional class of detec-

tors [6, 5, 23, 25, 29] compute per-class objectness score

for a given image. They have shown impressive accu-

racy within limited computational budgets. Although fully-

convolutional representations provide an efficient [19] solu-

tion for tasks like object detection [6], instance segmenta-

tion [22], tracking [10], relationship detection [41] etc., they

require class-specific sets of filters for each class that pro-

hibits their application for large number of classes. For ex-

ample, R-FCN [5]/ Deformable-R-FCN [6] requires 49/197

position-specific filters for each class. Retina-Net [23] re-

quires 9 filters for each class for each convolutional feature

map. Therefore, such architectures would need hundreds of

thousands of filters for detecting 3000 classes, which will

make them extremely slow for practical purposes.

The key insight behind the proposed R-FCN-3000 ar-

chitecture is to decouple objectness detection and classi-

fication of the detected object so that the computational re-

11081



quirements for localization remain constant as the number

of classes increases - see Fig. 1. We leverage the fact that

many object categories are visually similar and share parts.

For example - different breeds of dogs all have common

body parts; therefore, learning a different set of filters for

detecting each breed is overkill. So, R-FCN-3000 performs

object detection (with position-sensitive filters) for a fixed

number of super-classes followed by fine-grained classifi-

cation (without position-sensitive filters) within each super-

class. The super-classes are obtained by clustering the deep

semantic features of images (2048 dimensional features of

ResNet-101 in this case); therefore, we do not require a se-

mantic hierarchy. The fine-grained class probability at a

given location is obtained by multiplying the super-class

probability with the classification probability of the fine-

grained category within the super-class.

In order to study the effect of using super-classes instead

of individual object categories, we varied the number of

super-classes from 1 to 100 and evaluated the performance

on the ImageNet detection dataset. Surprisingly, the detec-

tor performs well even with one super-class! This observa-

tion indicates that position-sensitive filters can potentially

learn to detect universal objectness. It also reaffirms a well-

researched concept from the past [1, 2, 39] that objectness is

a generic concept and a universal objectness detector can be

learned. Indeed, the very first application of deep-learning

for object detection [13] used Selective-Search [39] to ob-

tain class-agnostic object proposals and classified them us-

ing a deep CNN - fine-tuned AlexNet in this case. R-FCN-

3000 exploits the powerful hierarchical representation ca-

pacity of deep CNNs to significantly improve universal ob-

jectness prediction. Thus, for performing object detection,

it suffices to multiply the objectness score of an RoI with

the classifiation probability for a given class. This results

in a fast detector for thousands of classes, as per-class posi-

tion sensitive filters are no longer needed. On the PASCAL-

VOC dataset, with only our objectness based detector, we

observe a 1.5% drop in mAP compared to the deformable R-

FCN [6] detector with class-specific filters for all 20 object

classes. R-FCN-3000, trained for 3000 classes, obtains an

18% improvement in mAP over the current state-of-the-art

large scale object detector (YOLO-9000) on the ImageNet

detection dataset. Finally, we also evaluate the generaliz-

ability of our objectness detector on unseen classes (a zero-

shot setting for localization) and observe that the general-

ization error decreases as we train the objectness detector

on larger numbers of classes.

2. Related Work

Large scale localization using deep convolutional net-

works was first performed in [33, 35] which used regres-

sion for predicting the location of bounding boxes. Later,

RPN [31] was used for localization in ImageNet classifica-

tion [15]. However, no evaluations were performed to de-

termine if these networks generalize when applied on detec-

tion datasets without specifically training on them. Weakly-

supervised detection has been a major focus over the past

few years for solving large-scale object detection. In [17],

knowledge of detectors trained with bounding boxes was

transferred to classes for which no bounding boxes are

available. The assumption is that it is possible to train object

detectors on a fixed number of classes. For a class for which

supervision is not available, transformations are learned to

adapt the classifier to a detector. Multiple-instance learning

based approaches have also been proposed which can lever-

age weakly supervised data for adapting classifiers to detec-

tors [18]. Recently, YOLO-9000 [30] jointly trains on clas-

sification and detection data. When it sees a classification

image, classification loss is back-propagated on the bound-

ing box which has the highest probability. It assumes that

the predicted box is the ground truth box and uses the dif-

ference between other anchors and the predicted box as the

objectness loss. YOLO-9000 is fast, as it uses a lightweight

network and uses 3 filters per class for performing localiza-

tion. For performing good localization, just 3 priors are not

sufficient.

For classifying and localizing a large number of classes,

some methods leverage the fact that parts can be shared

across objects categories [27, 32, 37, 28]. Sharing filters

for object parts reduces model complexity and also reduces

the amount of training data required for learning part-based

filters. Even in traditional methods, it has been shown that

when filters are shared, they are more generic [37]. How-

ever, current detectors like Deformable-R-FCN [6], R-FCN

[5], RetinaNet [23] do not share filters (in the final classi-

fication layer) across object categories: because of this, in-

ference is slow when they are applied on thousands of cate-

gories. Taking motivation from prior work on sharing filters

across object categories, we propose an architecture where

filters can be shared across some object categories for large

scale object detection.

The extreme version of sharing parts is objectness, where

we assume that all objects have something in common.

Early in this decade (if not before), it was proposed that ob-

jectness is a generic concept and it was demonstrated that

only a very few category agnostic proposals were sufficient

to obtain high recall [39, 3, 2, 1]. With a bag-of-words

feature-representation [21] for these proposals, better per-

formance was shown compared to a sliding-window based

part-based-model [11] for object detection. R-CNN [13]

used the same proposals for object detection but also ap-

plied per-class bounding-box regression to refine the loca-

tion of these proposals. Subsequently, it was observed that

per-class regression was not necessary and a class-agnostic

regression step is sufficient to refine the proposal position

[5]. Therefore, if the regression step is class agnostic, and
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it is possible to obtain a reasonable objectness score, a sim-

ple classification layer should be sufficient to perform de-

tection. We can simply multiply the objectness probabil-

ity with the classification probability to make a detector!

Therefore, in the extreme case, we set the number of super-

classes to one and show that we can train a detector which

obtains an mAP which is very close to state-of-the-art ob-

ject detection architectures [5].

3. Background

This section provides a brief introduction of Deformable

R-FCN [6] which is used in R-FCN-3000. In R-FCN [5],

Atrous convolution [4] is used in the conv5 layer to increase

the resolution of the feature map while still utilizing the

pre-trained weights from the ImageNet classification net-

work. In Deformable-R-FCN [6], the atrous convolution is

replaced by a deformable convolution structure in which a

separate branch predicts offsets for each pixel in the fea-

ture map, and the convolution kernel is applied after the

offsets have been applied to the feature-map. A region pro-

posal network (RPN) is used for generating object propos-

als, which is a two layer CNN on top of the conv4 features.

Efficiently implemented local convolutions, referred to as

position sensitive filters, are used to classify these propos-

als.

4. Large Scale Fully-Convolutional Detector

This section describes the process of training a large-

scale object detector. We first explain the training data re-

quirements followed by discussions of some of the chal-

lenges involved in training such a system - design deci-

sions for making training and inference efficient, appropri-

ate loss functions for a large number of classes, mitigating

the domain-shift which arises when training on classifica-

tion data.

4.1. Weakly Supervised vs. Supervised?

Obtaining an annotated dataset of thousands of classes is

a major challenge for large scale detection. Ideally, a sys-

tem that can learn to detect object instances using partial im-

age level tags (class labels) for the objects present in train-

ing images would be preferable because large-scale training

data is readily available on the internet in this format. Since

the setting with partial annotations is very challenging, it is

commonly assumed that labels are available for all the ob-

jects present in the image. This is referred to as the weakly

supervised setting. Unfortunately, explicit boundaries of

objects or atleast bounding-boxes are required as supervi-

sion signal for training accurate object detectors. This is the

supervised setting. The performance gap between super-

vised and weakly supervised detectors is large - even 2015

object detectors [15] were better by 40% on the PASCAL

VOC 2007 dataset compared to recent weakly supervised

detectors [8]. This gap is a direct result of insufficient learn-

ing signal coming from weak supervision and can be further

explained with the help of an example. For classifying a dog

among 1000 categories, only body texture or facial features

of a dog may be sufficient and the network need not learn

the visual properties of its tail or legs for correct classifica-

tion. Therefore, it may never learn that legs or tail are parts

of the dog category, which are essential to obtain accurate

boundaries.

On one hand, the huge cost of annotating bounding boxes

for thousands of classes under settings similar to popular

detection datasets such as PASCAL or COCO makes it pro-

hibitively expensive to collect and annotate a large-scale de-

tection dataset. On the other hand, the poor performance of

weakly supervised detectors impedes their deployment in

real-life applications. Therefore, we ask - is there a middle

ground that can alleviate the cost of annotation while yield-

ing accurate detectors? Fortunately, the ImageNet database

contains around 1-2 objects per image; therefore, the cost

of annotating the bounding boxes for the objects is only a

few seconds compared to several minutes in COCO [24]. It

is because of this reason that the bounding boxes were also

collected while annotating ImageNet! A potential downside

of using ImageNet for training object detectors is the loss

of variation in scale and context around objects available in

detection datasets, but we do have access to the bounding-

boxes of the objects. Therefore, a natural question to ask

is, how would an object detector perform on “detection”

datasets if it were trained on classification datasets with

bounding-box supervision? We show that careful design

choices with respect to the CNN architecture, loss function

and training protocol can yield a large-scale detector trained

on the ImageNet classification set with significantly better

accuracy compared to weakly supervised detectors.

4.2. Super­class Discovery

Fully convolutional object detectors learn class-specific

filters based on scale & aspect-ratio [23] or in the form of

position sensitive filters [5, 6] for each class. Therefore,

when the number of classes become large, it becomes com-

putationally in-feasible to apply these detectors. Hence, we

ask is it necessary to have sets of filters for each class or

can they be shared across visually similar classes? In the

extreme case - can detection be performed using just a fore-

ground/background detector and a classification network?

To obtain visually similar sets of objects for which position-

sensitive filters can be shared, objects should have similar

visual appearances. We obtain the jth object-class repre-

sentation, xj , by taking the average of 2048-dimensional

feature-vectors (xi
j), from the final layer of ResNet-101,

for the all the samples belonging to the jth object-class in

the ImageNet classification dataset (validation set). Super-
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Figure 2. R-FCN-3000 first generates region proposals which are provided as input to a super-class detection branch (like R-FCN) which

jointly predicts the detection scores for each super-class (sc). A class-agnostic bounding-box regression step refines the position of each

RoI (not shown). To obtain the semantic class, we do not use position-sensitive filters but predict per class scores in a fully convolutional

fashion. Finally, we average pool the per-class scores inside the RoI to get the classification probability. The classification probability is

multiplied with the super-class detection probability for detecting 3000 classes. When K is 1, the super-class detector predicts objectness.

classes are then obtained by applying K-means clustering

on {xj : j ∈ {1, 2, . . . C}}, where C is the number of

object-classes, to obtain K super-class clusters.

4.3. Architecture

First, RPN is used for generating proposals, as in [6].

Let the set of individual object-classes the detector is be-

ing trained on be C, |C| = C, and the set of super-classes

(SC) be K, |K| = K. For each super-class k, suppose we

have P × P position-sensitive filters, as shown in Fig 2.

On the conv5 feature, we first apply two independent con-

volution layers as in R-FCN for obtaining detection scores

and bounding-box regression offsets. On each of these

branches, after a non-linearity function, we apply position

sensitive filters for classification and bounding-box regres-

sion. Since we have K super-classes and P × P filters per

super-class, there are (K+1)×P×P filters in the classifica-

tion branch (1 more for background) and P×P×4 filters in

the bounding-box regression branch as this branch is class-

agnostic. After performing position-sensitive RoI pooling

and averaging the predictions in each bin, we obtain pre-

dictions of the network for classification and localization.

To get the super-class probability, softmax function over K

super-classes is used and predictions from the localization

branch are directly added to get the final position of the de-

tection. These two branches help detect the super-classes

which are represented by each cluster k. For obtaining fine-

grained class information, we employ a two layer CNN on

the conv5 feature map, as shown in Fig . 2. A softmax func-

tion is used on the output of this layer for obtaining the fi-

nal class probability. The detection and classification prob-

abilities are multiplied to obtain the final detection score

for each object-class. This architecture is shown in Fig. 2.

Even though there are other challenges such as entailment,

cover, equivalence etc. [26, 7] which are not correctly mod-

elled with the softmax function, the Top-1 accuracy even

on the ImageNet-5000 classification dataset is greater than

67% [40]. So, we believe these are not the bottlenecks for

detecting a few thousand classes.

4.4. Label Assignment

Labels are assigned exactly the same way as fast-RCNN

[12] for the K super-classes on which detection is per-

formed. Let C be the total number of object-classes and let

ki and cj denote the ith super-class and jth sub-class in ki,

then ki = {c1, c2, ..., cj} and
∑K

i=1
|ki| = C. For detecting

super-class ki, an RoI is assigned as positive for super-class

ki if it has an intersection over union (IoU) greater than 0.5

with any of the ground truth boxes in ki, otherwise it is

marked as background (label for background class K + 1
is set to one). For the classification branch (to get the final

3000 classes), only positive RoIs are used for training, i.e.

only those which have an IoU greater than 0.5 with a ground

truth bounding box. The number of labels for classification

is C instead of K + 1 in detection.

4.5. Loss Function

For training the detector, we use online hard example

mining (OHEM) [34] as done in [6] and smooth L1 loss for

bounding box localization [12]. For fine-grained classifi-

cation we only use a softmax loss function over C object-

classes for classifying the positive bounding boxes. Since

the number of positive RoIs are typically small compared

to the number of proposals, the loss from this branch is

weighted by a factor of 0.05, so that these gradients do not

dominate network training. This is important as we train

RPN layers, R-FCN classification and localization layers,

and fine-grained layers together in a multi-task fashion, so
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Dataset (ImageNet) Images Object Instances

Detection 400,000 764,910

CLS 194 87,577 100,724

CLS 500 121,450 141,801

CLS 1000 191,463 223,222

CLS 2000 403,398 462,795

CLS 3000 925,327 1,061,647

Table 1. The number of images and object instances in the Ima-

geNet Detection and different versions of our ImageNet classifica-

tion (CLS) training set.

balancing the loss from each branch is important.

5. Experiments

In this section, we describe the implementation details

of the proposed large-scale object detector and compare

against some of the weakly supervised large-scale object

detectors in terms of speed and accuracy.

5.1. Training Data

We train on the ImageNet classification dataset which

contains bounding boxes for 3,130 classes. Each class con-

tains at least 100 images in the training set. In the complete

dataset, there are 1.2 million images. The detection test set

(ILSVRC 2014) of ImageNet contains 194 classes out of the

3,130 classes present in the classification set. Therefore, we

present our results on the 194 classes in our experiments (6

classes did not have bounding boxes in the ImageNet classi-

fication dataset which were present in the ImageNet detec-

tion test set). We also perform experiments on the PASCAL

VOC 2007+2012 object detection dataset. We evaluate our

models on the VOC 2007 test set.

5.2. Implementation Details

For fast training and inference, we train on images of

resolution (375x500), where the smaller side is at least 375

pixels and the larger side is a maximum of 500 pixels. Three

anchor scales of (64,128,256) pixels are used. At each an-

chor scale, there are 3 aspect ratios of (1:2), (1:1) and (2:1)

for the anchor boxes, hence there are a total of 9 anchors

in RPN. We train for 7 epochs. A warm-up learning rate

of 0.00002 is used for first 1000 iterations and then it is in-

creased to 0.0002. The learning rate is dropped by a factor

of 10 after 5.33 epochs. Training is performed on 2 Nvidia

P6000 GPUs. When increasing the number of classes be-

yond 194, we first select classes with the least number of

samples (each class still has at least 100 samples) from the

classification set. This is done for accelerating our ablation

experiments on 500, 1000 and 2000 classes. Statistics of the

detection set and classification set with different numbers

of classes are shown in Table 1. For our analysis, we first

train a region proposal network on 3,130 classes separately

Method LSDA [17] SKT [36] KDT [39] Ours

mAP 18.1 20.0 34.3 43.3

Table 2. Comparison of our decoupled R-FCN trained on classifi-

cation data with bounding-box supervision vs. weakly-supervised

methods that use a knowledge transfer approach to exploit infor-

mation from detectors pre-trained on 100 classes on the ImageNet

detection set.

and extract proposals on the training and test set. Then,

deformable R-FCN is trained like fast-RCNN with differ-

ent numbers of clusters and classes. Multi-scale inference

is performed at two scales, (375,500) and (750,1000) and

predictions of the two scales are combined using NMS. In

all our experiments, a ResNet-50 backbone network is used.

On the PASCAL VOC dataset we train under the same set-

tings as [6].

5.3. Comparison with Weakly Supervised Detectors

First, to calibrate our results with existing methods and to

highlight the improvement by training on classification data

with bounding-box supervision, we compare our method

with knowledge transfer based weakly supervised methods.

Methods like LSDA [17] and Semantic Knowledge Transfer

(SKT) [36] assume that detectors for 100 classes (trained

on the ImageNet detection dataset) are available and use

semantic similarity between weakly supervised classes and

strongly supervised classes to leverage information learned

from pre-trained detectors. They evaluate on the remain-

ing 100 classes in the ImageNet detection set. Contempo-

rary work [38] (KDT) also employs a knowledge transfer

based approach, albeit with a modern Inception-ResNet-v2

based Faster-RCNN detector. Since these methods leverage

classification data and also detection data for other classes,

these can be considered as a very loose upper-bound on

what a true weakly-supervised detector, which does not

have any access to bounding boxes, would achieve. Our

single scale ResNet-50 based model trained on 194 classes

obtains an mAP of 40.5% 1 and after multi-scale testing (2

scales), we obtain an mAP of 43.3%.

We also provide some statistics on the number of im-

ages and object instances in the ImageNet detection and

ImageNet classification set in Table 1. Weakly supervised

methods like LSDA [17], SKT [36], KDT [39] use detec-

tors trained on 400,000 instances present in 200,000 images

from the detection dataset. This acts as a prior which is used

as a basis for adapting the classification network.

5.4. Speed and Performance

In Table 3, we present the speed accuracy trade-off when

increasing the number of clusters for the 1000 class detec-

12 classes did not have bounding box annotations in the ImageNet clas-

sification training set, so results are on 98 out of 100 classes
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Figure 3. The mAP on the 194 classes in the ImageNet detection set is shown as we vary the number of clusters (super-classes). This is

shown for 194 class and 1000 class detectors. We also plot the mAP for different number of classes for an objectness based detector.

Clusters 1 5 25 100 1000

mAP 36 36.7 37.1 37.3 -

Time(ms) 33 33 34 51 231

Table 3. The mAP scores for different number of clusters for the

1000 class detector and run-time(in milli-seconds)/image.

Clusters 20 50 100 200 1000

mAP 35.6 35.6 35.6 35.7 36.0

Time(ms) 1 1.5 1.8 2.6 10.1

Table 4. The mAP for different number of super-classes in NMS

for the 1000 class objectness based detector and the NMS run-time

(in milli-seconds).

tor. The 100 class clustering based detector is 66% slower

than the objectness based detector. It was infeasible to train

the original detector with 1000 classes, so we only present

the run time for this detector. All the speed results are on a

P6000 GPU. We also present results when we use different

numbers of clusters during NMS. In this process, NMS is

performed for a group of visually similar classes together,

instead of each class separately. We use the same clustering

based grouping of classes. The clusters used during NMS

can be different from those which are used when grouping

classes for R-FCN as this is only done for accelerating the

post-processing step. We present the runtime for NMS (on

GPU) for different numbers of clusters in Table 4. Note

that 10 ms is 33% of the runtime of our detector, and this

is only for 1000 classes. Therefore, performing NMS on

visually similar classes is a simple way to speed up infer-

ence without taking a significant hit in average precision.

As mentioned in the title, our 3000 class detector can be ap-

plied to more than 30 images per second (on a resolution of

375x500 pixels, minimum side 375, maximum side 500) on

an Nvidia P6000 GPU.

6. Discussion

In order to better understand the behaviour of the pro-

posed object detection system, we evaluate it while varying

the number of clusters and classes under different training

and testing dataset conditions. Lastly, we also conduct ex-

periments with unseen classes during training to assess the

generalizability capacity of the proposed detector beyond

the training classes.

6.1. Impact of Number of Classes and Clusters

We present results as we increase the number of classes

on the ImageNet detection test set which contains 194

classes in Fig. 3 (c). In this experiment, we only use one

cluster, hence the position sensitive RoI filters only predict

objectness and perform bounding-box regression. The drop

in performance typically reduces as we increase the number

of classes. For example, there is a drop of 2% as the num-

ber of classes is increased from 200 to 500, but from 1000

to 2000, the performance drop is only 0.3%. Even with

3,000 classes, we obtain an mAP of 34.9% which is 15%

better than YOLO-9000 which obtains an mAP of 19.9%.

Performance of YOLO-9000 drops to 16% when it is evalu-

ated on classes which are not part of the detection set (these

are majority of the classes which it detects). Therefore, we

perform better by 19% on classes which are not part of the

detection set compared to YOLO-9000. Although we de-

tect 3,000 instead of 9,000 classes, our performance is more

than 2 times better than YOLO-9000. Qualitative results for

the R-FCN-3000 detector are also shown in Fig. 5 on some

images from COCO.

To assess the effect of the number of super-classes on

performance, we varied the number of super-classes and re-

port the results. All results use a single-scale inference. Fig.

3 (a) reports mAP for training/testing on 194 classes from

the ImageNet detection dataset and Fig. 3 (b) reports mAP

for the same 194 classes while training with 1,000 object

classes. The drop in performance is merely 1.7% for a de-

tector with only one super-class as compared to 100 super-

classes for 194 class training. More interestingly, as the

number of training classes are increased to 1,000, the drop

is only 1.3%, which is counter-intuitive because one would

expect that using more super-classes would be helpful as

we increase the number of object classes. In light of these

observations, we can conclude that more crucial to R-FCN

is learning an objectness measure instead of class-specific

objectness.
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Figure 4. The objectness, classification and final detection scores against various transformations such as combinations of scaling and trans-

lation are shown. These scores are generated by forward propagating an ideal bounding-box RoI (in green) and a transformed bounding-box

RoI (in red) through the R-FCN (objectness) and classification branch of the network. The selectiveness of the detector in terms of object-

ness is clearly visible against the various transformations that lead to poor detection.

6.2. Are Position­Sensitive Filters Per Class Neces­
sary?

To further verify our claim that detection can be mod-

elled as a product of objectness and classification proba-

bility, we conduct more experiments on the PASCAL VOC

dataset. We train a deformable R-FCN detector, as the base-

line, with a ResNet-50 backbone that uses deformable po-

sition sensitive filters and obtains an mAP of 79.5%. Af-

ter training a decoupled network which predicts objectness

and performs classification on RoIs, we observe a similar

pattern even on this dataset. At a 0.5 overlap, the perfor-

mance only drops by 1.9% and at 0.7 by 1.5%, Table 6.

This confirms that our proposed design changes to R-FCN

are effective and only marginally deteriorate the mAP of the

detector. We show a few visual examples of objectness and

classification scores predicted by our class-agnostic detec-

tor in Fig 4.

Based on these results, we explore some other alterna-

tives of R-FCN for estimating objectness. First, we just use

RPN scores as the objectness measure and classify the pro-

posals with our network (which is a linear classifier). Then,

we add a bounding box regression step on the proposals,

as they are already class agnostic. These two baselines are

significantly worse than R-FCN. The mAP of only RPN is

very poor at an overlap of 0.7. Although bounding-box re-

gression provides a boost of 35% at 0.7 overlap, the per-

formance is still 15% worse than R-FCN. Since RPN uses

an overlap of 0.7 for assigning positives and 0.3 for assign-

ing negatives, we decided to change these two thresholds to

0.5 and 0.4 respectively, like [23]. We train two versions

of RPN, on conv4 and conv5 and present the results. These

results show that performance with RPN also improves af-

ter changing the overlap criterion and with better features,

so other objectness measures could also be an alternative

for R-FCN. Results for these experiments are presented in

Table 5.

6.3. Generalization of Objectness on Unseen Classes

We evaluate the generalization performance of our ob-

jectness detector on a held out set of 20 classes. In this ex-

perimental setting, we train two objectness detectors - OB

Ov0.5 Ov0.7 C4 C5 BBR mAP0.5 mAP0.7

× X X × × 47.3 12.7

× X X × X 65.1 47.8

X × X × × 52.0 16.0

X × X × X 66.8 49.7

X × × X × 70.6 44.1

X × × X X 74.1 56.9

Table 5. Results for different versions of RPN scores used for ob-

jectness are reported. C4 and C5 denote if RPN is applied on

Conv4 or Conv5 feature-map. Ov0.5, Ov0.7 denotes if the over-

lap for assigning positives in RPN is 0.5 or 0.7. BBR denotes if

bounding box regression of deformable R-FCN is used or not.

Method mAP0.5 mAP0.7

D-R-FCN (decoupled) 77.6 63.8

D-R-FCN 79.5 65.3

Table 6. Results of D-R-FCN and our decoupled version where the

R-FCN classification branch only predicts objectness.

(objectness baseline), which includes the 20 object classes

during training and GO (generalized objectness), which

does not. For both the settings, the same classifier is used

with different objectness detectors. OB and the classifier

are trained on 194, 500, 1000, 2000 and 3130 classes and

GO on 174, 480, 980, 1980 and 3110 classes. While go-

ing from 194 to 500 classes, the number of classes increase

significantly but the number of samples do not (see Table

1); therefore, the mAP of OB drops by 1.8%. Since more

samples help in improving the objectness measure for GO,

the performance drop is only marginal (Fig 7). Increasing

the number of classes to 1000 and 2000 improves the mAP

of GO, implying that the improvement in objectness can

overshadow the performance drop caused by increasing the

number of classes. Fig 7 clearly shows that the initial gap

of 9.7% in the performance drops to 0.3% as the number of

classes increase. We also compared OB with GO when we

remove all the 194 classes in ImageNet detection set and

present the results in Table 7. Note that the performance

drop is 3% even after removing 10% of the instances in the

dataset (all of which belong to the classes in the test set).
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Figure 5. Detections for classes in the ImageNet3K dataset which are typically not found in common object detection datasets are shown.

Figure 6. Objectness scores on images containing unseen object-classes from the ImageNet detection dataset.

Figure 7. The mAP scores on a held out set of 20 classes for Gen-

eralized Objectness and Objectness baseline.

Classes Objectness Generalized Objectness

20 31 30.7

194 34.9 32

Table 7. mAP of Objectness and Generalized Objectness on held

out classes in the ImageNet detection set.

It strongly indicates that objectness learned on thousands of

classes generalizes to novel unseen classes as well. A few

qualitative results for such cases are shown in Fig. 6. Note

that we did not train on any of these images!

7. Conclusion

A modular framework for real-time large-scale object

detection is proposed that exploits the visual similarities

and part sharing across different object categories. The

proposed framework is trained on 3000 classes from the

ImageNet classification dataset with bounding-box supervi-

sion. R-FCN-3000 outperformed the previous state-of-the-

art large-scale detector (YOLO-9000) by 18%, while run-

ning at 30fps. We demonstrate that the proposed frame-

work can potentially predict a universal objectness score by

using only one set of filters for object vs. background de-

tection. It resulted in a marginal drop of less than 2% com-

pared to the detector which performed detection for each

class on the PASCAL VOC dataset. Finally, we also show

that the objectness learned generalizes to unseen classes and

the performance increases with the number of training ob-

ject classes. It bolsters the hypothesis of the universality of

objectness.

This paper presents significant improvements for large-

scale object detection but many questions still remain unan-

swered. Some promising research questions are - How can

we accelerate the classification stage of R-FCN-3000 for

detecting 100,000 classes? A typical image contains a lim-

ited number object categories - how to use this prior to ac-

celerate inference? What changes are needed in this archi-

tecture if we also need to detect objects and their parts?

Since it is expensive to label each object instance with all

valid classes in every image, can we learn robust object de-

tectors if some objects are not labelled in the dataset?
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