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Abstract

We present a conceptually simple, flexible, and general

framework for few-shot learning, where a classifier must

learn to recognise new classes given only few examples from

each. Our method, called the Relation Network (RN), is

trained end-to-end from scratch. During meta-learning, it

learns to learn a deep distance metric to compare a small

number of images within episodes, each of which is de-

signed to simulate the few-shot setting. Once trained, a RN

is able to classify images of new classes by computing rela-

tion scores between query images and the few examples of

each new class without further updating the network. Be-

sides providing improved performance on few-shot learn-

ing, our framework is easily extended to zero-shot learning.

Extensive experiments on five benchmarks demonstrate that

our simple approach provides a unified and effective ap-

proach for both of these two tasks.

1. Introduction

Deep learning models have achieved great success in vi-

sual recognition tasks [22, 15, 35]. However, these super-

vised learning models need large amounts of labelled data

and many iterations to train their large number of parame-

ters. This severely limits their scalability to new classes due

to annotation cost, but more fundamentally limits their ap-

plicability to newly emerging (eg. new consumer devices)

or rare (eg. rare animals) categories where numerous anno-

tated images may simply never exist. In contrast, humans

are very good at recognising objects with very little direct

supervision, or none at all i.e., few-shot [23, 9] or zero-shot

[24] learning. For example, children have no problem gen-

eralising the concept of “zebra” from a single picture in

a book, or hearing its description as looking like a stripy

horse. Motivated by the failure of conventional deep learn-

ing methods to work well on one or few examples per class,

and inspired by the few- and zero-shot learning ability of

humans, there has been a recent resurgence of interest in

machine one/few-shot [8, 39, 32, 18, 20, 10, 27, 36, 29] and

zero-shot [11, 3, 24, 45, 25, 31] learning.

Few-shot learning aims to recognise novel visual cate-

gories from very few labelled examples. The availability

of only one or very few examples challenges the standard

‘fine-tuning’ practice in deep learning [10]. Data augmen-

tation and regularisation techniques can alleviate overfit-

ting in such a limited-data regime, but they do not solve

it. Therefore contemporary approaches to few-shot learning

often decompose training into an auxiliary meta learning

phase where transferrable knowledge is learned in the form

of good initial conditions [10], embeddings [36, 39] or opti-

misation strategies [29]. The target few-shot learning prob-

lem is then learned by fine-tuning [10] with the learned op-

timisation strategy [29] or computed in a feed-forward pass

[36, 39, 4, 32] without updating network weights. Zero-shot

learning also suffers from a related challenge. Recognisers

are trained by a single example in the form of a class de-

scription (c.f., single exemplar image in one-shot), making

data insufficiency for gradient-based learning a challenge.

While promising, most existing few-shot learning ap-

proaches either require complex inference mechanisms [23,

9], complex recurrent neural network (RNN) architectures

[39, 32], or fine-tuning the target problem [10, 29]. Our

approach is most related to others that aim to train an effec-

tive metric for one-shot learning [39, 36, 20]. Where they

focus on the learning of the transferrable embedding and

pre-define a fixed metric (e.g., as Euclidean [36]), we fur-

ther aim to learn a transferrable deep metric for comparing

the relation between images (few-shot learning), or between

images and class descriptions (zero-shot learning). By ex-

pressing the inductive bias of a deeper solution (multiple

non-linear learned stages at both embedding and relation

modules), we make it easier to learn a generalisable solu-

tion to the problem.

Specifically, we propose a two-branch Relation Network

(RN) that performs few-shot recognition by learning to

compare query images against few-shot labeled sample im-

ages. First an embedding module generates representations

of the query and training images. Then these embeddings

are compared by a relation module that determines if they
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are from matching categories or not. Defining an episode-

based strategy inspired by [39, 36], the embedding and re-

lation modules are meta-learned end-to-end to support few-

shot learning. This can be seen as extending the strategy

of [39, 36] to include a learnable non-linear comparator,

instead of a fixed linear comparator. Our approach out-

performs prior approaches, while being simpler (no RNNs

[39, 32, 29]) and faster (no fine-tuning [29, 10]). Our pro-

posed strategy also directly generalises to zero-shot learn-

ing. In this case the sample branch embeds a single-shot

category description rather than a single exemplar training

image, and the relation module learns to compare query im-

age and category description embeddings.

Overall our contribution is to provide a clean framework

that elegantly encompasses both few and zero-shot learn-

ing. Our evaluation on four benchmarks show that it pro-

vides compelling performance across the board while being

simpler and faster than the alternatives.

2. Related Work

The study of one or few-shot object recognition has been

of interest for some time [9]. Earlier work on few-shot

learning tended to involve generative models with complex

iterative inference strategies [9, 23]. With the success of

discriminative deep learning-based approaches in the data-

rich many-shot setting [22, 15, 35], there has been a surge

of interest in generalising such deep learning approaches to

the few-shot learning setting. Many of these approaches use

a meta-learning or learning-to-learn strategy in the sense

that they extract some transferrable knowledge from a set

of auxiliary tasks (meta-learning, learning-to-learn), which

then helps them to learn the target few-shot problem well

without suffering from the overfitting that might be ex-

pected when applying deep models to sparse data problems.

Learning to Fine-Tune The successful MAML approach

[10] aimed to meta-learn an initial condition (set of neural

network weights) that is good for fine-tuning on few-shot

problems. The strategy here is to search for the weight

configuration of a given neural network such that it can

be effectively fine-tuned on a sparse data problem within

a few gradient-descent update steps. Many distinct target

problems are sampled from a multiple task training set; the

base neural network model is then fine-tuned to solve each

of them, and the success at each target problem after fine-

tuning drives updates in the base model – thus driving the

production of an easy to fine-tune initial condition. The

few-shot optimisation approach [29] goes further in meta-

learning not only a good initial condition but an LSTM-

based optimizer that is trained to be specifically effective for

fine-tuning. However both of these approaches suffer from

the need to fine-tune on the target problem. In contrast, our

approach solves target problems in an entirely feed-forward

manner with no model updates required, making it more

convenient for low-latency or low-power applications.

RNN Memory Based Another category of approaches

leverage recurrent neural networks with memories [27, 32].

Here the idea is typically that an RNN iterates over an ex-

amples of given problem and accumulates the knowledge

required to solve that problem in its hidden activations, or

external memory. New examples can be classified, for ex-

ample by comparing them to historic information stored in

the memory. So ‘learning’ a single target problem can oc-

cur in unrolling the RNN, while learning-to-learn means

training the weights of the RNN by learning many distinct

problems. While appealing, these architectures face issues

in ensuring that they reliably store all the, potentially long

term, historical information of relevance without forgetting.

In our approach we avoid the complexity of recurrent net-

works, and the issues involved in ensuring the adequacy of

their memory. Instead our learning-to-learn approach is de-

fined entirely with simple and fast feed forward CNNs.

Embedding and Metric Learning Approaches The

prior approaches entail some complexity when learning the

target few-shot problem. Another category of approach

aims to learn a set of projection functions that take query

and sample images from the target problem and classify

them in a feed forward manner [39, 36, 4]. One approach

is to parameterise the weights of a feed-forward classifier

in terms of the sample set [4]. The meta-learning here is

to train the auxiliary parameterisation net that learns how

to paramaterise a given feed-forward classification problem

in terms of a few-shot sample set. Metric-learning based

approaches aim to learn a set of projection functions such

that when represented in this embedding, images are easy

to recognise using simple nearest neighbour or linear classi-

fiers [39, 36, 20]. In this case the meta-learned transferrable

knowledge are the projection functions and the target prob-

lem is a simple feed-forward computation.

The most related methodologies to ours are the proto-

typical networks of [36] and the siamese networks of [20].

These approaches focus on learning embeddings that trans-

form the data such that it can be recognised with a fixed

nearest-neighbour [36] or linear [20, 36] classifier. In con-

trast, our framework further defines a relation classifier

CNN, in the style of [33, 44, 14] (While [33] focuses on

reasoning about relation between two objects in a same im-

age which is to address a different problem.). Compared

to [20, 36], this can be seen as providing a learnable rather

than fixed metric, or non-linear rather than linear classifier.

Compared to [20] we benefit from an episodic training strat-

egy with an end-to-end manner from scratch, and compared

to [32] we avoid the complexity of set-to-set RNN embed-

ding of the sample-set, and simply rely on pooling [33].

Zero-Shot Learning Our approach is designed for few-
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shot learning, but elegantly spans the space into zero-shot

learning (ZSL) by modifying the sample branch to input a

single category description rather than single training im-

age. When applied to ZSL our architecture is related to

methods that learn to align images and category embed-

dings and perform recognition by predicting if an image

and category embedding pair match [11, 3, 43, 46]. Sim-

ilarly to the case with the prior metric-based few-shot ap-

proaches, most of these apply a fixed manually defined sim-

ilarity metric or linear classifier after combining the image

and category embedding. In contrast, we again benefit from

a deeper end-to-end architecture including a learned non-

linear metric in the form of our learned convolutional re-

lation network; as well as from an episode-based training

strategy.

3. Methodology

3.1. Problem Definition

We consider the task of few-shot classifier learning. For-

mally, we have three datasets: a training set, a support set,

and a testing set. The support set and testing set share the

same label space, but the training set has its own label space

that is disjoint with support/testing set. If the support set

contains K labelled examples for each of C unique classes,

the target few-shot problem is called C-way K-shot.

With the support set only, we can in principle train a clas-

sifier to assign a class label ŷ to each sample x̂ in the test

set. However, due to the lack of labelled samples in the sup-

port set, the performance of such a classifier is usually not

satisfactory. Therefore we aim to perform meta-learning on

the training set, in order to extract transferrable knowledge

that will allow us to perform better few-shot learning on the

support set and thus classify the test set more successfully.

An effective way to exploit the training set is to mimic

the few-shot learning setting via episode based training, as

proposed in [39]. In each training iteration, an episode is

formed by randomly selecting C classes from the training

set with K labelled samples from each of the C classes to

act as the sample set S = {(xi, yi)}
m
i=1

(m = K × C), as

well as a fraction of the remainder of those C classes’ sam-

ples to serve as the query setQ = {(xj , yj)}
n
j=1

. This sam-

ple/query set split is designed to simulate the support/test set

that will be encountered at test time. A model trained from

sample/query set can be further fine-tuned using the support

set, if desired. In this work we adopt such an episode-based

training strategy. In our few-shot experiments (see Section

4.1) we consider one-shot (K = 1, Figure 1) and five-shot

(K = 5) settings. We also address the K = 0 zero-shot

learning case as explained in Section 3.3.

3.2. Model

One-Shot Our Relation Network (RN) consists of two

modules: an embedding module fϕ and a relation module

gφ, as illustrated in Figure 1. Samples xj in the query setQ,

and samples xi in the sample set S are fed through the em-

bedding module fϕ, which produces feature maps fϕ(xi)
and fϕ(xj). The feature maps fϕ(xi) and fϕ(xj) are com-

bined with operator C(fϕ(xi), fϕ(xj)). In this work we as-

sume C(·, ·) to be concatenation of feature maps in depth,

although other choices are possible.

The combined feature map of the sample and query are

fed into the relation module gφ, which eventually produces

a scalar in range of 0 to 1 representing the similarity be-

tween xi and xj , which is called relation score. Thus, in

the C-way one-shot setting, we generate C relation scores

ri,j for the relation between one query input xj and training

sample set examples xi,

ri,j = gφ(C(fϕ(xi), fϕ(xj))), i = 1, 2, . . . , C (1)

K-shot For K-shot where K > 1, we element-wise sum

over the embedding module outputs of all samples from

each training class to form this class’ feature map. This

pooled class-level feature map is combined with the query

image feature map as above. Thus, the number of relation

scores for one query is always C in both one-shot or few-

shot setting.

Objective function We use mean square error (MSE)

loss (Eq. (2)) to train our model, regressing the relation

score ri,j to the ground truth: matched pairs have similarity

1 and the mismatched pair have similarity 0.

ϕ, φ← argmin
ϕ,φ

m∑

i=1

n∑

j=1

(ri,j − 1(yi == yj))
2 (2)

The choice of MSE is somewhat non-standard. Our

problem may seem to be a classification problem with a la-

bel space {0, 1}. However conceptually we are predicting

relation scores, which can be considered a regression prob-

lem despite that for ground-truth we can only automatically

generate {0, 1} targets.

3.3. Zero­shot Learning

Zero-shot learning is analogous to one-shot learning in

that one datum is given to define each class to recognise.

However instead of being given a support set with one-shot

image for each of C training classes, it contains a semantic

class embedding vector vc for each. Modifying our frame-

work to deal with the zero-shot case is straightforward: as

a different modality of semantic vectors is used for the sup-

port set (e.g. attribute vectors instead of images), we use a
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Figure 1: Relation Network architecture for a 5-way 1-shot problem with one query example.

second heterogeneous embedding module fϕ2
besides the

embedding module fϕ1
used for the image query set. Then

the relation net gφ is applied as before. Therefore, the rela-

tion score for each query input xj will be:

ri,j = gφ(C(fϕ1
(vc), fϕ2

(xj))), i = 1, 2, . . . , C (3)

The objective function for zero-shot learning is the same

as that for few-shot learning.

3.4. Network Architecture

As most few-shot learning models utilise four convolu-

tional blocks for embedding module [39, 36], we follow the

same architecture setting for fair comparison, see Figure 2.

More concretely, each convolutional block contains a 64-

filter 3 × 3 convolution, a batch normalisation and a ReLU

nonlinearity layer respectively. The first two blocks also

contain a 2 × 2 max-pooling layer while the latter two do

not. We do so because we need the output feature maps

for further convolutional layers in the relation module. The

relation module consists of two convolutional blocks and

two fully-connected layers. Each of convolutional block

is a 3 × 3 convolution with 64 filters followed by batch

normalisation, ReLU non-linearity and 2× 2 max-pooling.

The output size of last max pooling layer is H = 64 and

H = 64 ∗ 3 ∗ 3 = 576 for Omniglot and miniImageNet

respectively. The two fully-connected layers are 8 and 1

dimensional, respectively. All fully-connected layers are

ReLU except the output layer is Sigmoid in order to gen-

erate relation scores in a reasonable range for all versions

of our network architecture.

The zero-shot learning architecture is shown in Figure 3.

In this architecture, the DNN subnet is an existing network

(e.g., Inception or ResNet) pretrained on ImageNet.

4. Experiments

We evaluate our approach on two related tasks: few-shot

classification on Omniglot and miniImagenet, and zero-

shot classification on Animals with Attributes (AwA) and

Caltech-UCSD Birds-200-2011 (CUB). All the experiments

are implemented based on PyTorch [1].

4.1. Few­shot Recognition

Settings Few-shot learning in all experiments uses

Adam [19] with initial learning rate 10−3 , annealed by half

for every 100,000 episodes. All our models are end-to-end

trained from scratch with no additional dataset.

Baselines We compare against various state of the art

baselines for few-shot recognition, including neural statisti-

cian [8], Matching Nets with and without fine-tuning [39],

MANN [32], Siamese Nets with Memory [18], Convolu-

tional Siamese Nets [20], MAML [10], Meta Nets [27], Pro-

totypical Nets [36] and Meta-Learner LSTM [29].

4.1.1 Omniglot

Dataset Omniglot [23] contains 1623 characters (classes)

from 50 different alphabets. Each class contains 20 samples

drawn by different people. Following [32, 39, 36], we aug-

ment new classes through 90◦, 180◦ and 270◦ rotations of

existing data and use 1200 original classes plus rotations for

training and remaining 423 classes plus rotations for testing.

All input images are resized to 28× 28.

Training Besides the K sample images, the 5-way 1-

shot contains 19 query images, the 5-way 5-shot has 15

query images, the 20-way 1-shot has 10 query images and

the 20-way 5-shot has 5 query images for each of the C

sampled classes in each training episode. This means for
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ReLU

batch norm
3X3 conv, 64 filters

(a) Convolutional Block

2X2 max-pool

Convolutional Block

2X2 max-pool

2X2 max-pool

FC ReLU, HX8

relation score

FC Sigmoid, 8X1

(b) RN for few-shot learning

Convolutional Block

Convolutional Block

Convolutional Block

Convolutional Block

Convolutional Block

Figure 2: Relation Network architecture for few-shot learning (b)

which is composed of elements including convolutional block (a).

example that there are 19 × 5 + 1 × 5 = 100 images in

one training episode/mini-batch for the 5-way 1-shot exper-

iments.

Results Following [36], we computed few-shot classifi-

cation accuracies on Omniglot by averaging over 1000 ran-

domly generated episodes from the testing set. For the 1-

shot and 5-shot experiments, we batch one and five query

images per class respectively for evaluation during testing.

The results are shown in Table 1. We achieved state-of-the-

art performance under all experiments setting with higher

averaged accuracies and lower standard deviations, except

5-way 5-shot where our model is 0.1% lower in accuracy

than [10]. This is despite that many alternatives have sig-

nificantly more complicated machinery [27, 8], or fine-tune

on the target problem [10, 39], while we do not.

4.1.2 miniImageNet

Dataset The miniImagenet dataset, originally proposed

by [39], consists of 60,000 colour images with 100 classes,

each having 600 examples. We followed the split intro-

duced by [29], with 64, 16, and 20 classes for training, val-

idation and testing, respectively. The 16 validation classes

is used for monitoring generalisation performance only.

Training Following the standard setting adopted by most

existing few-shot learning work, we conducted 5 way 1-shot

and 5-shot classification. Beside the K sample images, the

FC1, ReLU
weight decay

feature concatenation

DNN

FC2, ReLU
weight decay

relation score

FC3 ReLU

FC4 Sigmoid

Figure 3: Relation Network architecture for zero-shot learning.

5-way 1-shot contains 15 query images, and the 5-way 5-

shot has 10 query images for each of the C sampled classes

in each training episode. This means for example that there

are 15×5+1×5 = 80 images in one training episode/mini-

batch for 5-way 1-shot experiments. We resize input images

to 84 × 84. Our model is trained end-to-end from scratch,

with random initialisation, and no additional training set.

Results Following [36], we batch 15 query images per

class in each episode for evaluation in both 1-shot and 5-

shot scenarios and the few-shot classification accuracies

are computed by averaging over 600 randomly generated

episodes from the test set.

From Table 2, we can see that our model achieved state-

of-the-art performance on 5-way 1-shot settings and com-

petitive results on 5-way 5-shot. However, the 1-shot result

reported by prototypical networks [36] reqired to be trained

on 30-way 15 queries per training episode, and 5-shot re-

sult was trained on 20-way 15 queries per training episode.

When trained with 5-way 15 query per training episode,

[36] only got 46.14 ± 0.77% for 1-shot evaluation, clearly

weaker than ours. In contrast, all our models are trained

on 5-way, 1 query for 1-shot and 5 queries for 5-shot per

training episode, with much less training queries than [36].

4.2. Zero­shot Recognition

Datasets and settings We follow two ZSL settings: the

old setting and the new GBU setting provided by [42] for

training/test splits. Under the old setting, adopted by most

existing ZSL works before [42], some of the test classes

also appear in the ImageNet 1K classes, which have been

used to pretrain the image embedding network, thus vio-

lating the zero-shot assumption. In contrast, the new GBU

setting ensures that none of the test classes of the datasets

appear in the ImageNet 1K classes. Under both settings, the
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Model Fine Tune 5-way Acc. 20-way Acc.

1-shot 5-shot 1-shot 5-shot

MANN [32] N 82.8% 94.9% - -

CONVOLUTIONAL SIAMESE NETS [20] N 96.7% 98.4% 88.0% 96.5%

CONVOLUTIONAL SIAMESE NETS [20] Y 97.3% 98.4% 88.1% 97.0%

MATCHING NETS [39] N 98.1% 98.9% 93.8% 98.5%

MATCHING NETS [39] Y 97.9% 98.7% 93.5% 98.7%

SIAMESE NETS WITH MEMORY [18] N 98.4% 99.6% 95.0% 98.6%

NEURAL STATISTICIAN [8] N 98.1% 99.5% 93.2% 98.1%

META NETS [27] N 99.0% - 97.0% -

PROTOTYPICAL NETS [36] N 98.8% 99.7% 96.0% 98.9%

MAML [10] Y 98.7 ± 0.4% 99.9 ± 0.1% 95.8 ± 0.3% 98.9 ± 0.2%

RELATION NET N 99.6 ± 0.2% 99.8± 0.1% 97.6 ± 0.2% 99.1± 0.1%

Table 1: Omniglot few-shot classification. Results are accuracies averaged over 1000 test episodes and with 95% confidence intervals

where reported. The best-performing method is highlighted, along with others whose confidence intervals overlap. ‘-’: not reported.

Model FT 5-way Acc.

1-shot 5-shot

MATCHING NETS [39] N 43.56 ± 0.84% 55.31 ± 0.73%

META NETS [27] N 49.21 ± 0.96% -

META-LEARN LSTM [29] N 43.44 ± 0.77% 60.60 ± 0.71%

MAML [10] Y 48.70 ± 1.84% 63.11 ± 0.92%

PROTOTYPICAL NETS [36] N 49.42 ± 0.78% 68.20 ± 0.66%

RELATION NET N 50.44 ± 0.82% 65.32 ± 0.70%

Table 2: Few-shot classification accuracies on miniImagenet. All

accuracy results are averaged over 600 test episodes and are re-

ported with 95% confidence intervals, same as [36]. For each task,

the best-performing method is highlighted, along with any others

whose confidence intervals overlap. ‘-’: not reported.

test set can comprise only the unseen class samples (conven-

tional test set setting) or a mixture of seen and unseen class

samples. The latter, termed generalised zero-shot learning

(GZSL), is more realistic in practice.

Two widely used ZSL benchmarks are selected for the

old setting: AwA (Animals with Attributes) [24] consists

of 30,745 images of 50 classes of animals. It has a fixed

split for evaluation with 40 training classes and 10 test

classes. CUB (Caltech-UCSD Birds-200-2011) [40] con-

tains 11,788 images of 200 bird species with 150 seen

classes and 50 disjoint unseen classes. Three datasets [42]

are selected for GBU setting: AwA1, AwA2 and CUB. The

newly released AwA2 [42] consists of 37,322 images of 50

classes which is an extension of AwA while AwA1 is same

as AwA but under the GBU setting.

Semantic representation For AwA, we use the contin-

uous 85-dimension class-level attribute vector from [24],

which has been used by all recent works. For CUB, a con-

tinuous 312-dimension class-level attribute vector is used.

Implementation details Two different embedding mod-

ules are used for the two input modalities in zero-shot

learning. Unless otherwise specified, we use Inception-

V2 [38, 17] as the query image embedding DNN in the

old and conventional setting and ResNet101 [16] for the

GBU and generalised setting, taking the top pooling units

as image embedding with dimension D = 1024 and 2048
respectively. This DNN is pre-trained on ILSVRC 2012

1K classification without fine-tuning, as in recent deep ZSL

works [25, 30, 45]. A MLP network is used for embed-

ding semantic attribute vectors. The size of hidden layer

FC1 (Figure 3) is set to 1024 and 1200 for AwA and CUB

respectively, and the output size FC2 is set to the same di-

mension as the image embedding for both datasets. For the

relation module, the image and semantic embeddings are

concatenated before being fed into MLPs with hidden layer

FC3 size 400 and 1200 for AwA and CUB, respectively.

We add weight decay (L2 regularisation) in FC1 & 2 as

there is a hubness problem [45] in cross-modal mapping for

ZSL which can be best solved by mapping the semantic fea-

ture vector to the visual feature space with regularisation.

After that, FC3 & 4 (relation module) are used to compute

the relation between the semantic representation (in the vi-

sual feature space) and the visual representation. Since the

hubness problem does not existing in this step, no L2 regu-

larisation/weight decay is needed. All the ZSL models are

trained with weight decay 10−5 in the embedding network.

The learning rate is initialised to 10−5 with Adam [19] and

then annealed by half every 200,000 iterations.

Results under the old setting The conventional evalua-

tion for ZSL followed by the majority of prior work is to

assume that the test data all comes from unseen classes. We

evaluate this setting first. We compare 15 alternative ap-

proaches in Table 3. With only the attribute vector used as

the sample class embedding, our model achieves competi-

tive result on AwA and state-of-the-art performance on the

more challenging CUB dataset, outperforming the most re-

lated alternative prototypical networks [36] by a big margin.

Note that only inductive methods are considered. Some re-
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Model F SS AwA CUB

10-way 0-shot 50-way 0-shot

SJE [3] FG A 66.7 50.1

ESZSL [31] FG A 76.3 47.2

SSE-RELU [46] FV A 76.3 30.4

JLSE [47] FV A 80.5 42.1

SYNC-STRUCT [6] FG A 72.9 54.5

SEC-ML [5] FV A 77.3 43.3

PROTO. NETS [36] FG A - 54.6

DEVISE [11] NG A/W 56.7/50.4 33.5

SOCHER et al. [37] NG A/W 60.8/50.3 39.6

MTMDL [43] NG A/W 63.7/55.3 32.3

BA et al. [25] NG A/W 69.3/58.7 34.0

DS-SJE [30] NG A/D - 50.4/ 56.8

SAE [21] NG A 84.7 61.4

DEM [45] NG A/W 86.7/78.8 58.3

RELATION NET NG A 84.5 62.0

Table 3: Zero-shot classification accuracy (%) comparison on AwA and

CUB (hit@1 accuracy over all samples) under the old and conventional

setting. SS: semantic space; A: attribute space; W: semantic word vector

space; D: sentence description (only available for CUB). F: how the vi-

sual feature space is computed; For non-deep models: FO if overfeat [34]

is used; FG for GoogLeNet [38]; and FV for VGG net [35]. For neu-

ral network based methods, all use Inception-V2 (GoogLeNet with batch

normalisation) [38, 17] as the DNN image imbedding subnet, indicated as

NG.

cent methods [48, 12, 13] are tranductive in that they use all

test data at once for model training, which gives them a big

advantage at the cost of making a very strong assumption

that may not be met in practical applications, so we do not

compare with them here.

Results under the GBU setting We follow the evalua-

tion setting of [42]. We compare our model with 11 alterna-

tive ZSL models in Table 4. The 10 shallow models results

are from [42] and the result of the state-of-the-art method

DEM [45] is from the authors’ GitHub page1. We can see

that on AwA2 and CUB, Our model is particularly strong

under the more realistic GZSL setting measured using the

harmonic mean (H) metric. While on AwA1, our method is

only outperformed by DEM [45].

5. Why does Relation Network Work?

5.1. Relationship to existing models

Related prior few-shot work uses fixed pre-specified dis-

tance metrics such as Euclidean or cosine distance to per-

form classification [39, 36]. These studies can be seen as

distance metric learning, but where all the learning occurs in

the feature embedding, and a fixed metric is used given the

learned embedding. Also related are conventional metric

learning approaches [26, 7] that focus on learning a shallow

(linear) Mahalanobis metric for a fixed feature representa-

1https://github.com/lzrobots/

DeepEmbeddingModel_ZSL

(a) Ground Truth (b) Relation Network

(c) Metric Learning (d) Metric + Embedding

Figure 4: An example relation learnable by Relation Network and

not by non-linear embedding + metric learning.

tion. In contrast to prior work’s fixed metric or fixed fea-

tures and shallow learned metric, Relation Network can be

seen as both learning a deep embedding and learning a deep

non-linear metric (similarity function)2. These are mutually

tuned end-to-end to support each other in few short learn-

ing.

Why might this be particularly useful? By using a flex-

ible function approximator to learn similarity, we learn a

good metric in a data driven way and do not have to man-

ually choose the right metric (Euclidean, cosine, Maha-

lanobis). Fixed metrics like [39, 36] assume that features

are solely compared element-wise, and the most related [36]

assumes linear separability after the embedding. These are

thus critically dependent on the efficacy of the learned em-

bedding network, and hence limited by the extent to which

the embedding networks generate inadequately discrimina-

tive representations. In contrast, by deep learning a non-

linear similarity metric jointly with the embedding, Relation

Network can better identify matching/mismatching pairs.

5.2. Visualisation

To illustrate the previous point about adequacy of learned

input embeddings, we show a synthetic example where ex-

isting approaches definitely fail and our Relation Network

can succeed due to using a deep relation module. Assuming

2D query and sample input embeddings to a relation mod-

ule, Fig. 4(a) shows the space of 2D sample inputs for a

fixed 2D query input. Each sample input (pixel) is colored

according to whether it matches the fixed query or not. This

2Our architecture does not guarantee the self-similarity and symmetry

properties of a formal similarity function. But empirically we find these

properties hold numerically for a trained Relation Network.
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AwA1 AwA2 CUB

ZSL GZSL ZSL GZSL ZSL GZSL

Model T1 u s H T1 u s H T1 u s H

DAP [24] 44.1 0.0 88.7 0.0 46.1 0.0 84.7 0.0 40.0 1.7 67.9 3.3

CONSE [28] 45.6 0.4 88.6 0.8 44.5 0.5 90.6 1.0 34.3 1.6 72.2 3.1

SSE [46] 60.1 7.0 80.5 12.9 61.0 8.1 82.5 14.8 43.9 8.5 46.9 14.4

DEVISE [11] 54.2 13.4 68.7 22.4 59.7 17.1 74.7 27.8 52.0 23.8 53.0 32.8

SJE [3] 65.6 11.3 74.6 19.6 61.9 8.0 73.9 14.4 53.9 23.5 59.2 33.6

LATEM [41] 55.1 7.3 71.7 13.3 55.8 11.5 77.3 20.0 49.3 15.2 57.3 24.0

ESZSL [31] 58.2 6.6 75.6 12.1 58.6 5.9 77.8 11.0 53.9 12.6 63.8 21.0

ALE [2] 59.9 16.8 76.1 27.5 62.5 14.0 81.8 23.9 54.9 23.7 62.8 34.4

SYNC [6] 54.0 8.9 87.3 16.2 46.6 10.0 90.5 18.0 55.6 11.5 70.9 19.8

SAE [21] 53.0 1.8 77.1 3.5 54.1 1.1 82.2 2.2 33.3 7.8 57.9 29.2

DEM [45] 68.4 32.8 84.7 47.3 67.1 30.5 86.4 45.1 51.7 19.6 54.0 13.6

RELATION NET 68.2 31.4 91.3 46.7 64.2 30.0 93.4 45.3 55.6 38.1 61.1 47.0

Table 4: Comparative results under the GBU setting. Under the conventional ZSL setting, the performance is evaluated using per-class

average Top-1 (T1) accuracy (%), and under GZSL, it is measured using u = T1 on unseen classes, s = T1 on seen classes, and H =

harmonic mean.

represents a case where the output of the embedding mod-

ules is not discriminative enough for trivial (Euclidean NN)

comparison between query and sample set. In Fig. 4(c) we

attempt to learn matching via a Mahalanobis metric learn-

ing relation module, and we can see the result is inadequate.

In Fig. 4(d) we learn a further 2-hidden layer MLP embed-

ding of query and sample inputs as well as the subsequent

Mahalanobis metric, which is also not adequate. Only by

learning the full deep relation module for similarity can we

solve this problem in Fig. 4(b).

In a real problem the difficulty of comparing embeddings

may not be this extreme, but it can still be challenging. We

qualitatively illustrate the challenge of matching two exam-

ple Omniglot query images (embeddings projected to 2D,

Figure 5(left)) by showing an analogous plot of real sample

images colored by match (cyan) or mismatch (magenta) to

two example queries (yellow). Under standard assumptions

[39, 36, 26, 7] the cyan matching samples should be near-

est neighbours to the yellow query image with some metric

(Euclidean, Cosine, Mahalanobis). But we can see that the

match relation is more complex than this. In Figure 5(right),

we instead plot the same two example queries in terms of a

2D PCA representation of each query-sample pair, as repre-

sented by the relation module’s penultimate layer. We can

see that the relation network has mapped the data into a

space where the (mis)matched pairs are linearly separable.

6. Conclusion

We proposed a simple method called the Relation Net-

work for few-shot and zero-shot learning. Relation network

learns an embedding and a deep non-linear distance metric

for comparing query and sample items. Training the net-

work end-to-end with episodic training tunes the embedding

and distance metric for effective few-shot learning. This ap-

Figure 5: Example Omniglot few-shot problem visualisations.

Left: Matched (cyan) and mismatched (magenta) sample embed-

dings for a given query (yellow) are not straightforward to dif-

ferentiate. Right: Matched (yellow) and mismatched (magenta)

relation module pair representations are linearly separable.

proach is far simpler and more efficient than recent few-shot

meta-learning approaches, and produces state-of-the-art re-

sults. It further proves effective at both conventional and

generalised zero-shot settings.
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