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Figure 1: Gaudi’s Casa Mila is famous for its irregular shapes. Single-image NLV idealizes each image independently,

resulting in utterly different geometries – the building’s facade is flat and some of the porches are straightened only in the top

image. Reconstruction of a corresponding 3D structure completely fails. Conversely, our multiview NLV approach reduces

the irregularities in both images in a synchronized manner and the corresponding 3D shape shows straightened verandas.

Abstract

We present an algorithm for modifying small non-local

variations between repeating structures and patterns in

multiple images of the same scene. The modification is con-

sistent across views, even-though the images could have

been photographed from different view points and under

different lighting conditions. We show that when modify-

ing each image independently the correspondence between

them breaks and the geometric structure of the scene gets

distorted. Our approach modifies the views while maintain-

ing correspondence, hence, we succeed in modifying ap-

pearance and structure variations consistently. We demon-

strate our methods on a number of challenging examples,

photographed in different lighting, scales and view points.

1. Introduction

Repetition of patterns and structures is a widespread phe-

nomenon, e.g, in the leaves of plants and flowers, animal

furs or rocks and sand dunes. Recurring structures can

be also found in man-made environments, for example, a

row of chairs in a large stadium or a pile of boxes in a

shoe store. In many cases, the recurring structures are not

perfectly identical and sometimes the deviations from an

‘ideal’ structure are small and hard to notice by the naked

eye. Revealing these deviations may be useful in many sit-

uations, for example, revealing deformations in a produc-

tion line or detecting irregular cells in a petri dish. Modify-

ing these variations and correcting them could be useful for

beautification of images.

Recently, a method was devised for revealing the Non-

Local Variations (NLV) in a single image [7]. Their method

recovers a simple geometric transformation that can be ap-

plied to the input image in order to obtain an ‘ideal’ image

in which the variations between repeated structures are min-

imal. By applying the inverse transformation, these non-

local variations can be exaggerated. Their method was used

for several applications such as idealizing images, revealing

object properties and visualizing defects in material inspec-
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tion. Their approach is based on generating an ideal image

where each patch is replaced by the average of its nearest-

neighbors (in terms of appearance), and then estimating the

deviation of the input image from this ideal image.

In the modern media age we live in, oftentimes multi-

ple images of the same scene are taken. Different people

capture the same monuments, events, and objects, and share

them publicly. In this paper, we present an approach to mul-

tiview NLV which extends the single-image NLV of [7] to a

pair of images of the same scene that could have been taken

under different lighting conditions and from different view-

points. We show that applying single-image NLV indepen-

dently to each image leads to inconsistent corrections, and

hence, the ability to reconstruct a corresponding 3D shape is

damaged (see Figure 1 ). In order to preserve the geometri-

cal consistency, we add a correspondence constraint which

enforces the images to be idealized together. We show that

this approach reveals and corrects not only appearance vari-

ations but also non-local 3D shape variations.

We suggest two ways to guarantee consistency across

multiple views. The first requires geometrical consistency

between the idealizing transformations, while the second

approach requires similarity between the appearances of

the idealized images. Demanding similar appearance im-

plicitly requires that the idealizing geometrical transforma-

tions that the images undergo are consistent. An advantage

of the transformation-based approach is its applicability to

images with different lighting and illumination while the

appearance-based approach is appropriate only when the in-

put images are very similar in their colors, e.g., a stereo pair

or frames of a video. We examine multiview-NLV on pairs

of images taken by different people, at different times, from

different viewpoints and varying illuminations.

The rest of the paper is organized as follows. Section 2

surveys related work. Mathematical formulation with a

short overview of the multi-view NLV problem is described

in Section 3, and a detailed description of the algorithm is

provided in Section 4. Experimental validation is presented

in Section 5 and conclusions are drawn in Section 6.

2. Related Work

Non-Local Variations in a Single Image. In a recent

work, Dekel et al. [7] presented a non-parametric algorithm

for detecting and visualizing small variations between re-

peating structures within a single image. Their method can

handle complex deformations that cannot be modeled by

a parametric model. Their algorithm iteratively alternates

between two steps: first, computing an ‘ideal’ average im-

age, in which every patch is replaced by the average of its

nearest neighbors, and second, computing the ‘idealizing’

transform between the ideal image and the original input

image. Lukáč et al. [26] proposed generating a symme-

try feature set, and then using it as input to the NLV algo-

rithm of [7], thus, extending the idealizing transformation

to work with rounded symmetry repeating structures. Wad-

hwa et al. [37] presented a different approach for revealing

tiny deformations within a single image using a local para-

metric method. In their algorithm, a parametric model is

fitted to objects in the input image. Then, the residual be-

tween the ideal model and the fitted model is calculated. In

our work, we extend the non-parametric approach of [7], to

handle non-parametric, complex deformations consistently

between multiple images of similar content.

Texture Manipulation. Also related to our problem

are works that estimate the geometric deformation

between multiple images for texture replacement in

videos [19][33][39]. These methods first find a texture de-

formation, and then compute the correspondence in order

to track the motion between frames. Another approach for

texture replacement in multi-view images uses depth in-

formation to recover near-regular texture deformation [34].

Somewhat related is also the work of Yücer et al. [42], that

propose a method for consistent manipulation of multiple

images of a common object based on an adaptation of the

Lucas-Kanade [25] framework.

Methods for single-image texture manipulation have var-

ious applications, such as texture symmetrization [16][24],

texture replacement [8][23][24], or shape from texture

[5][27]. Another widely-discussed application is texture

synthesis, where high quality texture is synthesized from

a small texture patch or image[8][16].

A different method for single-image texture synthesis [1]

is synthesizing time-varying weathered textures by estimat-

ing an ”age map” for the input image, which is based on

prevalence analysis of image patches. Dekel et al. [7] dif-

fers from previous texture manipulation works in three prin-

ciple aspects: (i) Most texture manipulation methods are

based on a single texton repetition to form a lattice and

rely on finding the deformation in the lattice. In the NLV

the repeating structures can be located in different locations

in the image. (ii) Some of the methods [16] do not rely

on near-regular textures, however they cannot treat images

with multiple textures . (iii) The NLV [7] algorithm works

in different scales, hence locates even small scale variations

in a near-regular texture. Since our image editing algorithm

is based on [7] , all the above are relevant to us as well.

Motion Magnification. A series of studies on revealing

and magnifying tiny variations in video-sequences has re-

ceived great acknowledgement inside and outside the com-

puter vision community [21][38][40]. These articles present

several approaches to reveal and magnify temporal varia-

tions that are invisible to the naked eye using frequency

analysis of the video. Our goal, however, is finding vari-

ations within each of the input images while preserving the

correspondence between the modified images.
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Co-Saliency. Identifying unique patterns in recurring

structures correspondingly in a set of images is also used for

co-saliency detection [4][6][9][14][15][17][18][30]. Most

of these methods integrate two kinds of cues: inner image

saliency and multi-image correspondence which enforces

similar objects to be salient together [6][9][15][17][18].

Other methods, use the correspondence information to force

physical constraints on the mutual saliency maps [4][30].

Unlike the co-saliency methods, our algorithm locates vari-

ations between very similar recurrent structures correspond-

ingly in multi-view images.

Co-Segmentation. Co-segmentation algorithms are re-

lated to our work since they also deal with synchronous

analysis of multiple images of the same scene, albeit their

goal is segmentation. Rother et al. [31] co-segment a

pair of images using a graph based solution for generative

model estimation while forcing histogram matching of the

foreground pixels. Other unsupervised algorithms for co-

segmentation [36][28][29][13][32][41] use variations of op-

timization methods and different sets of features for corre-

spondence. Unlike co-segmentation methods, our approach

requires dense pixel-wise matching between the images to

obtain consistent images manipulation.

3. Problem Formulation

To outline the problem formulation we start by briefly

reviewing the single-image NLV formulation of Dekel et

al. [7] in Section 3.1. Then we lay out our extension to

multiple views in Section 3.2.

3.1. Single­Image NLV

Given an input image I , the NLV method seeks to deter-

mine a smooth geometric deformation T corresponding to

a dense flow field (u(x, y), v(x, y)), which maximizes the

resemblance between recurring patches in I . This is done

by introducing an auxiliary ‘ideal’ image J , which is re-

stricted to: (i) have strong patch repetitions, and (ii) be sim-

ilar to T {I} for some deformation T . More specifically,

the ‘ideal’ image J and the idealizing deformation T are

obtained through the minimization of the energy

ENLV(T , J,DB) =

Erec(J,DB) + λEdata(T {I}, J) + αrEreg(T ) (1)

over both J and T . Here, the first term is a “recurrence” en-

ergy, which measures the dissimilarity between each patch

p∈J and its nearest neighbor patches {q} from the database

DB of all overlapping patches in J . It is defined as

Erec(J,DB) = −
∑

p∈J

log





∑

q∈DB

exp{− 1

2h2 ‖p− q‖2}



 ,

(2)

where h is some bandwidth parameter. The second term

in (1) aims for similarity between the ideal image J and the

deformed input image T {I}. Specifically,

Edata(T {I}, J) =
∫∫

ψ(‖J(x, y)− T {I}(x, y)‖2)dxdy,
(3)

where ψ(a2) =
√
a2 + ε2, for some small ε. Finally, the

last term in (1) is a regularizer on the transformation T ,

which directs the flow field to be smooth,

Ereg(T ) =

∫∫

ψ(‖∇u(x, y)‖2+‖∇v(x, y)‖2)dxdy. (4)

To minimize the energy (1), the NLV algorithm alter-

nates between updating the transformation T , the ideal im-

age J , and the patch database DB. The updates of T and J

are performed with an Iterative Reweighted Least Squares

(IRLS) type algorithm [2].

3.2. Multiview NLV

When more than a single view of the scene is avail-

able, we want the detection and correction of the non-local

variations to be consistent across views. In this section

we present our formulation for revealing non-local varia-

tions in a pair of images. This formulation can be easily

extended to more than two images. Due to space limita-

tions the extension to k-views is not included in this ver-

sion (go to our website http://cgm.technion.ac.il/Computer-

Graphics-Multimedia/Software/MultiViewNLV for an ex-

tended version of this work).

Let I1 and I2 be two images of the same scene which

contain inherent recurring structures with small variations.

The images could be a stereo pair, or taken from different

views and differently illuminated. The aim of our formu-

lation is to recover two idealized images J1 and J2 with

reduced structural variance, which are consistent with each

other such that they correspond to a plausible valid scene.

For example, in Figure 1, we want the porches on Gaudi’s

Casa Mila to deform consistently across the two views, cor-

responding to a 3D building with fewer depth variations. As

can be seen in the figure, idealizing each image separately

destroys the geometrical structure of the scene since each

image is manipulated differently and converges to a differ-

ent local minimum.

Denote by T1 and T2 the idealizing transformations

with corresponding flow-fields (u1(x, y), v1(x, y)) and

(u2(x, y), v2(x, y)), so that the corrected input images are

T1{I1}(x, y) = I1(x+ u1(x, y), y + v1(x, y)),

T2{I2}(x, y) = I2(x+ u2(x, y), y + v2(x, y)). (5)

A naive way to determine T1 and T2, would be to mini-

mize the single-view energy (1) for each of the views in-

dependently (with two auxiliary ‘ideal’ images J1 and J2,
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respectively). However, in order to obtain consistent trans-

formations, we also incorporate a geometrical consistency

constraint through a correspondence loss Ecorr. Our multi-

view energy is thus defined as:

EMV-NLV(T1, J1,DB1, T2, J2,DB2) =

ENLV(T1, J1,DB1) + ENLV(T2, J2,DB2)

+ αcEcorr(T1, T2, J1, J2), (6)

where αc is a parameter tuning the importance of multiview

consistency. We examine two options for the correspon-

dence loss, described below.

Before we define the loss, we note that it is important to

solve our optimization problem in a single coordinate sys-

tem. To do so, we set one of the images as the anchor view

and the second image is warped to the anchor image co-

ordinates. Without loss of generality, we choose I1 as the

anchor and I2 is warped to the anchor coordinates. To make

our formulation as simple as possible, we refer to I2 as the

warped input image. The recovered ideal images J1 and J2,

and transformations T1 and T2, are obtained in the anchor

view coordinate system. To get back to the original coor-

dinate system, we unwarp the recovered transformation and

apply it to the original input image.

Transformation consistency The first option for the cor-

respondence loss is to constrain the idealizing transforma-

tions T1 and T2 to be similar. This can be done by de-

manding similarity between their corresponding flow-fields.

Specifically, letting wx(x, y) = u1(x, y) − u2(x, y) and

wy = v1(x, y)−v2(x, y), we define the transformation con-

sistency loss to be

Ecorr(T1, T2) =
∫∫

(

w2

x(x, y) + w2

y(x, y)
)

dxdy. (7)

This loss penalizes large deviations between the recovered

transformations of the two views.

Appearence consistency A second option for the corre-

sponds loss is to constrain the idealized images to have sim-

ilar appearance, while constraining the transformation dif-

ferences to be smooth. For this penality to be meaningful,

we work in the coordinates of the input images, thus

Ecorr(T1, J1, T2, J2) =
λ
αc

∫∫

ψ
(

‖T −1

1
{J1}(x, y)− T −1

2
{J2}(x, y)‖2

)

dxdy

+

∫∫

ψ
(

‖∇wx(x, y)‖2 + ‖∇wy(x, y)‖2
)

dxdy. (8)

Here ψ is as in (3) and (4), (wx, wy) is as in (7), and the

integrals are only over valid pixels (where I2 was mapped

to I1 with high confidence).

Algorithm 1 Multi-View NLV

Input: Images I1, I2; Correspondence field Dx, Dy .

Output: Ideal images J1, J2, Idealizing transformations

T1, T2.

Down-sample to coarsest scale

Warp I2 to I1 coordinates using Dx, Dy .

Initialize T1 and T2 to be identity mapping, J1 = I1 and

J2 = I2.

repeat

1. Database Update:

Set DB1, DB2 as all overlapping patches from J1
and J2, respectively.

2. Image Update:

Minimize 6 w.r.t. J1,J2
3. Transformation Update:

Minimize 6 w.r.t. T1, T2 ,

Upscale images and transformations

until Fine scale

Each of the proposed formulations has its advantages.

The transformation consistency formulation of (7), enables

processing images with completely different illuminations,

or even more extreme appearance differences. The appear-

ance consistency formulation of (8), assumes visual similar-

ity between the images. This is more limiting, on one hand,

but in scenarios when this assumption holds (e.g., video

frames or a stereo pair) the additional constraint could lead

to more accurate results. In practice, we have found that the

transformation consistency provided satisfactory results in

all our experiments. Therefore, we henceforth provide the

detailed algorithm description only for the transformation

consistency option, and leave the appearance consistency

algorithm to the supplementary.

4. Detailed Description of the Algorithm

To solve the optimization problem (6), we alternate be-

tween updating the patch databases DB1,DB2, the ideal

images J1, J2, and the transformations T1, T2, as summa-

rized in Algorithm 1. We run the algorithm in a coarse-to-

fine pyramid structure in order to find variations in different

scales. The scale of the coarsest pyramid level is selected

by the user according to the size of the repeating structures

of interest.

Database update In this step we update the databases

DB1,DB2 by extracting all overlapping patches from the

current ideal images J1, J2, respectively. These databases

are then held fixed throughout the other algorithm steps.

Image update In this step, we minimize the objective (6)

with respect to the ideal images J1, J2 while holding

6279



all other variables fixed. This step drives the patches

in J1, J2 to be similar to those in the current databases

DB1,DB2, while constraining the images to remain close

to the geometrically corrected versions of the input images,

T1{I1}, T2{I2}, and to each other. This has the effect of

strengthening the patch repetitions within J1, J2. To sim-

plify the exposition, we denote the geometrically corrected

input images as Ic
1
= T1{I1} and Ic

2
= T2{I2}.

Substituting the transformation consistency loss (7)

in (6), and retaining only the terms that depend on J1, J2,

we obtain the objective

Erec(J1, DB1) + Erec(J2, DB2)+

+ λEdata(T1{I1}, J1) + λEdata(T2{I2}, J2).
This objective is separable in J1 and J2, and each sub-

problem is identical to the one in the image update objective

of the single-image NLV algorithm. We thus use the same

solution technique as in [7]. Specifically, setting the gradi-

ent w.r.t. to J1 to zero, we get that

J1(x, y) = β1(x, y)Z1(x, y)+(1−β1(x, y))Ic1(x, y), (9)

where Z1 is an image obtained by replacing each patch in

J1 by a weighted combination of its K Nearest Neighbor

(NN) patches from the database DB1, and

β1(x, y) =
W 1

data(x, y)

W 1

data(x, y) +
h2

M2

. (10)

Here,M denotes the patch width, h is the bandwidth param-

eter in (2), and W 1

data(x, y) =
1

λ
ψ(‖J1(x, y) − Ic

1
(x, y)‖2).

Since Z1 and β1 are both functions of the unknown J1, we

alternate between updating J1 according to (9) and comput-

ing β1 using (10). The image J2 is updated similarly.

Transformation update In this step, we update the ide-

alizing transformations T1, T2 while keeping the images

J1, J2 fixed. We force T {I} to be similar to J and the trans-

formation to be piece-wise spatially smooth. The objective

to be minimized is

λEdata(T1{I1}, J1) + λEdata(T2{I2}, J2)
+ αrEreg(T1) + αrEreg(T2) + Ecorr(T1, T2). (11)

Substituting (3), (4), and (7), this objective becomes

λ

∫∫

ψ(‖J1(x, y)− I1(x+ u1, y + v1)‖2)dxdy

+ λ

∫∫

ψ(‖J2(x, y)− I2(x+ u2, y + v2)‖2)dxdy

+ αr

∫∫

ψ(|∇u1(x, y)|2 + |∇v1(x, y)|2)dxdy

+ αr

∫∫

ψ(|∇u2(x, y)|2 + |∇v2(x, y)|2)dxdy

+ αc

∫∫

(w2

x(x, y) + w2

y(x, y))dxdy, (12)

where (wx, wy) is the difference between the flow fields, as

in (7). This formulation is very similar to that of conven-

tional optical flow estimation. Only here we need to simul-

taneously determine two flow fields, which conform to two

data terms, two smoothness terms, and a consistency term

between them. We solve this optimization problem simi-

larly to the IRLS optical flow method of [20]. The (lengthy)

detailed derivations are provided in the Supplementary.

Implementation details To perform the initial coordinate

warping to the anchor view’s coordinates system, we com-

pute the correspondence field Dx, Dy between I1 and I2.

When the input is a stereo pair, we calculate the disparity

field using Semi-Global Matching (SGM) [12]. For uncon-

strained multi-view images that could have similar content,

but with different scales and illuminations, we used either

the robust correspondenc of [35] or that of SIFT-flow [22].

5. Empirical Evaluation

In this section we assess the capabilities of our proposed

multiview NLV algorithm and compare it to the single-

image NLV algorithm of [7]. Our results exhibit the main

contribution of the proposed approach that produces geo-

metrically consistent idealized image pairs that preserve the

original 3D structure properties, only idealized.

Our experiments were preformed on natural images with

a variety of textures and different kinds of repeated objects.

Some images were captured by us, and some were found

online. In addition we also tested several images that were

rendered from a 3D model using [11], in order to examine

specific phenomena under controlled conditions. More re-

sults are presented in the supplementary.

In all our experiments we applied the algorithms to the

original input images, using 3–4 pyramid levels, such that

in the coarsest level the patch size covers the largest repeat-

ing structure in the input image. A patch size ofM=15×15
was fixed for all scales, so that we cover different sizes of

repeating objects. For example, in the corn example in Fig-

ure 4, we can create uniform corn kernels (fine scale) as

well as aligned kernels rows (coarse scale). The results ob-

tained with appearance consistency and transformation con-

sistency were pretty much similar (when appearance con-

sistency could be applied), hence, we show here results for

the latter. The parameters were set to λ = 3, αr = 0.03,

αc=0.06, h=0.1, ǫ=1e−6, and K=30 NNs.

Multiview: Figures 1, 2 and 3 show example results for

images photographed from different views. In the case of

Figures 1 and 3 also at different occasions and by different

people, resulting in severe scale and illumination changes.

It can be seen that our multiview approach corrects the

variations in a consistent manner across views, resulting in

a corresponding idealized 3D shape, whereas, the single-

view NLV leads to different transformations and distorted

shapes. The visualization of the transformation flow-fields
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Input Multiview NLV Single-image NLV

Figure 2: Multiview vs. Single-image: NLV can reveal and correct the disorganization in the lollipop stand and cookie

box. However, “idealizing” each image independently with Single-image NLV results in inconsistencies, e.g., the lollies

on the top-left of the stand and rightmost cookies (we zoom-in on regions to highlight this). It is easier to see that in the

3D reconstructions that have holes in those areas and show overall awkward geometries. Conversely, our multiview NLV

approach reduces the irregularities in both images in a synchronized manner resulting in straightened candies and cookies, a

cylindrical stand and rectangular box.

in Figure 3 illustrates the importance of multiview corre-

spondence. The variations we wish to discover are those

inherent to the structures in the scene. However, when each

image is processed independently, a local minima solution

could be found. Enforcing the geometric correspondence

drives the optimization to find a solution that complies with

both images, and hence, tends to better comply with the

actual shape variations in the scene. We show the actual

modified images in the supplementary.

Stereo: Figure 4 shows results when the input images

are either taken by a stereo pair, or rectified images (we

used the ’Epipolar Rectification Toolkit’ [10]). It is evident

that single-image NLV results in inconsistent transforma-

tions, ruining the correspondence and leading to a 3D shape

with holes and distortions. Conversely, our multiview NLV

algorithm produces idealized images, and a corresponding

idealized 3D shape. For example, the corn kernels are reg-

ular and the cob’s shape is a smooth cylinder.

Correction vs. exaggeration: In Figure 5 we exemplify

how multiview NLV can both correct and exaggerate the

variations within the images. It is interesting to see how

both the color and the shape of the berries become more (or

less) regular when processed by our algorithm.

Different illuminations: We further tested our approach

on pairs of images taken from the same viewpoint, but with
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Figure 3: Flow correspondence: Given two images of the

colonnade in Piazza San Marco we can reveal the variations

between the seemingly identical colons and arches. Here

we show the transformation field between each input im-

age and its version with exaggerated variations via NLV. In

Multiview NLV the transformation fields of the two images

correspond, e.g., arches were expanded or shrunk consis-

tently in both views. Conversely, in Single-image NLV the

transformations are quite different and inconsistent, e.g., the

right region is purple (moves up and right) in one image and

green and yellow (moves down and left) in the other. This

indicates breaking the geometrical consistency.
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Input Multiview NLV Single-Image NLV Input Multiview NLV Single-Image NLV

Figure 4: Stereo: In these stereo-pairs NLV can straighten the wall relief patterns and regularize the corn kernels. When using

multiview NLV the corresponding 3D shapes are regularized as well. Conversely, single-image NLV ruins the geometrical

consistency, implying no corresponding correct 3D shape exists, hence the holes in the reconstruction.

Input Correction Exaggeration

Figure 5: Correction vs. exaggeration: NLV can reorga-

nize the berries to be of more similar color and shape, or

vice versa, it can extenuate the variations between them.

illumination and style differences (from the MIT-Adobe

FiveK Dataset [3]). Figure 6 presents one example re-

sult (more are provided in supplementary). It can be seen

that single-view NLV produces inconsistent transformation

hence blending the two images produces in a blurred result,

whereas our multiview NLV yields corresponding idealized

images and hence the blended result in sharp.

Parameter tuning: In Figures 7, 8 we analyze the effect

of tuning the parameter αc, which controls the correspon-

dence term. In Figure 7 the frames of a video of can-can

dancers were idealized together. For small αc the corre-

spondence between the input frames is weak, which, in this

case, results in unnatural deformation of the dancers’ legs.

Conversely, for large αc the correlation between the frames

is enforced, and therefore, the deformations do not occur.

It is important to note, however, that applying single-image

Input1 Input2

Single-image NLV Multiview NLV

Figure 6: Different illuminations. Here the input images

were taken from the same viewpoint, but were manipulated

to have different illuminations. Blending images that were

idealized with single-image NLV yields a blurry image due

to the inconsistencies across views. On the contrary, our

multiview NLV idealizes both images correspondingly, re-

sulting in a sharp blended image with straightened flower

beds and, nicely organized flowers.

NLV to each frame produces much worse results, evident

from the corresponding flow-field. The flow-field should

capture the dancers’ motion, which is the case for both mul-

tiview results, and not for the single-image NLV result.

In Figure 8 we show images of a rocky cliff in Yel-

lowstone that presents wavy texture and irregular structure.

Applying an idealizing transformation straightens the wavy

patterns. When αc is small each image is manipulated

almost independently, and the corresponding disparity ex-
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Input Large αc Small αc Single-image

Figure 7: The effect of parameter αc. Each column shows a pair of images, the flow field between them, and a zoom-in on

one of the dancers. Applying NLV to a pair of frames taken from a video of the Rocket Dancers aligns the dancer’s height

and pose. Enforcing correspondence between the frames through our multiview NLV approach with small αc results in some

artifacts, while large value of αc constrains the transformation, and hence the dancers are not distorted. In single-image NLV

the transformation each image undergoes is utterly different, hence, not only are there distortions within each frame, but also

the flow-field between the frames does not match the motion in the scene.
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Figure 8: The effect of parameter αc. When αc is small the constraint between the two views is loose, allowing the views

to deform differently from each other, which results in a less consistent 3D shape, in both correction and exaggeration.

hibits large depth variations. On the contrary, when αc is

large the images are manipulated in a synchronous man-

ner, and the corresponding disparity implies a smooth reg-

ular shape. Similarly, when exaggerating the variations, the

larger αc the larger are the depth variations.

6. Conclusions

We proposed an approach to revealing, correcting and

exaggerating Non-Local-Variations, in multiple views. Our

extensive experiments show the necessity of the multiview

approach for cases where the same scene is pictured more

than once. The multiview correspondence constraint re-

duces artifacts and modifies both color and shape variations

in a consistent manner. A future direction we intend to fol-

low is seeking variations in feature space, i.e., rather than

modifying image patches we intend to modify their deep

features. This could allow us to process images of similar

structure but different objects.
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