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Abstract

In this paper we discuss several forms of spatiotemporal

convolutions for video analysis and study their effects on

action recognition. Our motivation stems from the observa-

tion that 2D CNNs applied to individual frames of the video

have remained solid performers in action recognition. In

this work we empirically demonstrate the accuracy advan-

tages of 3D CNNs over 2D CNNs within the framework of

residual learning. Furthermore, we show that factorizing

the 3D convolutional filters into separate spatial and tempo-

ral components yields significantly gains in accuracy. Our

empirical study leads to the design of a new spatiotemporal

convolutional block “R(2+1)D” which produces CNNs that

achieve results comparable or superior to the state-of-the-

art on Sports-1M, Kinetics, UCF101, and HMDB51.

1. Introduction

Since the introduction of AlexNet [19], deep learning

has galvanized the field of still-image recognition with a

steady sequence of remarkable advances driven by insight-

ful design innovations, such as smaller spatial filters [30],

multi-scale convolutions [34], residual learning [13], and

dense connections [14]. Conversely, it may be argued that

the video domain has not yet witnessed its “AlexNet mo-

ment.” While a deep network (I3D [4]) does currently hold

the best results in action recognition, the margin of improve-

ment over the best hand-crafted approach (iDT [38]) is not

as impressive as in the case of image recognition. Further-

more, an image-based 2D CNN (ResNet-152 [25]) operat-

ing on individual frames of the video achieves performance

remarkably close to the state-of-the-art on the challenging

Sports-1M benchmark. This result is both surprising and

frustrating, given that 2D CNNs are unable to model tem-

poral information and motion patterns, which one would

deem to be critical aspects for video analysis. Based on

such results, one may postulate that temporal reasoning is

not essential for accurate action recognition, because of

the strong action class information already contained in the

static frames of a sequence.

In this work, we challenge this view and revisit the role

of temporal reasoning in action recognition by means of 3D

CNNs, i.e., networks that perform 3D convolutions over the

spatiotemporal video volume. While 3D CNNs have been

widely explored in the setting of action recognition [15, 35,

36, 4], here we reconsider them within the framework of

residual learning, which has been shown to be a powerful

tool in the field of still-image recognition. We demonstrate

that 3D ResNets significantly outperform 2D ResNets for

the same depth when trained and evaluated on large-scale,

challenging action recognition benchmarks such as Sports-

1M [16] and Kinetics [17].

Inspired by these results, we introduce two new forms

of spatiotemporal convolution that can be viewed as mid-

dle grounds between the extremes of 2D (spatial convolu-

tion) and full 3D. The first formulation is named mixed con-

volution (MC) and consists in employing 3D convolutions

only in the early layers of the network, with 2D convolu-

tions in the top layers. The rationale behind this design is

that motion modeling is a low/mid-level operation that can

be implemented via 3D convolutions in the early layers of

a network, and spatial reasoning over these mid-level mo-

tion features (implemented by 2D convolutions in the top

layers) leads to accurate action recognition. We show that

MC ResNets yield roughly a 3-4% gain in clip-level ac-

curacy over 2D ResNets of comparable capacity and they

match the performance of 3D ResNets, which have 3 times

as many parameters. The second spatiotemporal variant is

a “(2+1)D” convolutional block, which explicitly factorizes

3D convolution into two separate and successive operations,

a 2D spatial convolution and a 1D temporal convolution.

What do we gain from such a decomposition? The first

advantage is an additional nonlinear rectification between

these two operations. This effectively doubles the number

of nonlinearities compared to a network using full 3D con-

volutions for the same number of parameters, thus rendering

the model capable of representing more complex functions.

The second potential benefit is that the decomposition fa-

cilitates the optimization, yielding in practice both a lower

training loss and a lower testing loss. In other words we find

that, compared to full 3D filters where appearance and dy-
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namics are jointly intertwined, the (2+1)D blocks (with fac-

torized spatial and temporal components) are easier to opti-

mize. Our experiments demonstrate that ResNets adopting

(2+1)D blocks homogeneously in all layers achieve state-

of-the-art performance on both Kinetics and Sports-1M.

2. Related Work

Video understanding is one of the core computer vision

problems and has been studied for decades. Many research

contributions in video understanding have focused on de-

veloping spatiotemporal features for video analysis. Some

proposed video representations include spatiotemporal in-

terest points (STIPs) [21], SIFT-3D [27], HOG3D [18],

Motion Boundary Histogram [5], Cuboids [6], and Action-

Bank [26]. These representations are hand-designed and

use different feature encoding schemes such as those based

on histograms or pyramids. Among these hand-crafted

representations, improved Dense Trajectories (iDT) [38] is

widely considered the state-of-the-art, thanks to its strong

results on video classification.

After the breakthrough of deep learning in still-image

recognition originated by the introduction of the AlexNet

model [19], there has been active research devoted to the

design of deep networks for video. Many attempts in this

genre leverage CNNs trained on images to extract features

from the individual frames and then perform temporal in-

tegration of such features into a fixed-size descriptor using

pooling, high-dimensional feature encoding [41, 11], or re-

current neural networks [42, 7, 32, 2]. Karpathy et al. [16]

presented a thorough study on how to fuse temporal infor-

mation in CNNs and proposed a “slow fusion” model that

extends the connectivity of all convolutional layers in time

and computes activations though temporal convolutions in

addition to spatial convolutions. However, they found that

the networks operating on individual frames performed on

par with the networks processing the entire spatiotemporal

volume of the video. 3D CNNs using temporal convolu-

tions for recognizing human actions in video were arguably

first proposed by Baccouche et al. [1] and by Ji et al. [15].

But 3D convolutions were also studied in parallel for un-

supervised spatiotemporal feature learning with Restricted

Boltzmann Machines [35] and stacked ISA [22]. More re-

cently, 3D CNNs were shown to lead to strong action recog-

nition results when trained on large-scale datasets [36]. 3D

CNNs features were also demonstrated to generalize well to

other tasks, including action detection [28], video caption-

ing [24], and hand gesture detection [23].

Another influential approach to CNN-based video mod-

eling is represented by the two-stream framework intro-

duced by Simonyan and Zisserman [29], who proposed to

fuse deep features extracted from optical flow with the more

traditional deep CNN activations computed from color

RGB input. Feichtenhofer et al. enhanced these two-stream

networks with ResNet architectures [13] and additional con-

nections between streams [9]. Additional two-stream ap-

proaches include Temporal Segment Networks [39], Action

Transformations [40], and Convolutional Fusion [10]. No-

tably, Carreira and Zisserman recently introduced a model

(I3D) that combines two-stream processing and 3D convo-

lutions. I3D currently holds the best action recognition re-

sults on the large-scale Kinetics dataset.

Our work revisits many of the aforementioned ap-

proaches (specifically 3D CNNs, two-stream networks, and

ResNets) in the context of an empirical analysis deeply

focused on understanding the effects of different types of

spatiotemporal convolutions on action recognition perfor-

mance. We include in this study 2D convolution over

frames, 2D convolution over clips, 3D convolution, inter-

leaved (mixed) 3D-2D convolutions, as well as a decompo-

sition of 3D convolution into a 2D spatial convolution fol-

lowed by 1D temporal convolution, which we name (2+1)D

convolution. We show that when used within a ResNet ar-

chitecture [13], (2+1)D convolutions lead to state-of-the-

art results on 4 different benchmarks in action recognition.

Our architecture, called R(2+1)D, is related to Factorized

Spatio-Temporal Convolutional Networks [33] (FSTCN )

in the way of factorizing spatiotemporal convolutions into

spatial and temporal ones. However, FSTCN focuses on

network factorization, e.g. FSTCN is implemented by sev-

eral spatial layers at the lower layers and two parallel tem-

poral layers on its top. On the other hand, R(2+1)D fo-

cuses on layer factorization, i.e. factorizing each spatiotem-

poral convolution into a block of a spatial convolution and

a temporal convolution. As a result, R(2+1)D is alternat-

ing between spatial and temporal convolutions across the

network. R(2+1)D is also closely related to the Pseudo-3D

network (P3D) [25], which includes three different resid-

ual blocks that adapt the bottleneck block of 2D ResNets to

video. The blocks implement different forms of spatiotem-

poral convolution: spatial followed by temporal, spatial and

temporal in parallel, and spatial followed by temporal with

skip connection from spatial convolution to the output of

the block, respectively. The P3D model is formed by inter-

leaving these three blocks in sequence through the depth of

the network. In contrast, our R(2+1)D model uses a single

type of spatiotemporal residual block homogeneously in all

layers and it does not include bottlenecks. Instead, we show

that by making a careful choice of dimensionality for the

spatial-temporal decomposition in each block we can ob-

tain a model that is compact in size and that yet leads to

state-of-the-art action recognition accuracy. For example,

on Sports-1M using RGB as input, R(2+1)D outperforms

P3D by a margin of 9.1% in Clip@1 accuracy (57.0% vs

47.9%), despite the fact that P3D uses a 152-layer ResNet,

while our model has only 34 layers.
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Figure 1. Residual network architectures for video classification considered in this work. (a) R2D are 2D ResNets; (b) MCx are

ResNets with mixed convolutions (MC3 is presented in this figure); (c) rMCx use reversed mixed convolutions (rMC3 is shown here); (d)

R3D are 3D ResNets; and (e) R(2+1)D are ResNets with (2+1)D convolutions. For interpretability, residual connections are omitted.

3. Convolutional residual blocks for video

In this section we discuss several spatiotemporal convo-

lutional variants within the framework of residual learning.

Let x denote the input clip of size 3×L×H×W , where L

is the number of frames in the clip, H and W are the frame

height and width, and 3 refers to the RGB channels. Let

zi be the tensor computed by the i-th convolutional block

in the residual network. In this work we consider only

“vanilla” residual blocks (i.e., without bottlenecks) [13],

with each block consisting of two convolutional layers with

a ReLU activation function after each layer. Then the output

of the i-th residual block is given by

zi = zi−1 + F(zi−1; θi) (1)

where F(; θi) implements the composition of two convo-

lutions parameterized by weights θi and the application of

the ReLU functions. In this work we consider networks

where the sequence of convolutional residual blocks cul-

minates into a top layer performing global average pooling

over the entire spatiotemporal volume and a fully-connected

layer responsible for the final classification prediction.

3.1. R2D: 2D convolutions over the entire clip

2D CNNs for video [29] ignore the temporal ordering

in the video and treat the L frames analogously to chan-

nels. Thus, we can think of these models as reshaping the

input 4D tensor x into a 3D tensor of size 3L × H × W .

The output zi of the i-th residual block is also a 3D tensor.

Its size is Ni × Hi × Wi where Ni denotes the number of

convolutional filters applied in the i-th block, and Hi,Wi

are the spatial dimensions, which may be smaller than the

original input frame due to pooling or striding. Each fil-

ter is 3D and it has size Ni−1 × d × d, where d denotes

the spatial width and height. Note that although the filter is

3-dimensional, it is convolved only in 2D over the spatial

dimensions of the preceding tensor zi−1. Each filter yields

a single-channel output. Thus, the very first convolutional

layer in R2D collapses the entire temporal information of

the video in single-channel feature maps, which prevent any

temporal reasoning to happen in subsequent layers. This

type of CNN architecture is illustrated in Figure 1(a). Note

that since the feature maps have no temporal meaning, we

do not perform temporal striding for this network.

3.2. f­R2D: 2D convolutions over frames

Another 2D CNN approach involves processing indepen-

dently the L frames via a series of 2D convolutional resid-

ual block. The same filters are applied to all L frames. In

this case, no temporal modeling is performed in the convo-

lutional layers and the global spatiotemporal pooling layer

at the top simply fuses the information extracted indepen-

dently from the L frames. We refer to this architecture vari-

ant as f-R2D (frame-based R2D).

3.3. R3D: 3D convolutions

3D CNNs [15, 36] preserve temporal information and

propagate it through the layers of the network. The tensor

zi is in this case 4D and has size Ni ×L×Hi ×Wi, where

Ni is the number of filters used in the i-th block. Each filter

is 4-dimensional and it has size Ni−1 × t × d × d where t

denotes the temporal extent of the filter (in this work, we use

t = 3, as in [36, 4]). The filters are convolved in 3D, i.e.,

over both time and space dimensions. This type of CNN

architecture is illustrated in Figure 1(d).

3.4. MCx and rMCx: mixed 3D­2D convolutions

One hypothesis is that motion modeling (i.e., 3D convo-

lutions) may be particularly useful in the early layers, while

at higher levels of semantic abstraction (late layers), motion

or temporal modeling is not necessary. Thus a plausible

architecture may start with 3D convolutions and switch to
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Figure 2. (2+1)D vs 3D convolution. The illustration is given for

the simplified setting where the input consists of a spatiotemporal

volume with a single feature channel. (a) Full 3D convolution is

carried out using a filter of size t× d× d where t denotes the tem-

poral extent and d is the spatial width and height. (b) A (2+1)D

convolutional block splits the computation into a spatial 2D con-

volution followed by a temporal 1D convolution. We choose the

numbers of 2D filters (Mi) so that the number of parameters in our

(2+1)D block matches that of the full 3D convolutional block.

using 2D convolutions in the top layers. Since in this work

we consider 3D ResNets (R3D) having 5 groups of convo-

lutions (see Table 1), our first variant consists in replacing

all 3D convolutions in group 5 with 2D convolutions. We

denote this variant with MC5 (Mixed Convolutions). We

design a second variant that uses 2D convolutions in group

4 and 5, and name this model MC4 (meaning from group 4

and deeper layers all convolutions are 2D). Following this

pattern, we also create MC3 and MC2 variations. We omit

to consider MC1 since it is equivalent to a 2D ResNet (f-

R2D) applied to clip inputs. This type of CNN architec-

tures is illustrated in Figure 1(b). An alternative hypoth-

esis is that temporal modeling may be more beneficial in

the deep layers, with early capturing appearance informa-

tion via 2D convolutions. To account for such possibility,

we also experiment with “Reversed” Mixed Convolutions.

Following the naming convention of MC models, we de-

note these models as rMC2, rMC3, rMC4, and rMC5. Thus,

rMC3 would include 2D convolutions in block 1 and 2, and

3D convolutions in group 3 and deeper groups. This type of

CNN architecture is illustrated in Figure 1(c).

3.5. R(2+1)D: (2+1)D convolutions

Another possible theory is that full 3D convolutions may

be more conveniently approximated by a 2D convolution

followed by a 1D convolution, decomposing spatial and

temporal modeling into two separate steps. We thus design

a network architecture named R(2+1)D, where we replace

the Ni 3D convolutional filters of size Ni−1 × t × d × d

with a (2+1)D block consisting of Mi 2D convolutional fil-

ters of size Ni−1 × 1 × d × d and Ni temporal convolu-

tional filters of size Mi × t × 1 × 1. The hyperparameter

Mi determines the dimensionality of the intermediate sub-

space where the signal is projected between the spatial and
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Figure 3. Training and testing errors for R(2+1)D and R3D.

Results are reported for ResNets of 18 layers (left) and 34 layers

(right). It can be observed that the training error (thin lines) is

smaller for R(2+1)D compared to R3D, particularly for the net-

work with larger depth (right). This suggests that the the spatial-

temporal decomposition implemented by R(2+1)D eases the opti-

mization, especially as depth is increased.

the temporal convolutions. We choose Mi = ⌊ td
2
Ni−1Ni

d2Ni−1+tNi

⌋

so that the number of parameters in the (2+1)D block is

approximately equal to that implementing full 3D convolu-

tion. We note that this spatiotemporal decomposition can

be applied to any 3D convolutional layer. An illustration

of this decomposition is given in Figure 2 for the simplified

setting where the input tensor zi−1 contains a single channel

(i.e., Ni−1 = 1). If the 3D convolution has spatial or tem-

poral striding (implementing downsampling), the striding is

correspondingly decomposed into its spatial or temporal di-

mensions. This architecture is illustrated in Figure 1(e).

Compared to full 3D convolution, our (2+1)D decom-

position offers two advantages. First, despite not changing

the number of parameters, it doubles the number of nonlin-

earities in the network due to the additional ReLU between

the 2D and 1D convolution in each block. Increasing the

number of nonlinearities increases the complexity of func-

tions that can be represented, as also noted in VGG net-

works [30] which approximate the effect of a big filter by

applying multiple smaller filters with additional nonlinear-

ities in between. The second benefit is that forcing the 3D

convolution into separate spatial and temporal components

renders the optimization easier. This is manifested in lower

training error compared to 3D convolutional networks of the

same capacity. This is illustrated in Figure 3 which shows

training and testing errors for R3D and R(2+1)D having 18

(left) and 34 (right) layers. It can be seen that, for the same

number of layers (and parameters), R(2+1)D yields not only

lower testing error but also lower training error compared to

R3D. This is an indication that optimization becomes easier

when spatiotemporal filters are factorized. The gap in the

training losses is particularly large for the nets having 34

layers, which suggests that the facilitation in optimization

increases as the depth becomes larger.

We note that our factorization is closely related to

Pseudo-3D blocks (P3D) [25], which were proposed to

adapt the bottleneck block of R2D to video classification.

Three different pseudo-3D blocks were introduced: P3D-A,
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P3D-B, and P3D-C. The blocks implement different orders

of convolution: spatial followed by temporal, spatial and

temporal in parallel, and spatial followed by temporal with

skip connection from spatial convolution to the output of the

block, respectively. Our (2+1)D convolution is most closely

related to the P3D-A block, which however contains bottle-

necks. Furthermore, the final P3D architecture is composed

by interleaving these three blocks in sequence throughout

the network, with the exception of the first layer where 2D

convolution is used. We propose instead a homogeneous

architecture where the same (2+1)-decomposition is used

in all blocks. Another difference is that P3D-A is not pur-

posely designed to match the number of parameters with

the 3D convolutions. Despite the fact that R(2+1)D is very

simple and homogenous in its architecture, our experiments

show that it significantly outperforms R3D, R2D, and P3D

on Sports-1M (see Table 4).

4. Experiments

In this section we present a study of action recognition

accuracy for the different spatiotemporal convolutions pre-

sented in the previous section. We use Kinetics [4] and

Sports-1M [16] as the primary benchmarks, as they are large

enough to enable training of deep models from scratch.

Since a good video model must also support effective trans-

fer learning to other datasets, we include results obtained

by pretraining our models on Sports-1M and Kinetics, and

finetuning them on UCF101 [31] and HMDB51 [20].

4.1. Experimental setup

Network architectures. We constrain our experiments to

deep residual networks [13] owing to their good perfor-

mance and simplicity. Table 1 provides the specifications

of the two R3D architectures (3D ResNets) considered in

our experiments. The first has 18 layers, while the second

variant has 34 layers. Each network takes clips consisting

of L RGB frames with the size of 112 × 112 as input. We

use one spatial downsampling at conv1 implemented by

convolutional striding of 1× 2× 2, and three spatiotempo-

ral downsampling at conv3 1, conv4 1, and conv5 1

with convolutional striding of 2 × 2 × 2. From these

R3D models we obtain architectures R2D, MCx, rMCx,

and R(2+1)D by replacing the 3D convolutions with 2D

convolutions, mixed convolutions, reversed mixed convo-

lutions, and (2+1)D convolutions, respectively. Since our

spatiotemporal downsampling is implemented by 3D con-

volutional striding, when 3D convolutions are replaced by

2D ones, e.g., as in MCx and rMCx, spatiotemporal down-

sampling becomes only spatial. This difference yields ac-

tivation tensors of different temporal sizes in the last con-

volutional layer. For example, for f-R2D the output of the

last convolution layer is L× 7× 7, since no temporal strid-

ing is applied. Conversely, for R3D and R(2+1)D the last

layer name output size R3D-18 R3D-34

conv1 L×56×56 3×7×7, 64, stride 1 × 2× 2

conv2 x L×56×56

[

3×3×3, 64

3×3×3, 64

]

×2

[

3×3×3, 64

3×3×3, 64

]

×3

conv3 x L

2
×28×28

[

3×3×3, 128

3×3×3, 128

]

×2

[

3×3×3, 128

3×3×3, 128

]

×4

conv4 x L

4
×14×14

[

3×3×3, 256

3×3×3, 256

]

×2

[

3×3×3, 256

3×3×3, 256

]

×6

conv5 x L

8
×7×7

[

3×3×3, 512

3×3×3, 512

]

×2

[

3×3×3, 512

3×3×3, 512

]

×3

1×1×1 spatiotemporal pooling, fc layer with softmax

Table 1. R3D architectures considered in our experiments.

Convolutional residual blocks are shown in brackets, next to the

number of times each block is repeated in the stack. The dimen-

sions given for filters and outputs are time, height, and width, in

this order. The series of convolutions culminates with a global

spatiotemporal pooling layer that yields a 512-dimensional feature

vector. This vector is fed to a fully-connected layer that outputs the

class probabilities through a softmax.

convolutional tensor has size L

8
× 7 × 7. MCx and rMCx

models will yield different sizes in the time dimension, de-

pending on how many times temporal striding is applied (as

shown in the Table 1). Regardless of the size of output pro-

duced by the last convolutional layer, each network applies

global spatiotemporal average pooling to the final convolu-

tional tensor, followed by a fully-connected (fc) layer per-

forming the final classification (the output dimension of the

fc layer matches the number of classes, e.g., 400 for Kinet-

ics).

Training and evaluation. We perform our initial evalua-

tion on Kinetics, using the training split for training and the

validation split for testing. For a fair comparison, we set all

of the networks to have 18 layers and we train them from

scratch on the same input. Video frames are scaled to the

size of 128 × 171 and then each clip is generated by ran-

domly cropping windows of size 112 × 112. We randomly

sample L consecutive frames from the video with tempo-

ral jittering while training. In this comparison, we experi-

ment with two settings: models are trained on 8-frame clips

(L = 8) and 16-frame clips (L = 16). Batch normalization

is applied to all convolutional layers. We use a mini-batch

size of 32 clips per GPU. Although Kinetics has only about

240k training videos, we set epoch size to be 1M for tem-

poral jittering. The initial learning rate is set to 0.01 and

divided by 10 every 10 epochs. We use the first 10 epochs

for warm-up [12] in our distributed training. Training is

done in 45 epochs. We report clip top-1 accuracy and video

top-1 accuracy. For video top-1, we use center crops of 10
clips uniformly sampled from the video and average these

10 clip predictions to obtain the video prediction. Training
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Net # params Clip@1 Video@1 Clip@1 Video@1

Input 8×112×112 16×112×112

R2D 11.4M 46.7 59.5 47.0 58.9

f-R2D 11.4M 48.1 59.4 50.3 60.5

R3D 33.4M 49.4 61.8 52.5 64.2

MC2 11.4M 50.2 62.5 53.1 64.2

MC3 11.7M 50.7 62.9 53.7 64.7

MC4 12.7M 50.5 62.5 53.7 65.1

MC5 16.9M 50.3 62.5 53.7 65.1

rMC2 33.3M 49.8 62.1 53.1 64.9

rMC3 33.0M 49.8 62.3 53.2 65.0

rMC4 32.0M 49.9 62.3 53.4 65.1

rMC5 27.9M 49.4 61.2 52.1 63.1

R(2+1)D 33.3M 52.8 64.8 56.8 68.0

Table 2. Action recognition accuracy for different forms of con-

volution on the Kinetics validation set. All models are based on

a ResNet of 18 layers, and trained from scratch on either 8-frame

or 16-frame clip input. R(2+1)D outperforms all the other models.

is done with synchronous distributed SGD on GPU clusters

using caffe2 [3].

4.2. Comparison of spatiotemporal convolutions

Table 2 reports the clip top-1 and video top-1 action clas-

sification accuracy on the Kinetics validation set. There are

a few findings that can be inferred from these results. First,

there is a noticeable gap between the performance of 2D

ResNets (f-R2D and R2D) and that of R3D or mixed con-

volutional models (MCx and rMCx). This gap is 1.3− 4%
in the 8-frame input setting and becomes bigger (i.e. 1.8 −
6.7%) when models are trained on 16-frame clips as input.

This suggests that motion modeling is important for action

recognition. Note that all models (within the same setting)

see the same input and process all frames in each clip (ei-

ther 8 or 16 frames). The difference is that, compared to 3D

or MCx models which perform temporal reasoning through

the clip, R2D collapses and eliminates temporal information

after the first residual block, while f-R2D computes still-

image features from the individual frames. Among the dif-

ferent 3D convolutional models, R(2+1)D clearly performs

the best. It is 2.1−3.4% better than MCx, rMCx, R3D in the

8-frame setting, and 3.1−4.7% better in the 16-frame input

setting. This indicates that decomposing 3D convolutions

in separate spatial and temporal convolutions is better than

modeling spatiotemporal information jointly or via mixed

3D-2D convolutions. It also outperforms 2D ResNets (R2D

and f-R2D) by 4.7 − 6.1% in the 8-frame setting and by

6.3− 9.8% in the 16-frame input setting.

Figure 4 shows video top-1 accuracy on Kinetics valida-

tion set versus computational complexity (FLOPs) for dif-

ferent models. Figure 4(a) plots the models trained on 8-

frame clips while Figure 4(b) shows models with 16-frame

clip input. The most efficient network is R2D but it has the

poorest accuracy. In fact, R2D is about 7x faster than f-R2D

because it collapses the temporal dimension after conv1.
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Figure 4. Accuracy vs computational complexity for different

types of convolution on Kinetics. Different models are trained on

8-frame clips (left) and 16-frame clips (right). R(2+1)D achieves

the highest accuracy, producing about 3−3.8% accuracy gain over

R3D for the same computational cost.

In terms of accuracy, R2D gets similar performance to f-

R2D when trained on 8-frame clips, while it is 1.6% worse

than f-R2D in the 16-frame input setting. This is because

R2D performs temporal modeling only in the conv1 layer

and thus it handles poorly longer clip inputs. Interestingly,

rMC3 is more efficient than f-R2D since it performs tem-

poral striding in conv3 1, which yields smaller activation

tensors in all subsequent 2D convolutional layers. Con-

versely, f-R2D processes all frames independently and does

not perform any temporal striding. rMC2 is more costly

than rMC3, as it uses 2D convolutions in group 2, and does

not perform temporal striding in group 3. R(2+1)D has

roughly the same computational cost as R3D but it yields

higher accuracy. We note that the relative ranking between

different architectures is consistent across the two input set-

tings (8 vs 16 frame-clips). However, the gaps are bigger

for the 16-frame input setting. This indicates that temporal

modeling is more beneficial on longer clip inputs.

Why are (2+1)D convolutions better than 3D? Figure 3

presents the training and testing errors on Kinetics for R3D

and R(2+1)D, using 18-layers (left) and 34 layers (right).

We already know that R(2+1)D gives lower testing error

than R3D but the interesting message in this plot is that

R(2+1)D yields also lower training error. The reduction

in training error for R(2+1)D compared to R3D is particu-

larly accentuated for the architecture having 34 layers. This

suggests that the spatiotemporal decomposition of R(2+1)D

renders the optimization easier compared to R3D, espe-

cially as depth is increased.

4.3. Revisiting practices for video­level prediction

Varol et. al. [37] showed that accuracy gains can be ob-

tained by training video CNNs on longer input clips (e.g.

with 100 frames) using long-term convolutions (LTC). Here

we revisit this idea and evaluate this practice on Kinetics us-

ing R(2+1)D of 18 layers with varying input clip lengths: 8,

16, 24, 32, 40, and 48 frames. The outputs of the last con-

volution layer for these networks have different temporal

sizes, but once again we use a global spatiotemporal aver-

age pooling to generate a fixed-size representation which is
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Figure 5. Video-level accuracy on Kinetics. a) Clip and video ac-

curacy of a 18-layer R(2+1)D trained on clips of different lengths.

b) Video top-1 accuracy obtained by averaging over different num-

ber of clip predictions using the same model with 32 frames.

train finetune test training time Clip@1 Video@1

clip length (in frames) hours (%) (%)

8 none 8 11.8 52.8 64.8

8 none 32 11.8 51.6 59.0

32 none 32 59.8 60.1 69.4

8 32 32 20.5 59.8 68.0

Table 3. Training time/accuracy trade-off. Training and eval-

uation of R(2+1)D with 18 layers on clips with different length.

Training on shorter clips, then finetuning on longer clips gives the

best trade-off between total training time and accuracy. The train-

ing time is measured with 64 GPUs training in parallel.

fed to the fully-connected layer. Note that these networks

have the same number of parameters (since pooling involves

no learnable parameters). They simply see inputs of differ-

ent lengths. Figure 5 a) plots the clip-level and video-level

accuracy on Kinetics validation set with respect to differ-

ent input lengths. Note that video-level prediction is done

by averaging the clip-level predictions obtained for 10 clips

evenly spaced in the video. One interesting finding is that,

although clip accuracy continues to increase when we add

more frames, video accuracy peaks at 32 frames.

Since all these models have the same numbers of pa-

rameters, it is natural to ask “what causes the differences

in video-level accuracies?” In order to address this ques-

tion, we conduct two experiments. In the first experiment,

we take the model trained on 8-frame clips and test it us-

ing 32-frame clips as input. We found that this causes a

drop of 1.2% in clip accuracy and 5.8% in video accuracy

compared to testing on 8-frame clips. In the second ex-

periment, we finetuned the 32-frame model using as initial-

ization the parameters of the 8-frame model. In this case,

the net achieves results that are almost as good as when

learning from scratch on 32-frame clips (59.8% vs 60.1%)

and produces a gain of 7% over the 8-frame model. The

advantage, however, is that finetuning the 32-frame model

from the 8-frame net shortens considerably the total train-

ing time versus learning from scratch, since the 8-frame

model is 7.3x faster than the 32-frame model in terms of

FLOPs. These two experiments suggest that training on

longer clips yields different (better) clip-level models, as the

filters learn longer-term temporal patterns. This improve-

method Clip@1 Video@1 Video@5

DeepVideo [16] 41.9 60.9 80.2

C3D [36] 46.1 61.1 85.2

2D Resnet-152 [13] 46.5* 64.6* 86.4*

Conv pooling [42] - 71.7 90.4

P3D [25] 47.9* 66.4* 87.4*

R3D-RGB-8frame 53.8 - -

R(2+1)D-RGB-8frame 56.1 72.0 91.2

R(2+1)D-Flow-8frame 44.5 65.5 87.2

R(2+1)D-Two-Stream-8frame - 72.2 91.4

R(2+1)D-RGB-32frame 57.0 73.0 91.5

R(2+1)D-Flow-32frame 46.4 68.4 88.7

R(2+1)D-Two-Stream-32frame - 73.3 91.9

Table 4. Comparison with the state-of-the-art on Sports-1M.

R(2+1)D outperforms C3D by 10.9%, and P3D by 9.1% and it

achieves the best reported accuracy on this benchmark to date.

*These baseline numbers are taken from [25].

ment cannot be obtained “for free” by simply lengthening

the clip input at test time. This is consistent with the find-

ings in [37]. Table 3 reports the total training time and ac-

curacy of R(2+1)D with 18 layers trained and evaluated on

clips of varying length.

How many clips are needed for accurate video-level pre-

diction? Figure 5 b) plots the video top-1 accuracy of

R(2+1)D with 18 layers trained on 32-frame clips when we

vary the number of clips sampled from each video. Using

20 crops is only about 0.5% worse than using 100 crops, but

the prediction is 5x faster.

4.4. Action recognition with a 34­layer R(2+1)D net

In this section we report results using a 34-layer version

of R(2+1)D, which we denote as R(2+1)D-34. The architec-

ture is the same as that shown in the right column of Table 1,

but with 3D convolutions decomposed spatiotemporally in

(2+1)D. We train our R(2+1)D architecture on both RGB

and optical flow inputs and fuse the prediction scores by av-

eraging, as proposed in the two-stream framework [29] and

subsequent work [4, 9]. We use Farneback’s method [8] to

compute optical flow because of its efficiency.

Datasets. We evaluate our proposed R(2+1)D architec-

ture on four public benchmarks. Sports-1M is a large-scale

dataset for classification of sport videos [16]. It includes

1.1M videos of 487 fine-grained sport categories. It is pro-

vided with a train/test split. Kinetics has about 300K videos

of 400 human actions. We report results on the valida-

tion set as the annotations on the testing set is not pub-

lic available. UCF101 and HMDB51 are well-established

benchmarks for action recognitions. UCF101 has about

13K videos of 101 categories, whereas HMDB51 is slightly

smaller with 6K videos of 51 classes. Both UCF101 and

HMDB51 are provided with 3 splits for training and test-

ing. We report the accuracy by averaging over all 3 splits.

Results on Sports-1M. We train R(2+1)D-34 on Sports-

1M [16] with both 8-frame and 32-frame clip inputs. Train-
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method pretraining dataset top1 top5

I3D-RGB [4] none 67.5 87.2

I3D-RGB [4] ImageNet 72.1 90.3

I3D-Flow [4] ImageNet 65.3 86.2

I3D-Two-Stream [4] ImageNet 75.7 92.0

R(2+1)D-RGB none 72.0 90.0

R(2+1)D-Flow none 67.5 87.2

R(2+1)D-Two-Stream none 73.9 90.9

R(2+1)D-RGB Sports-1M 74.3 91.4

R(2+1)D-Flow Sports-1M 68.5 88.1

R(2+1)D-Two-Stream Sports-1M 75.4 91.9

Table 5. Comparison with the state-of-the-art on Kinetics.

R(2+1)D outperforms I3D by 4.5% when trained from scratch

on RGB. R(2+1)D pretrained on Sports-1M outperforms I3D pre-

trained on ImageNet, for both RGB and optical flow. However, it

is slightly worse than I3D (0.3%) when fusing the two streams.

ing is done with a setup similar to that described in sec-

tion 4.1. We also train a R3D-34 baseline for comparison.

Videos in Sports-1M are very long, over 5 minutes on av-

erage. Thus, we uniformly sample 100 clips per video (in-

stead of 10 clips on Kinetics) for computing the video top-1

accuracy. Average pooling is used to aggregate the predic-

tions over the 100 clips to obtain the video-level predictions.

Table 4 shows the results on Sports-1M. Our R(2+1)D

model trained on RGB performs the best among the meth-

ods in this comparison. In clip-level accuracy, it outper-

forms C3D by 10.9% and P3D by 9.1%. R(2+1)D also out-

performs 2D ResNet by 10.5%. We note that the 2D ResNet

and P3D have 152 layers while R(2+1)D has only 34 lay-

ers (or 67 if we count the spatiotemporal decomposition as

producing two layers). The R3D baseline is also inferior

to R(2+1)D (by 2.3%) when the input is 8 RGB frames,

which confirms the benefits of our (2+1)D decomposition.

R(2+1)D achieves a video-level accuracy of 73.3% which,

to our knowledge, is the best published result on Sports-1M.

Results on Kinetics. We assess the performance of

R(2+1)D-34 on Kinetics, both when training from scratch

on the Kinetics training split, as well as when finetuning

the model pretrained on Sports-1M. When training from

scratch, we use the same setup as in section 4.1. When fine-

tuning, we start with a base learning rate that is 10 times

smaller (i.e., 0.001), and reduce it by a factor of 10 ev-

ery 4 epochs. Finetuning is completed at 15 epochs. Ta-

ble 5 reports the results on Kinetics. R(2+1)D outperforms

I3D by 4.5% when both models are trained from scratch on

RGB input. This indicates that our R(2+1)D is a competi-

tive architecture for action recognition. Our R(2+1)D pre-

trained on Sports-1M also outperforms I3D pretrained on

ImageNet by 2.2% when using RGB as input and by 3.2%
when trained on optical flow. However, it is slightly worse

than I3D (by 0.3%) when fusing the two streams.

Transferring models to UCF101 and HMDB51. We also

experiment with finetuning R(2+1)D on UCF101 [31] and

HMDB51 [20] using models pretrained on Sports-1M and

method pretraining dataset UCF101 HMDB51

Two-Stream [29] ImageNet 88.0 59.4

Action Transf. [40] ImageNet 92.4 62.0

Conv Pooling [42] Sports-1M 88.6 -

FSTCN [33] ImageNet 88.1 59.1

Two-Stream Fusion [10] ImageNet 92.5 65.4

Spatiotemp. ResNet [9] ImageNet 93.4 66.4

Temp. Segm. Net [39] ImageNet 94.2 69.4

P3D [25] ImageNet+Sports1M 88.6 -

I3D-RGB [4] ImageNet+Kinetics 95.6 74.8

I3D-Flow [4] ImageNet+Kinetics 96.7 77.1

I3D-Two-Stream [4] ImageNet+Kinetics 98.0 80.7

R(2+1)D-RGB Sports1M 93.6 66.6

R(2+1)D-Flow Sports1M 93.3 70.1

R(2+1)D-TwoStream Sports1M 95.0 72.7

R(2+1)D-RGB Kinetics 96.8 74.5

R(2+1)D-Flow Kinetics 95.5 76.4

R(2+1)D-TwoStream Kinetics 97.3 78.7

Table 6. Comparison with the state-of-the-art on UCF101 and

HMDB51. Our R(2+1)D finetuned from Kinetics is nearly on par

with I3D which, however, uses ImageNet in addition to Kinetics

for pretraining. We found that Kinetics is better than Sports-1M

for pretraining our models.

Kinetics. For the models based on Kinetics pretraining, we

use the models learned from scratch on Kinetics (not those

finetuned from Sports-1M) in order to understand the effects

of pretraining on different datasets. Table 6 reports results

of R(2+1)D compared to prior methods. R(2+1)D outper-

forms all methods in this comparison, except for I3D which,

however, used ImageNet in addition to Kinetics for pretrain-

ing. R(2+1)D (with Kinetics pretraining) is comparable to

I3D when trained on RGB but it is slightly worse than I3D

when trained on optical flow. This can be explained by not-

ing that R(2+1)D uses Farneback’s optical flow, while I3D

uses a more accurate flow, TV-L1 [43] which is, however,

one order of magnitude slower than Farneback’s method.

5. Conclusions

We have presented an empirical study of the effects of

different spatiotemporal convolutions for action recognition

in video. Our proposed architecture R(2+1)D achieves re-

sults comparable or superior to the state of the art on Sports-

1M, Kinetics, UCF101, and HMDB51. We hope that our

analysis will inspire new network designs harnessing the

potential efficacy and modeling flexibility of spatiotemporal

convolutions. While our study was focused on a single type

of network (ResNet) and a homogenous use of our (2+1)D

spatiotemporal decomposition, future work will be devoted

to searching more suitable architectures for our approach.
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