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Abstract

The goal of this paper is to take a single 2D image of

a scene and recover the 3D structure in terms of a small

set of factors: a layout representing the enclosing surfaces

as well as a set of objects represented in terms of shape and

pose. We propose a convolutional neural network-based ap-

proach to predict this representation and benchmark it on a

large dataset of indoor scenes. Our experiments evaluate a

number of practical design questions, demonstrate that we

can infer this representation, and quantitatively and quali-

tatively demonstrate its merits compared to alternate repre-

sentations.

1. Introduction

How should we represent the 3D structure of the scene in

Figure 1? Most current methods for 3D scene understand-

ing produce one of two representations: i) a 2.5D image of

the scene such as depth [7, 26] or surface normals [4, 9];

or ii) a volumetric occupancy grid/voxels representation in

terms of a single voxel grid [5, 10, 33]. Accordingly, they

miss a great deal. First, all of these representations erase

distinctions between objects and would represent Figure 1

as an undifferentiated soup of surfaces or volumes rather

than a set of chairs next to a table. Moreover, the 2.5D rep-

resentations intrinsically cannot say anything about the in-

visible portions of scenes such as the thickness of a table or

presence of chair legs. While in principle voxel-based rep-

resentations can answer these questions, they mix together

beliefs about shape and pose and cannot account for the fact

that it is easy to see that the chair has a thin back but difficult

to determine its exact depth.

We present an alternative: we should think of scenes as

being composed of a distinct set of factors. One represents

the layout, which we define as the scene surfaces that en-

close the viewer, such as the walls and floor, represented in

terms of their full, amodal extent i.e. what the scene would

look like without the objects. The others represent a discrete

set of objects which are in turn factored into 3D shape (vox-

els) and pose (location and rotation). This representation
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Figure 1: Our 3D representation. Given a single 2D image (a)

we infer a 3D representation which is factored in terms of a set of

objects inside an enclosed volume. We show it from the camera

view in (b) and a novel view in (c). By virtue of being factored,

our representation trivially enables answering questions that are

impossible in other ones. For example, we can give the scene (d)

without any objects; (e) without the table; or (f) answer “what

would it be like if I moved the chair”. These and all results best

viewed in color on screen.

solves a number of key problems: rather than a muddled

mess of voxels, the scene is organized into discrete entities,

permitting subsequent tasks to reason in terms of questions

like “what would the scene be like if I moved that chair.”

In terms of reconstruction itself, the factored approach does

not conflate uncertainties in pose and shape, and automat-

ically allocates voxel resolution, enabling high resolution

output for free.

One needs a way to infer this representation from sin-

gle 2D images. We thus propose an approach in Section 3

which is summarized in Figure 2. Starting with an image

and generic object proposals, we use convolutional neural

networks (CNNs) to predict both the layout, i.e. amodal

scene surfaces, as well as the underlying shape and pose

of objects. We train this method using synthetic data [30],

although we show it on both synthetic and natural data.

We investigate a number of aspects of our method in Sec-

tion 4. Since our approach is the first method to tackle this

task and many design decisions are non-obvious, we first

present extensive ablations in Section 4.3. We then demon-

strate that we can infer the full representation and find cur-

rent performance limitations in Section 4.4. Next, since one
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might naturally wonder how the representation compares to

others, we compare it to the more standard representations

of a per-pixel depthmap and single voxel grid in Section 4.5.

Figure 6 qualitatively and Figure 8 quantitatively demon-

strate the benefits of our representation. We finally show

qualitative results on the NYUv2 dataset.

2. Related Work

Our work aims to take a single 2D image and factor it

into a set of constituent 3D components, and thus touches

on a number of topics in 3D scene understanding.

The goal of recovering 3D properties from a 2D image

has a rich history in computer vision starting from Robert’s

Blocks World [24]. In the learning-based era, this has

mainly taken the form of estimating view-based per-pixel

3D properties of scenes such as depth [7, 26] or orientation

information [9, 16]. These approaches are limited in the

sense that they intrinsically cannot say anything about non-

visible parts of the scene. This shortcoming has motivated

a line of work aiming to infer volumetric reconstructions

from single images [5, 10, 33], working primarily with vox-

els. These have been exclusively demonstrated with preseg-

mented objects in isolation, and never with scenes: scenes

pose the additional challenges of delineating objects, prop-

erly handling uncertainty in shape and pose, and scaling up

resolution. Our representation automatically and naturally

handles each of these challenges.

Our goal of a volumetric reconstruction of a scene has

been tackled under relaxed assumptions that alleviate or

eliminate the difficulty of handling either shape or pose. For

example, with RGBD input, one can complete the invisible

voxels from the visible ones as in [30]. Here, the problem of

pose is eliminated: because of the depth sensor, one knows

where the objects are, and the remaining challenge is infer-

ring the missing shape. Similarly, in CAD retrieval scenar-

ios, one assumes the object [3, 4, 13, 19, 20] or scene [17]

can be represented in terms of a pre-determined dictionary

of shapes; a great deal of earlier work [12, 18, 27] tackled

this with a dictionary of box models. The challenge then

is to detect these objects and figure out their pose. In con-

trast, we jointly infer both shape and pose. Our approach,

therefore does not rely on privileged information such as the

precise location of the visible pixels or is restricted to a set

of pre-determined objects.

In the process of predicting our representation, we turn

to tools from the object detection literature. There is, of

course, a large body of work between classic 2D detection

and full 3D reconstruction. For instance, researchers have

predicted 3D object pose [23, 32], low-dimensional para-

metric shapes [8, 34], and surface normals [28]. Our rep-

resentation is richer than this past work, providing detailed

volumetric shape and pose, as well as the layout of the rest

of the scene.

3. Approach

The goal of our method is to take a single 2D image and

infer its 3D properties in terms of scene layout, object shape

and pose. We attack this problem with two main compo-

nents, illustrated in Figure 2, that can be trained end-to-

end. The first is a scene network that maps a full image

to an amodal layout describing the scene minus the object.

The second is an object-centric network that maps bound-

ing boxes to the their constituent factors: shape and pose.

We now describe the architectural details of each compo-

nent, the loss functions learned to learn each, and the train-

ing and inference procedures. We present a sketch of the

architecture in favor of spending more time on presenting

experiments; we follow standard design decisions but full

details appear in the supplemental [1].

3.1. Layout

We first predict the layout. This represents the enclosing

surfaces of the scene, such as the walls and floor. Specifi-

cally, the layout is the amodal extent of these surfaces (i.e.

the floor as it exists behind the objects of the scene). Past ap-

proaches to this [15, 27] have primarily posed this in terms

of fitting a vanishing-point-aligned 3D box, which intrinsi-

cally cannot generalize to non-box environments. Here, we

treat the more general case as 2.5D problem and propose to

predict the layout as the disparity (i.e. inverse depth) map

of the scene as if there were no objects.

We predict the layout using the layout module, a skip-

connected network similar to [21]. The first half of the net-

work takes the image and maps it to an intermediate repre-

sentation, slowly decreasing spatial resolution and increas-

ing increasing feature channel count. The latter half, upcon-

volves in the reverse fashion while concatenating features

from the encoder. We train our network end-to-end using

the L1 objective, or if Ĥ denotes our prediction and H the

ground-truth layout, LH = ||H− Ĥ||1.

3.2. Object Predictions

We represent the shape of an object as a 323 voxel oc-

cupancy grid V and the pose as anisotropic scaling c, fol-

lowed by a rotation represented by a quaternion q, and fi-

nally a translation t. Without any other constraints, this rep-

resentation is underdetermined: one can apply many types

of changes to the shape and undo them in the pose. There-

fore, we represent the shape in a canonical (i.e. front-facing

and upright) coordinate frame which is normalized and cen-

tered so the object dimensions vary between [−0.5m, 0.5m].
This in turn specifies the pose.

Architecture and features. First, we describe how the sys-

tem maps an image and bounding box to this representation;

the following subsection explains how this is done for a set

of regions. Given a feature vector, linear layers map directly
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Figure 2: Overview of our framework. We take as input an image and set of bounding boxes. The scene layout H is predicted by

the layout module, a skip-connected CNN. Each bounding box is then represented by features from three sources: ROI-pooled features

extracted from a fine module that uses the original resolution, full image context features from the coarse module, and the bounding-box

location. These features are concatenated and passed through several layers, culminating in the prediction of a shape code s, scale c,

translation t, and rotation of the object q. The shape code is mapped to voxels V by the shape decoder.

to t, q, and c. Since V is high dimensional and structured,

we first map to a shape code s which is then reshaped and

upconvolved to V.

We use three sources to construct our feature vector. The

primary one is the fine module, which maps the image at its

original resolution to convolutional feature maps, followed

by ROI pooling to obtain features for the window [11]. As

additional information, we also include fixed-length fea-

tures from: (1) a coarse module that maps the entire im-

age at a lower resolution through convolutional layers then

vectorizes it; and (2) bounding box module mapping the

bounding box location through fully connected layers. The

three sources are concatenated. In the experiment section,

we report experiments without the contextual features.

Shape loss. The shape of the object is a discrete volumetric

grid V, which we decode from a fixed-length shape code s

using the shape decoder. Our final objective is a per-voxel

cross-entropy loss between the prediction V̂ and ground-

truth V, or

LV =
1

N

∑

n

Vn log V̂n + (1−Vn) log(1− V̂n). (1)

In practice, this objective is difficult to optimize, so we

bootstrap the network following [10]. We learn an autoen-

coder on voxels whose bottleneck and decoder match our

network in size. In the first stage, the network learns to

mimic the autoencoder: given a window of the object, we

minimize the L2 distance between the autoencoder’s bot-

tleneck representation and the predicted shape code. The

voxel decoder is then initialized with the autoencoder’s de-

coder and the network is optimized jointly to minimize LV .

Rotation Prediction. We parameterize rotation with a unit-

normalized quaternion. We found that framing the problem

as classification as in [31,32] handled the multi-modality of

the problem better. We cluster the quaternions in the train-

ing set into 24 bins and predict a probability distribution kd

over them. Assuming k denotes the ground-truth bin, we

minimize the negative log-likelihood,

Lc
q = − log(kk

d). (2)

The final prediction is then the most likely bin. We evalu-

ate the impact of this choice in the experiment section and

compare it with a standard squared Euclidean loss.

Scale and translation prediction. Finally, anisotropic

scaling and translation are formulated as regression tasks,

and we minimize the squared Euclidean loss (in log-space

for scaling):

Lt = ||t− t̂||22; and Lc = || log(c)− log(ĉ)||22. (3)

3.3. Training to Predict A Full Scene

We now describe how to put these components together

to predict the representation for a full scene: so far, we have

described how to predict with the boxes given as opposed

to the case where we do not know the boxes a-priori. At

training time, we assume that we have a dataset of annotated

images in which we have the box as well as corresponding

3D structure information (i.e., pose, shape, etc.).

Proposals. To handle boxes, we use an external bounding-

box proposal source and predict, from the same features as

those used for object prediction, a foreground probability f

representing the probability that a proposal corresponds to
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a foreground object and optimize this with a cross-entropy

loss. If B+ and B− represent foreground and background

proposals, our final objective is
∑

b∈B+

(LV + Lq + Lt + Lr − ln(f)) +
∑

b∈B−

ln(1−f),

which discriminates between foreground and background

proposals and predicts the 3D structure corresponding to

foreground proposals.

For proposals, we use 1K edge boxes [37] proposals per

image. We assign proposals to ground truth objects based

on modal 2D bounding box IoU. We treat proposals with

more than 0.7 IoU as foreground-boxes (B+) and those with

less than 0.3 IoU with any ground truth object as back-

ground boxes (B−).

Training Details. We initialize the coarse and fine convo-

lution modules with Renset-18 [14] pretrained on ILSVRC

[25] and all other modules randomly. We train the object

network for 8 epochs with the autoencoder mimicking loss

and then 1 additional epoch with the volumetric loss. Full

model specification appears in the supplemental [1].

4. Experiments

We now describe the experiments done to validate our

proposed representation and the described approach for pre-

dicting it. We first introduce the datasets that we use, one

synthetic and one real, and the metrics used to evaluate our

rich representation. Since our approach is the first to pre-

dict this representation, we begin by analyzing a number

of design decisions by evaluating shape prediction in isola-

tion. We then analyze the extent to which we can predict

the representation and identify current performance bottle-

necks. Having demonstrated that we can infer our represen-

tation, we compare the representation itself with alternate

ones both qualitatively and quantitatively. Finally, we show

some results on natural images.

4.1. Datasets

We use two datasets. The first is SUNCG, introduced

by Song et al. [30]. The dataset consists of 3D models of

houses created by users on an online modeling platform and

has a diverse set of scenes with numerous objects and real-

istic clutter and therefore provides a challenging setup to

test our approach. We use the physically-based renderings

provided by Zhang et al. [35] for our experiments and ran-

domly partition the houses into a 70%-10%-20% train, val-

idation and test split. Overall, we obtain over 400,000 ren-

dered training images and for each image we associate the

visible objects with their corresponding 3D code by parsing

the available house model. However, the objects present in

the images are often too diverse e.g. fruit-baskets, ceiling

lights, doors, candlesticks etc. and detecting and recon-

structing these is extremely challenging so we restrict the

set of ground-truth boxes to only correspond to a small but

diverse set of indoor object classes – bed, chair, desk, sofa,

table, television. The second is NYU [29], which we use

to verify qualitatively that our model is able to generalize,

without additional training, to natural images.

4.2. Metrics

Our method and representation subsumes a number of

different past works and thus there is no standard way of

evaluating it. We therefore break down the components of

our approach and use the standard evaluation metrics for

each component (i.e. V, q, t, and c). For each component,

we define an error ∆ that measures the discrepancy between

the predicted value and the ground truth as well as a thresh-

old δ that defines a true positive in the detection setting. For

evaluating shape prediction in isolation, we aggregate re-

sults by taking the median over ∆ and fraction of instances

with distance below (or for IoU, overlap above) δ.

Shape (V): We use the standard [5] protocol and set ∆V to

measuring intersection over union (IoU) and use as thresh-

old δV = 0.25.

Rotation (q): We compute the geodesic distance between

two rotations, or ∆q(R1,R2) = (2)−1/2|| log(RT
1 R2)||F .

We set δq = π
6

following [32].

Scale (c): We define distance as the average loga-

rithmic difference in scaling factors, or ∆(c1, c2) =
1

3

∑3

i=1
| log2(ci1) − log2(c

i
2)|. We threshold at δc = 0.5,

corresponding to being within a factor of
√
2.

Translation (t): We use the standard Euclidean distance

∆t(t1, t2) = ||t1 − t2|| and threshold at δt = 1m.

2D Bounding Box (b): In the detection setting, we also con-

sider the 2D bounding box (b) and define ∆b and δB as

standard 2D IoU with the standard threshold of 0.5.

Detection Metrics. In the detection setting, we combine

these metrics and define a true positive as one within/above

the threshold for all of the five metrics. We use this to define

average precision AP(δb, δV , δr, δt, δc). To better under-

stand performance limitations, we consider variants where

we relax one of these predicates (indicated by a ·).

4.3. Analyzing 3D Object Prediction

This is the first work that attempts to predict this repre-

sentation from images and so many design decisions along

the way were not obvious. We therefore study the 3D pre-

diction model in isolation to analyze the impact of these

approaches. This avoids mixing detection and shape pre-

diction errors, which helps remove confounding factors; it

is also the setting in which all other voxel prediction ap-

proaches have been evaluated historically.

Qualitative Results. We first show some predictions of the

method using ground-truth boxes in Figure 3. Our approach

is able to obtain a good interpretation of the image in terms

of a scene and set of objects.
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Figure 3: Predicted 3D representation using ground-truth boxes. Left: Input RGB image. Middle (2nd and 3
rd column): Two views of

ground-truth 3D configuration of the objects in the scene. The first view corresponds to the camera view and the second to a slight rotation

towards the top. Right (4th and 5
th column): The same two views of our predicted 3D structure. We visualize the predicted object shape

by representing each voxel as a cube with size proportional to its occupancy probability and then transform it according to the predicted

scaling, rotation and translation. The colors associate the corresponding ground-truth and predicted objects.

Table 1: Performance of predictions on SUNCG with ground-truth boxes: We report the performance of the base network (quaternion

classification, use of context) and its variants. We measure the median performance across the 3D code parameters and also report the

fraction of data with performance above/error below certain thresholds. See text for details on evaluation metrics.

Shape Rotation Translation Scale

method %(IoU > 0.25) Med-IoU %(Err < 30) Med-Err %(Err < 1m) Med-Err %(Err < 0.5) Med-Err

Base 59.5% 0.31 75.2% 5.44 90.7% 0.38 85.5% 0.15

Base - context 54.4% 0.27 69.3% 7.69 85.4% 0.47 82.6% 0.19

Regression 58.4% 0.31 48.1% 31.87 88.4% 0.38 86.1% 0.14

Base + decoder finetuning 70.7% 0.41 74.6% 5.28 87.3% 0.42 85.1% 0.15

Comparisons. We report comparisons to test the impor-

tance of various components. We begin with a base model

(Base) from which we add and remove components. This

base model is trained using the losses and features described

previously, but the decoder set to the autoencoder’s decoder.

We first experiment with shape prediction. We add

decoder fine-tuning to get (Base + Decoder Finetuning),

which tests the effect of fine-tuning the decoder. We also

try a retrieval setup (Retrieval); rather than use the decoder,

we retrieve the nearest shape in the shape embedding space.

We then evaluate our features and losses. We try (No

Context) in which we use only the ROI-pooled features;

this tests whether context, in the form of bounding box

coordinates and full image features, is necessary. Since

our classification approach to rotation prediction may seem

non-standard, we try an antipodal regression loss for esti-

mating q. We normalize the prediction q̂ and minimize

min(||q− q̂||, ||q+ q̂||).
Quantitative Results. We plot cumulative errors over frac-

tions of the data in Figure 4 and report some summary statis-

tics in Table 1. For the task of shape inference, we observe

that fine-tuning the decoder improves performance. The al-

ternate method of retrieval using a shape embedding yields

some accurate retrievals, but is less robust to uncertainties,

and incurs large errors for many instances. We note that as

SUNCG dataset has a common set of 3D objects across all

scenes, this retrieval performance can be further improved

by explicitly learning to predict a model index. However,

this approach would still suffer from large errors in case of

incorrect retrieval, and not be generally applicable.

We observe that classification outperforms regression for

predicting rotation. We hypothesize that this is because

classification handles multi-modality (e.g. whether a chair

is front- or back-facing) better. Additionally, classification

has systematically different failure modes than regression:

as compared to a nearly uniform set of errors from regres-

sion, the model trained with classification tends to be either

very accurate or off by 90◦ or 180◦ degrees, correspond-

ing to natural ambiguities. Finally, having context features

is consistently important for each error metric, in particular

for inferring absolute translation and scale, which are hard

to infer from a cropped bounding box.
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Figure 4: Analysis of the prediction performance across shape, rotation, translation and scale prediction. To compare alternative ap-

proaches, we plot the error (or IoU for shape) against the fraction of data up to the threshold. The plot legends also report the median value

as well as fraction of data with error lower (or IoU higher) than the threshold depicted by the gray line.

Figure 5: Predicted 3D representation from an unannotated RGB image. Left: Input image. Middle (2nd and 3
rd column): Two views

of ground-truth 3D configuration of the objects in the scene. Right (4th and 5
th column): The corresponding two views of our predicted

3D structure. The colors only indicate a grouping of the predicted points and the coloring is uncorrelated between the prediction and the

ground-truth. We observe that we can infer the 3D representations despite clutter, occlusions etc.

4.4. Placing Objects in Scenes

Having analyzed the factors of performance for 3D ob-

ject prediction with known 2D bounding boxes, we now an-

alyze performance on the full problem including detection.

We report in Figure 7 some variants of average preci-

sions on the SUNCG test set for our approach. We obtain an

average precision of 40.3% for the full 3D prediction task

AP (0.5, π
6
, 1, 0.5, 0.25). This is particularly promising on

our challenging task of making full 3D predictions in clut-

tered images of scenes from a single RGB image. We also

report variants of the AP when relaxing one constraint at a

time Figure 7 (left).

Figure 5 visualizes the output of our detector on some

validation images from the SUNCG dataset. We show the

input RGB image, ground truth and predicted objects from

the current view and an additional view (obtained by rotat-

ing the camera up about a point in the scene). We observe

some interesting error modes, e.g. duplicate detections in

3D space despite the underlying boxes not being classified

as duplicates via 2D non-max suppression.

4.5. Comparing Scene Representations

We have proposed a new way of representing the 3D

structure of scenes, and so one might ask how it compares to

the alternatives in use, per-pixel depth or a single voxel grid.

As has been argued throughout the paper, our representation

is qualitatively different and captures aspects that are miss-

ing in the others: as shown in Figure 6), voxel grids and

depthmaps present an undifferentiated array of surfaces and
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Figure 6: A visualization of the proposed (Factored) representation in comparison to (Voxels) a single voxel grid and (Depth) a depthmap.

For each input image shown on the left, we show the various inferred representations from two views each: a) camera view (left), and b) a

novel view (right).
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Figure 7: Detection Performance on SUNCG Test Set: We plot

PR curves for our method on the SUNCG test set under different

settings. Left: PR curve for full 3D prediction (denoted by ‘all’)

and its variants when relaxing one condition at a time. Right: 2D

bounding box PR curve (denoted by ‘box2d’) and its variants when

adding one additional constraint at a time. The average precision

for each setting is indicated in the legend.

volumes whereas ours represents a world of objects. How-

ever, we also quantitatively evaluate this. Each representa-

tion (depth, voxels, factored) is trained on different tasks.

We study how well each representation solves the tasks be-

ing solved by the other representations. While each repre-

sentation will perform the best at the specific task that it was

trained for, a versatile representation will also work reason-

ably well on the others’ tasks. Our experiments below show

that our factored representation is empirically more versa-

tile than these two other popular 3D representations.

Other representations.

Per-pixel depth representations estimate the depth (or

equivalently disparity i.e. inverse depth) for each pixel in the

image. We train this representation the same way we train

our layout prediction module as described in Section 3.1 on

the SUNCG dataset, except instead of predicting the amodal

disparity for scene surfaces we make predictions for all pix-

els in the image as would be observed from a depth sensor.

Full scene voxel representations use occupancy of voxels to

represent the scene. We use 64 × 32 × 64 voxels each of

size 8cm×8cm×8cm to represent the scene. These voxels

are expressed in the camera coordinate frame.

Quantitative results. We show quantitative results in Fig-

ure 8. We plot the cumulative distribution for various per-

formance metrics (described below).

Explaining Visible Depth: We obtain a point cloud for the

scene from each of these representations (for depth, we

backproject points in space using the camera matrix, for

voxels we use the point at the center of the voxel). We mea-

sure the average distance of points in the predicted point

cloud to points in the ground truth point cloud obtained by

back projecting the ground truth depth image.

Explaining Scene Voxels: We obtain voxel occupancy from

each of the representations (depth is converted to voxel oc-

cupancy by checking if any back-projected point lies within

a voxel). We measure intersection over union for the output

voxel occupancy with the ground truth voxel occupancy.

Our factored representation involves two tasks: reason-

ing about the objects and the scene surfaces.
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Figure 8: Analysis of the ability of various representations to capture different aspects of the whole scene. We compare our proposed

factored representation against voxel or depth-based alternatives and evaluate their ability to capture the following aspects of the 3D scene

(from left to right): a) Visible depth, b) Volumetric occupancy, c) Individual objects, d) Visible depth for scene surfaces (floor, walls etc.),

and e) Amodal depth for scene surfaces. See text for a detailed discussion.

Figure 9: Results on NYU dataset. We show the results of our model trained using synthetically rendered data on real, unannotated

images from the NYU dataset. Left: Input RGB image. Middle and Right: Two views of predicted 3D representation.

Explaining Objects: To measure this we align the ground

truth object point clouds (obtained by sampling points at

center of occupied voxels) to point clouds obtained from

the three representations (in the same manner as above). We

use iterative closest point to align and report the final fitness

value (mean squared distance normalized with respect to

the object size). We compute this at instance level for the

six categories that we study.

Explaining Layout: We measure how well depth corre-

sponding to the scene layout surfaces is explained and con-

sider two cases: modal scene surfaces (Figure 8(d)) and

amodal scene surfaces (Figure 8(e). This metric is similar

to the visible depth evaluation described above except it ap-

propriately adjusts the ground truth to focus only on layout

(i.e., walls/floors/ceiling).

We observe that indeed each representation excels at the

task they were specifically trained for. However our repre-

sentation consistently shows much better generalization to

the other tasks compared to other the other representations.

Additionally, even though the visible layout can, in princi-

ple, be equally well described using a depth image, our rep-

resentation works better at predicting visible layout as com-

pared to the full image depth prediction baseline, showing

the merit of factored modeling of scene composition.

4.6. Results on NYU

We also tested our models trained on the SUNCG dataset

on images from the NYU dataset (Note we only use the RGB

image to obtain these results). Figure 9 visualizes the output

of our models on NYU Test set images. We obtain these

visualizations by running our model with 2D bounding box

proposals from [2]. Despite being trained on synthetic data,

we are able to obtain a good interpretation of the scene.

5. Discussion
We argue that the representation that one should infer to

understand the structure of a 3D scene should be factored

in terms of a small number of components: a scene layout,

and individual objects, each in turn explained in terms of

its shape and pose. We presented a learning based system

capable of inferring such a 3D representation from a single

image. However, this is only a small step towards to goal of

inferring 3D scene representations and that many challenges

remain. In particular, we do not reason about the physics

and support relationships of the predicted scenes. Addition-

ally, we rely on synthetically rendered data with associated

ground-truth for training which limits the performance on

real data. However, we hope that parallel efforts in the vi-

sion community on more realistic renderings [22], leverag-

ing weaker supervision [36], or scaling up real datasets [6]

will help bridge this gap.
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