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Abstract

Face recognition has made extraordinary progress ow-

ing to the advancement of deep convolutional neural net-

works (CNNs). The central task of face recognition, in-

cluding face verification and identification, involves face

feature discrimination. However, the traditional softmax

loss of deep CNNs usually lacks the power of discrimina-

tion. To address this problem, recently several loss func-

tions such as center loss, large margin softmax loss, and

angular softmax loss have been proposed. All these im-

proved losses share the same idea: maximizing inter-class

variance and minimizing intra-class variance. In this pa-

per, we propose a novel loss function, namely large mar-

gin cosine loss (LMCL), to realize this idea from a different

perspective. More specifically, we reformulate the softmax

loss as a cosine loss by L2 normalizing both features and

weight vectors to remove radial variations, based on which

a cosine margin term is introduced to further maximize the

decision margin in the angular space. As a result, minimum

intra-class variance and maximum inter-class variance are

achieved by virtue of normalization and cosine decision

margin maximization. We refer to our model trained with

LMCL as CosFace. Extensive experimental evaluations are

conducted on the most popular public-domain face recogni-

tion datasets such as MegaFace Challenge, Youtube Faces

(YTF) and Labeled Face in the Wild (LFW). We achieve the

state-of-the-art performance on these benchmarks, which

confirms the effectiveness of our proposed approach.

1. Introduction

Recently progress on the development of deep convo-

lutional neural networks (CNNs) [15, 18, 12, 9, 44] has

significantly advanced the state-of-the-art performance on
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Figure 1. An overview of the proposed CosFace framework. In the

training phase, the discriminative face features are learned with a

large margin between different classes. In the testing phase, the

testing data is fed into CosFace to extract face features which are

later used to compute the cosine similarity score to perform face

verification and identification.

a wide variety of computer vision tasks, which makes deep

CNN a dominant machine learning approach for computer

vision. Face recognition, as one of the most common com-

puter vision tasks, has been extensively studied for decades

[37, 45, 22, 19, 20, 40, 2]. Early studies build shallow mod-

els with low-level face features, while modern face recogni-

tion techniques are greatly advanced driven by deep CNNs.

Face recognition usually includes two sub-tasks: face ver-

ification and face identification. Both of these two tasks

involve three stages: face detection, feature extraction, and

classification. A deep CNN is able to extract clean high-

level features, making itself possible to achieve superior

performance with a relatively simple classification architec-

ture: usually, a multilayer perceptron networks followed by
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a softmax loss [35, 32]. However, recent studies [42, 24, 23]

found that the traditional softmax loss is insufficient to ac-

quire the discriminating power for classification.

To encourage better discriminating performance, many

research studies have been carried out [42, 5, 7, 10, 39, 23].

All these studies share the same idea for maximum discrimi-

nation capability: maximizing inter-class variance and min-

imizing intra-class variance. For example, [42, 5, 7, 10, 39]

propose to adopt multi-loss learning in order to increase the

feature discriminating power. While these methods improve

classification performance over the traditional softmax loss,

they usually come with some extra limitations. For [42],

it only explicitly minimizes the intra-class variance while

ignoring the inter-class variances, which may result in sub-

optimal solutions. [5, 7, 10, 39] require thoroughly schem-

ing the mining of pair or triplet samples, which is an ex-

tremely time-consuming procedure. Very recently, [23] pro-

posed to address this problem from a different perspective.

More specifically, [23] (A-softmax) projects the original

Euclidean space of features to an angular space, and intro-

duces an angular margin for larger inter-class variance.

Compared to the Euclidean margin suggested by [42, 5,

10], the angular margin is preferred because the cosine of

the angle has intrinsic consistency with softmax. The for-

mulation of cosine matches the similarity measurement that

is frequently applied to face recognition. From this perspec-

tive, it is more reasonable to directly introduce cosine mar-

gin between different classes to improve the cosine-related

discriminative information.

In this paper, we reformulate the softmax loss as a cosine

loss by L2 normalizing both features and weight vectors to

remove radial variations, based on which a cosine margin

term m is introduced to further maximize the decision mar-

gin in the angular space. Specifically, we propose a novel

algorithm, dubbed Large Margin Cosine Loss (LMCL),

which takes the normalized features as input to learn highly

discriminative features by maximizing the inter-class cosine

margin. Formally, we define a hyper-parameter m such that

the decision boundary is given by cos(θ1) −m = cos(θ2),
where θi is the angle between the feature and weight of class

i.

For comparison, the decision boundary of the A-Softmax

is defined over the angular space by cos(mθ1) = cos(θ2),
which has a difficulty in optimization due to the non-

monotonicity of the cosine function. To overcome such a

difficulty, one has to employ an extra trick with an ad-hoc

piecewise function for A-Softmax. More importantly, the

decision margin of A-softmax depends on θ, which leads to

different margins for different classes. As a result, in the

decision space, some inter-class features have a larger mar-

gin while others have a smaller margin, which reduces the

discriminating power. Unlike A-Softmax, our approach de-

fines the decision margin in the cosine space, thus avoiding

the aforementioned shortcomings.

Based on the LMCL, we build a sophisticated deep

model called CosFace, as shown in Figure 1. In the train-

ing phase, LMCL guides the ConvNet to learn features with

a large cosine margin. In the testing phase, the face fea-

tures are extracted from the ConvNet to perform either face

verification or face identification. We summarize the con-

tributions of this work as follows:

(1) We embrace the idea of maximizing inter-class vari-

ance and minimizing intra-class variance and propose a

novel loss function, called LMCL, to learn highly discrimi-

native deep features for face recognition.

(2) We provide reasonable theoretical analysis based

on the hyperspherical feature distribution encouraged by

LMCL.

(3) The proposed approach advances the state-of-the-art

performance over most of the benchmarks on popular face

databases including LFW[13], YTF[43] and Megaface [17,

25].

2. Related Work

Deep Face Recognition. Recently, face recognition has

achieved significant progress thanks to the great success

of deep CNN models [18, 15, 34, 9]. In DeepFace [35]

and DeepID [32], face recognition is treated as a multi-

class classification problem and deep CNN models are

first introduced to learn features on large multi-identities

datasets. DeepID2 [30] employs identification and verifi-

cation signals to achieve better feature embedding. Recent

works DeepID2+ [33] and DeepID3 [31] further explore

the advanced network structures to boost recognition per-

formance. FaceNet [29] uses triplet loss to learn an Eu-

clidean space embedding and a deep CNN is then trained

on nearly 200 million face images, leading to the state-of-

the-art performance. Other approaches [41, 11] also prove

the effectiveness of deep CNNs on face recognition.

Loss Functions. Loss function plays an important role

in deep feature learning. Contrastive loss [5, 7] and triplet

loss [10, 39] are usually used to increase the Euclidean mar-

gin for better feature embedding. Wen et al. [42] proposed

a center loss to learn centers for deep features of each iden-

tity and used the centers to reduce intra-class variance. Liu

et al. [24] proposed a large margin softmax (L-Softmax)

by adding angular constraints to each identity to improve

feature discrimination. Angular softmax (A-Softmax) [23]

improves L-Softmax by normalizing the weights, which

achieves better performance on a series of open-set face

recognition benchmarks [13, 43, 17]. Other loss functions

[47, 6, 4, 3] based on contrastive loss or center loss also

demonstrate the performance on enhancing discrimination.

Normalization Approaches. Normalization has been

studied in recent deep face recognition studies. [38] normal-

izes the weights which replace the inner product with cosine
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similarity within the softmax loss. [28] applies the L2 con-

straint on features to embed faces in the normalized space.

Note that normalization on feature vectors or weight vec-

tors achieves much lower intra-class angular variability by

concentrating more on the angle during training. Hence the

angles between identities can be well optimized. The von

Mises-Fisher (vMF) based methods [48, 8] and A-Softmax

[23] also adopt normalization in feature learning.

3. Proposed Approach

In this section, we firstly introduce the proposed LMCL

in detail (Sec. 3.1). And a comparison with other loss func-

tions is given to show the superiority of the LMCL (Sec.

3.2). The feature normalization technique adopted by the

LMCL is further described to clarify its effectiveness (Sec.

3.3). Lastly, we present a theoretical analysis for the pro-

posed LMCL (Sec. 3.4).

3.1. Large Margin Cosine Loss

We start by rethinking the softmax loss from a cosine

perspective. The softmax loss separates features from dif-

ferent classes by maximizing the posterior probability of the

ground-truth class. Given an input feature vector xi with its

corresponding label yi, the softmax loss can be formulated

as:

Ls =
1

N

N∑

i=1

− log pi =
1

N

N∑

i=1

− log
efyi

∑C

j=1 e
fj
, (1)

where pi denotes the posterior probability of xi being cor-

rectly classified. N is the number of training samples and C

is the number of classes. fj is usually denoted as activation

of a fully-connected layer with weight vector Wj and bias

Bj . We fix the bias Bj = 0 for simplicity, and as a result fj
is given by:

fj = WT
j x = ‖Wj‖‖x‖ cos θj , (2)

where θj is the angle between Wj and x. This formula sug-

gests that both norm and angle of vectors contribute to the

posterior probability.

To develop effective feature learning, the norm of W

should be necessarily invariable. To this end, We fix

‖Wj‖ = 1 by L2 normalization. In the testing stage, the

face recognition score of a testing face pair is usually cal-

culated according to cosine similarity between the two fea-

ture vectors. This suggests that the norm of feature vector

x is not contributing to the scoring function. Thus, in the

training stage, we fix ‖x‖ = s. Consequently, the posterior

probability merely relies on cosine of angle. The modified

loss can be formulated as

Lns =
1

N

∑

i

− log
es cos(θyi,i)∑
j e

s cos(θj,i)
. (3)
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Figure 2. The comparison of decision margins for different loss

functions the binary-classes scenarios. Dashed line represents de-

cision boundary, and gray areas are decision margins.

Because we remove variations in radial directions by fix-

ing ‖x‖ = s, the resulting model learns features that are

separable in the angular space. We refer to this loss as the

Normalized version of Softmax Loss (NSL) in this paper.

However, features learned by the NSL are not suffi-

ciently discriminative because the NSL only emphasizes

correct classification. To address this issue, we introduce

the cosine margin to the classification boundary, which is

naturally incorporated into the cosine formulation of Soft-

max.

Considering a scenario of binary-classes for example,

let θi denote the angle between the learned feature vector

and the weight vector of Class Ci (i = 1, 2). The NSL

forces cos(θ1) > cos(θ2) for C1, and similarly for C2,

so that features from different classes are correctly classi-

fied. To develop a large margin classifier, we further require

cos(θ1)−m > cos(θ2) and cos(θ2)−m > cos(θ1), where

m ≥ 0 is a fixed parameter introduced to control the magni-

tude of the cosine margin. Since cos(θi)−m is lower than

cos(θi), the constraint is more stringent for classification.

The above analysis can be well generalized to the scenario

of multi-classes. Therefore, the altered loss reinforces the

discrimination of learned features by encouraging an extra

margin in the cosine space.

Formally, we define the Large Margin Cosine Loss

(LMCL) as:

Llmc =
1

N

∑

i

− log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑

j 6=yi
es cos(θj,i)

,

(4)

subject to

W =
W ∗

‖W ∗‖ ,

x =
x∗

‖x∗‖ ,

cos(θj , i) = Wj
Txi,

(5)

where N is the numer of training samples, xi is the i-th

feature vector corresponding to the ground-truth class of yi,

the Wj is the weight vector of the j-th class, and θj is the

angle between Wj and xi.
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3.2. Comparison on Different Loss Functions

In this subsection, we compare the decision margin of

our method (LMCL) to: Softmax, NSL, and A-Softmax,

as illustrated in Figure 2. For simplicity of analysis, we

consider the binary-classes scenarios with classes C1 and

C2. Let W1 and W2 denote weight vectors for C1 and C2,

respectively.

Softmax loss defines a decision boundary by:

‖W1‖ cos(θ1) = ‖W2‖ cos(θ2).
Thus, its boundary depends on both magnitudes of weight

vectors and cosine of angles, which results in an overlap-

ping decision area (margin < 0) in the cosine space. This is

illustrated in the first subplot of Figure 2. As noted before,

in the testing stage it is a common strategy to only consider

cosine similarity between testing feature vectors of faces.

Consequently, the trained classifier with the Softmax loss

is unable to perfectly classify testing samples in the cosine

space.

NSL normalizes weight vectors W1 and W2 such that

they have constant magnitude 1, which results in a decision

boundary given by:

cos(θ1) = cos(θ2).

The decision boundary of NSL is illustrated in the second

subplot of Figure 2. We can see that by removing radial

variations, the NSL is able to perfectly classify testing sam-

ples in the cosine space, with margin = 0. However, it is

not quite robust to noise because there is no decision mar-

gin: any small perturbation around the decision boundary

can change the decision.

A-Softmax improves the softmax loss by introducing an

extra margin, such that its decision boundary is given by:

C1 : cos(mθ1) ≥ cos(θ2),

C2 : cos(mθ2) ≥ cos(θ1).

Thus, for C1 it requires θ1 ≤ θ2
m

, and similarly for C2. The

third subplot of Figure 2 depicts this decision area, where

gray area denotes decision margin. However, the margin

of A-Softmax is not consistent over all θ values: the mar-

gin becomes smaller as θ reduces, and vanishes completely

when θ = 0. This results in two potential issues. First, for

difficult classes C1 and C2 which are visually similar and

thus have a smaller angle between W1 and W2, the mar-

gin is consequently smaller. Second, technically speaking

one has to employ an extra trick with an ad-hoc piecewise

function to overcome the nonmonotonicity difficulty of the

cosine function.

LMCL (our proposed) defines a decision margin in co-

sine space rather than the angle space (like A-Softmax) by:

C1 : cos(θ1) ≥ cos(θ2) +m,

C2 : cos(θ2) ≥ cos(θ1) +m.

Therefore, cos(θ1) is maximized while cos(θ2) being mini-

mized for C1 (similarly for C2) to perform the large-margin

classification. The last subplot in Figure 2 illustrates the de-

cision boundary of LMCL in the cosine space, where we can

see a clear margin(
√
2m) in the produced distribution of the

cosine of angle. This suggests that the LMCL is more robust

than the NSL, because a small perturbation around the deci-

sion boundary (dashed line) less likely leads to an incorrect

decision. The cosine margin is applied consistently to all

samples, regardless of the angles of their weight vectors.

3.3. Normalization on Features

In the proposed LMCL, a normalization scheme is in-

volved on purpose to derive the formulation of the cosine

loss and remove variations in radial directions. Unlike [23]

that only normalizes the weight vectors, our approach si-

multaneously normalizes both weight vectors and feature

vectors. As a result, the feature vectors distribute on a hy-

persphere, where the scaling parameter s controls the mag-

nitude of radius. In this subsection, we discuss why feature

normalization is necessary and how feature normalization

encourages better feature learning in the proposed LMCL

approach.

The necessity of feature normalization is presented in

two respects: First, the original softmax loss without feature

normalization implicitly learns both the Euclidean norm

(L2-norm) of feature vectors and the cosine value of the

angle. The L2-norm is adaptively learned for minimizing

the overall loss, resulting in the relatively weak cosine con-

straint. Particularly, the adaptive L2-norm of easy samples

becomes much larger than hard samples to remedy the in-

ferior performance of cosine metric. On the contrary, our

approach requires the entire set of feature vectors to have

the same L2-norm such that the learning only depends on

cosine values to develop the discriminative power. Fea-

ture vectors from the same classes are clustered together

and those from different classes are pulled apart on the sur-

face of the hypersphere. Additionally, we consider the situ-

ation when the model initially starts to minimize the LMCL.

Given a feature vector x, let cos(θi) and cos(θj) denote co-

sine scores of the two classes, respectively. Without normal-

ization on features, the LMCL forces ‖x‖(cos(θi) −m) >
‖x‖ cos(θj). Note that cos(θi) and cos(θj) can be initially

comparable with each other. Thus, as long as (cos(θi)−m)
is smaller than cos(θj), ‖x‖ is required to decrease for mini-

mizing the loss, which degenerates the optimization. There-

fore, feature normalization is critical under the supervision

of LMCL, especially when the networks are trained from

scratch. Likewise, it is more favorable to fix the scaling

parameter s instead of adaptively learning.

Furthermore, the scaling parameter s should be set to a

properly large value to yield better-performing features with

lower training loss. For NSL, the loss continuously goes
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Figure 3. A geometrical interpretation of LMCL from feature per-

spective. Different color areas represent feature space from dis-

tinct classes. LMCL has a relatively compact feature region com-

pared with NSL.

down with higher s, while too small s leads to an insuf-

ficient convergence even no convergence. For LMCL, we

also need adequately large s to ensure a sufficient hyper-

space for feature learning with an expected large margin.

In the following, we show the parameter s should have a

lower bound to obtain expected classification performance.

Given the normalized learned feature vector x and unit

weight vector W , we denote the total number of classes

as C. Suppose that the learned feature vectors separately

lie on the surface of the hypersphere and center around the

corresponding weight vector. Let PW denote the expected

minimum posterior probability of class center (i.e., W ), the

lower bound of s is given by 1:

s ≥ C − 1

C
log

(C − 1)PW

1− PW

. (6)

Based on this bound, we can infer that s should be en-

larged consistently if we expect an optimal Pw for classifi-

cation with a certain number of classes. Besides, by keeping

a fixed Pw, the desired s should be larger to deal with more

classes since the growing number of classes increase the

difficulty for classification in the relatively compact space.

A hypersphere with large radius s is therefore required for

embedding features with small intra-class distance and large

inter-class distance.

3.4. Theoretical Analysis for LMCL

The preceding subsections essentially discuss the LMCL

from the classification point of view. In terms of learning

the discriminative features on the hypersphere, the cosine

margin servers as momentous part to strengthen the discrim-

inating power of features. Detailed analysis about the quan-

titative feasible choice of the cosine margin (i.e., the bound

of hyper-parameter m) is necessary. The optimal choice of

m potentially leads to more promising learning of highly

discriminative face features. In the following, we delve into

the decision boundary and angular margin in the feature

space to derive the theoretical bound for hyper-parameter

m.

1Proof is attached in the supplemental material.

First, considering the binary-classes case with classes C1

and C2 as before, suppose that the normalized feature vec-

tor x is given. Let Wi denote the normalized weight vector,

and θi denote the angle between x and Wi. For NSL, the

decision boundary defines as cos θ1 − cos θ2 = 0, which is

equivalent to the angular bisector of W1 and W2 as shown

in the left of Figure 3. This addresses that the model su-

pervised by NSL partitions the underlying feature space to

two close regions, where the features near the boundary are

extremely ambiguous (i.e., belonging to either class is ac-

ceptable). In contrast, LMCL drives the decision boundary

formulated by cos θ1 − cos θ2 = m for C1, in which θ1
should be much smaller than θ2 (similarly for C2). Conse-

quently, the inter-class variance is enlarged while the intra-

class variance shrinks.

Back to Figure 3, one can observe that the maximum

angular margin is subject to the angle between W1 and

W2. Accordingly, the cosine margin should have the lim-

ited variable scope when W1 and W2 are given. Specifi-

cally, suppose a scenario that all the feature vectors belong-

ing to class i exactly overlap with the corresponding weight

vector Wi of class i. In other words, every feature vector is

identical to the weight vector for class i, and apparently the

feature space is in an extreme situation, where all the fea-

ture vectors lie at their class center. In that case, the margin

of decision boundaries has been maximized (i.e., the strict

upper bound of the cosine margin).

To extend in general, we suppose that all the features are

well-separated and we have a total number of C classes.

The theoretical variable scope of m is supposed to be:

0 ≤ m ≤ (1 − max(WT
i Wj)), where i, j ≤ n, i 6= j.

The softmax loss tries to maximize the angle between any

of the two weight vectors from two different classes in order

to perform perfect classification. Hence, it is clear that the

optimal solution for the softmax loss should uniformly dis-

tribute the weight vectors on a unit hypersphere. Based on

this assumption, the variable scope of the introduced cosine

margin m can be inferred as follows 2:

0 ≤ m ≤ 1− cos
2π

C
, (K = 2)

0 ≤ m ≤ C

C − 1
, (C ≤ K + 1)

0 ≤ m ≪ C

C − 1
, (C > K + 1)

(7)

where C is the number of training classes and K is the di-

mension of learned features. The inequalities indicate that

as the number of classes increases, the upper bound of the

cosine margin between classes are decreased correspond-

ingly. Especially, if the number of classes is much larger

than the feature dimension, the upper bound of the cosine

margin will get even smaller.

2Proof is attached in the supplemental material.
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Figure 4. A toy experiment of different loss functions on 8 identities with 2D features. The first row maps the 2D features onto the Euclidean

space, while the second row projects the 2D features onto the angular space. The gap becomes evident as the margin term m increases.

A reasonable choice of larger m ∈ [0, C
C−1 ) should ef-

fectively boost the learning of highly discriminative fea-

tures. Nevertheless, parameter m usually could not reach

the theoretical upper bound in practice due to the vanish-

ing of the feature space. That is, all the feature vectors

are centered together according to the weight vector of the

corresponding class. In fact, the model fails to converge

when m is too large, because the cosine constraint (i.e.,

cos θ1−m > cos θ2 or cos θ2−m > cos θ1 for two classes)

becomes stricter and is hard to be satisfied. Besides, the co-

sine constraint with overlarge m forces the training process

to be more sensitive to noisy data. The ever-increasing m

starts to degrade the overall performance at some point be-

cause of failing to converge.

We perform a toy experiment for better visualizing on

features and validating our approach. We select face im-

ages from 8 distinct identities containing enough samples to

clearly show the feature points on the plot. Several models

are trained using the original softmax loss and the proposed

LMCL with different settings of m. We extract 2-D features

of face images for simplicity. As discussed above, m should

be no larger than 1− cos π
4 (about 0.29), so we set up three

choices of m for comparison, which are m = 0, m = 0.1,

and m = 0.2. As shown in Figure 4, the first row and

second row present the feature distributions in Euclidean

space and angular space, respectively. We can observe that

the original softmax loss produces ambiguity in decision

boundaries while the proposed LMCL performs much bet-

ter. As m increases, the angular margin between different

classes has been amplified.

4. Experiments

4.1. Implementation Details

Preprocessing. Firstly, face area and landmarks are de-

tected by MTCNN [16] for the entire set of training and

testing images. Then, the 5 facial points (two eyes, nose and

two mouth corners) are adopted to perform similarity trans-

formation. After that we obtain the cropped faces which are

then resized to be 112× 96. Following [42, 23], each pixel

(in [0, 255]) in RGB images is normalized by subtracting

127.5 then dividing by 128.

Training. For a direct and fair comparison to the existing

results that use small training datasets (less than 0.5M im-

ages and 20K subjects) [17], we train our models on a small

training dataset, which is the publicly available CASIA-

WebFace [46] dataset containing 0.49M face images from

10,575 subjects. We also use a large training dataset to eval-

uate the performance of our approach for benchmark com-

parison with the state-of-the-art results (using large training

dataset) on the benchmark face dataset. The large training

dataset that we use in this study is composed of several pub-

lic datasets and a private face dataset, containing about 5M

images from more than 90K identities. The training faces

are horizontally flipped for data augmentation. In our ex-

periments we remove face images belong to identities that

appear in the testing datasets.

For the fair comparison, the CNN architecture used in

our work is similar to [23], which has 64 convolutional lay-

ers and is based on residual units[9]. The scaling parameter

s in Equation (4) is set to 64 empirically. We use Caffe[14]

to implement the modifications of the loss layer and run the
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Figure 5. Accuracy (%) of CosFace with different margin parame-

ters m on LFW[13] and YTF [43].

models. The CNN models are trained with SGD algorithm,

with the batch size of 64 on 8 GPUs. The weight decay is

set to 0.0005. For the case of training on the small dataset,

the learning rate is initially 0.1 and divided by 10 at the

16K, 24K, 28k iterations, and we finish the training process

at 30k iterations. While the training on the large dataset ter-

minates at 240k iterations, with the initial learning rate 0.05

dropped at 80K, 140K, 200K iterations.

Testing. At testing stage, features of original image and

the flipped image are concatenated together to compose the

final face representation. The cosine distance of features

is computed as the similarity score. Finally, face verifica-

tion and identification are conducted by thresholding and

ranking the scores. We test our models on several popu-

lar public face datasets, including LFW[13], YTF[43], and

MegaFace[17, 25].

4.2. Exploratory Experiments

Effect of m. The margin parameter m plays a key role in

LMCL. In this part we conduct an experiment to investigate

the effect of m. By varying m from 0 to 0.45 (If m is larger

than 0.45, the model will fail to converge), we use the small

training data (CASIA-WebFace [46]) to train our CosFace

model and evaluate its performance on the LFW[13] and

YTF[43] datasets, as illustrated in Figure 5. We can see

that the model without the margin (in this case m=0) leads

to the worst performance. As m being increased, the accu-

racies are improved consistently on both datasets, and get

saturated at m = 0.35. This demonstrates the effectiveness

of the margin m. By increasing the margin m, the discrim-

inative power of the learned features can be significantly

improved. In this study, m is set to fixed 0.35 in the subse-

quent experiments.

Effect of Feature Normalization. To investigate the ef-

fect of the feature normalization scheme in our approach,

we train our CosFace models on the CASIA-WebFace with

Normalization LFW YTF MF1 Rank 1 MF1 Veri.

No 99.10 93.1 75.10 88.65

Yes 99.33 96.1 77.11 89.88

Table 1. Comparison of our models with and without feature nor-

malization on Megaface Challenge 1 (MF1). “Rank 1” refers to

rank-1 face identification accuracy and “Veri.” refers to face ver-

ification TAR (True Accepted Rate) under 10−6 FAR (False Ac-

cepted Rate).

and without the feature normalization scheme by fixing

m to 0.35, and compare their performance on LFW[13],

YTF[43], and the Megaface Challenge 1(MF1)[17]. Note

that the model trained without normalization is initial-

ized by softmax loss and then supervised by the proposed

LMCL. The comparative results are reported in Table 1. It

is very clear that the model using the feature normalization

scheme consistently outperforms the model without the fea-

ture normalization scheme across the three datasets. As dis-

cussed above, feature normalization removes radical vari-

ance, and the learned features can be more discriminative in

angular space. This experiment verifies this point.

4.3. Comparison with state­of­the­art loss functions

In this part, we compare the performance of the pro-

posed LMCL with the state-of-the-art loss functions. Fol-

lowing the experimental setting in [23], we train a model

with the guidance of the proposed LMCL on the CAISA-

WebFace[46] using the same 64-layer CNN architecture de-

scribed in [23]. The experimental comparison on LFW,

YTF and MF1 are reported in Table 2. For fair comparison,

we are strictly following the model structure (a 64-layers

ResNet-Like CNNs) and the detailed experimental settings

of SphereFace [23]. As can be seen in Table 2, LMCL con-

sistently achieves competitive results compared to the other

losses across the three datasets. Especially, our method not

only surpasses the performance of A-Softmax with feature

normalization (named as A-Softmax-NormFea in Table 2),

but also significantly outperforms the other loss functions

on YTF and MF1, which demonstrates the effectiveness of

LMCL.

4.4. Overall Benchmark Comparison

4.4.1 Evaluation on LFW and YTF

LFW [13] is a standard face verification testing dataset in

unconstrained conditions. It includes 13,233 face images

from 5749 identities collected from the website. We eval-

uate our model strictly following the standard protocol of

unrestricted with labeled outside data [13], and report the

result on the 6,000 pair testing images. YTF [43] con-

tains 3,425 videos of 1,595 different people. The average

length of a video clip is 181.3 frames. All the video se-

quences were downloaded from YouTube. We follow the
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Method LFW YTF
MF1

Rank1

MF1

Veri.

Softmax Loss [23] 97.88 93.1 54.85 65.92

Softmax+Contrastive [30] 98.78 93.5 65.21 78.86

Triplet Loss [29] 98.70 93.4 64.79 78.32

L-Softmax Loss [24] 99.10 94.0 67.12 80.42

Softmax+Center Loss [42] 99.05 94.4 65.49 80.14

A-Softmax [23] 99.42 95.0 72.72 85.56

A-Softmax-NormFea 99.32 95.4 75.42 88.82

LMCL 99.33 96.1 77.11 89.88

Table 2. Comparison of the proposed LMCL with state-of-the-art

loss functions in face recognition community. All the methods in

this table are using the same training data and the same 64-layer

CNN architecture.

Method Training Data #Models LFW YTF

Deep Face[35] 4M 3 97.35 91.4

FaceNet[29] 200M 1 99.63 95.1

DeepFR [27] 2.6M 1 98.95 97.3

DeepID2+[33] 300K 25 99.47 93.2

Center Face[42] 0.7M 1 99.28 94.9

Baidu[21] 1.3M 1 99.13 -

SphereFace[23] 0.49M 1 99.42 95.0

CosFace 5M 1 99.73 97.6

Table 3. Face verification (%) on the LFW and YTF datasets.

“#Models” indicates the number of models that have been used

in the method for evaluation.

Method Protocol MF1 Rank1 MF1 Veri.

SIAT MMLAB[42] Small 65.23 76.72

DeepSense - Small Small 70.98 82.85

SphereFace - Small[23] Small 75.76 90.04

Beijing FaceAll V2 Small 76.66 77.60

GRCCV Small 77.67 74.88

FUDAN-CS SDS[41] Small 77.98 79.19

CosFace(Single-patch) Small 77.11 89.88

CosFace(3-patch ensemble) Small 79.54 92.22

Beijing FaceAll Norm 1600 Large 64.80 67.11

Google - FaceNet v8[29] Large 70.49 86.47

NTechLAB - facenx large Large 73.30 85.08

SIATMMLAB TencentVision Large 74.20 87.27

DeepSense V2 Large 81.29 95.99

YouTu Lab Large 83.29 91.34

Vocord - deepVo V3 Large 91.76 94.96

CosFace(Single-patch) Large 82.72 96.65

CosFace(3-patch ensemble) Large 84.26 97.96

Table 4. Face identification and verification evaluation on MF1.

“Rank 1” refers to rank-1 face identification accuracy and “Veri.”

refers to face verification TAR under 10−6 FAR.

Method Protocol MF2 Rank1 MF2 Veri.

3DiVi Large 57.04 66.45

Team 2009 Large 58.93 71.12

NEC Large 62.12 66.84

GRCCV Large 75.77 74.84

SphereFace Large 71.17 84.22

CosFace (Single-patch) Large 74.11 86.77

CosFace(3-patch ensemble) Large 77.06 90.30

Table 5. Face identification and verification evaluation on MF2.

“Rank 1” refers to rank-1 face identification accuracy and “Veri.”

refers to face verification TAR under 10−6 FAR .

unrestricted with labeled outside data protocol and report

the result on 5,000 video pairs.

As shown in Table 3, the proposed CosFace achieves

state-of-the-art results of 99.73% on LFW and 97.6% on

YTF. FaceNet achieves the runner-up performance on LFW

with the large scale of the image dataset, which has approxi-

mately 200 million face images. In terms of YTF, our model

reaches the first place over all other methods.

4.4.2 Evaluation on MegaFace

MegaFace [17, 25] is a very challenging testing benchmark

recently released for large-scale face identification and ver-

ification, which contains a gallery set and a probe set. The

gallery set in Megaface is composed of more than 1 mil-

lion face images. The probe set has two existing databases:

Facescrub [26] and FGNET [1]. In this study, we use the

Facescrub dataset (containing 106,863 face images of 530

celebrities) as the probe set to evaluate the performance of

our approach on both Megaface Challenge 1 and Challenge

2.

MegaFace Challenge 1 (MF1). On the MegaFace Chal-

lenge 1 [17], The gallery set incorporates more than 1 mil-

lion images from 690K individuals collected from Flickr

photos [36]. Table 4 summarizes the results of our models

trained on two protocols of MegaFace where the training

dataset is regarded as small if it has less than 0.5 million

images, large otherwise. The CosFace approach shows its

superiority for both the identification and verification tasks

on both the protocols.

MegaFace Challenge 2 (MF2). In terms of MegaFace

Challenge 2 [25], all the algorithms need to use the training

data provided by MegaFace. The training data for Megaface

Challenge 2 contains 4.7 million faces and 672K identities,

which corresponds to the large protocol. The gallery set

has 1 million images that are different from the challenge

1 gallery set. Not surprisingly, Our method wins the first

place of challenge 2 in table 5, setting a new state-of-the-art

with a large margin (1.39% on rank-1 identification accu-

racy and 5.46% on verification performance).

5. Conclusion

In this paper, we proposed an innovative approach named

LMCL to guide deep CNNs to learn highly discriminative

face features. We provided a well-formed geometrical and

theoretical interpretation to verify the effectiveness of the

proposed LMCL. Our approach consistently achieves the

state-of-the-art results on several face benchmarks. We wish

that our substantial explorations on learning discriminative

features via LMCL will benefit the face recognition com-

munity.
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