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Abstract

Each smile is unique: one person surely smiles in differ-

ent ways (e.g. closing/opening the eyes or mouth). Given

one input image of a neutral face, can we generate multi-

ple smile videos with distinctive characteristics? To tackle

this one-to-many video generation problem, we propose a

novel deep learning architecture named Conditional Multi-

Mode Network (CMM-Net). To better encode the dynam-

ics of facial expressions, CMM-Net explicitly exploits facial

landmarks for generating smile sequences. Specifically, a

variational auto-encoder is used to learn a facial landmark

embedding. This single embedding is then exploited by a

conditional recurrent network which generates a landmark

embedding sequence conditioned on a specific expression

(e.g. spontaneous smile). Next, the generated landmark em-

beddings are fed into a multi-mode recurrent landmark gen-

erator, producing a set of landmark sequences still associ-

ated to the given smile class but clearly distinct from each

other. Finally, these landmark sequences are translated into

face videos. Our experimental results demonstrate the ef-

fectiveness of our CMM-Net in generating realistic videos

of multiple smile expressions.

1. Introduction

Facial expressions are one of the –if not the– most promi-

nent non-verbal signals for human communication [40]. For

a few decades, researchers in computer vision studied how

to automatically recognize such signals [51, 30, 12, 52].

Classically, the analysis of facial expressions has been tack-

led with a plethora of discriminative approaches, aiming to

learn the boundaries between various categories in differ-

ent video sequence representation spaces. Naturally, these

approaches focus on recognizing the dynamics of the dif-

ferent facial expressions. Even if their performance is, spe-

cially lately, very impressive, these methods do not posses

the ability to reproduce the dynamics of the patterns they

accurately classify. How to generate realistic facial expres-

sions is a scientific challenge yet to be soundly addressed.

Figure 1. Two different sequences of spontaneous smiles and as-

sociated landmarks. While there is a common average pattern, the

changes from one sequence to another are clearly visible.

In particular, we are interested in generating different fa-

cial expressions, for instance, posed vs. spontaneous smiles.

In reality, one can smile in different ways. As shown in Fig-

ure 1, both videos are spontaneous smile of the same per-

son, but they are quite different (e.g. closed vs. open eyes

and mouth). The underlying research question is, given one

single neutral face, can we generate diverse face expression

videos conditioned on one facial expression label?

Thanks to the proliferation of deep neural architec-

tures, and in particular of generative adversarial networks

(GAN) [13, 7] and variational auto-encoders (VAE) [22],

the popularity of image generation techniques has increased

in the recent past. Roughly speaking, these methods are able

to generate realistic images from encoded representations

that are learned in an automatic fashion. Remarkably, the

literature on video generation is far less populated and few

studies addressing the generation of videos [29, 36, 38] or

the generation of predicted actions in videos [21] exist. In

this context, it is still unclear how to generate distinct video

sequences given a single input image.

The dynamics of facial expressions, and of many other

facial (static and dynamic) attributes are encoded in the fa-

cial landmarks. For instance, it has been shown that land-

marks can be used to detect whether a person is smiling

spontaneously or in a posed manner [9]. Action units (e.g.
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check raiser, upper lip raiser) are also closely related to both

facial expressions and facial landmarks [20]. Therefore,

we adopt facial landmarks as a compact representation of

the facial dynamics and a good starting point towards our

aim. Figure 1 shows an example to further motivate the use

of landmarks and to illustrate the difficulty of the targeted

problem. Indeed, in this figure we can see two examples

of spontaneous smiles and their associated landmarks. The

differences are small but clear (e.g., closed vs. open eyes).

Therefore, it is insufficient to learn an “average” sponta-

neous smiling sequence. We are challenged with the task of

learning distinct landmark patterns belonging to the same

class. Thus, given a neutral face, the generation of diverse

facial expression sequences of a certain class is a one-to-

many problem.

A technology able to generate different facial expres-

sions of the same class would have a positive impact in

different fields. For instance, the face verification and fa-

cial expression recognition systems would be more robust to

noise and outliers, since there would be more data available

for training. In addition, systems based on artificial agents,

impersonated by an avatar, would clearly benefit from an

expression generation framework able to synthesize distinct

image sequences of the same class. Such agents would be

able to smile in different ways, as humans do.

In this paper, we propose a novel approach for gener-

ating videos of smiling people given an initial image of

a neutral face. Specifically, we introduce a methodolog-

ical framework which generates various image sequences

(i) that correspond to the desired class of expressions (i.e.

posed/spontaneous smile), (ii) that look realistic and im-

plicitly preserve the identity of the input image and (iii)

that have clearly visible differences between them. As pre-

viously explained, we exploit facial landmarks since they

encode the dynamics of facial expressions in an effective

manner. First, a compact representation of the landmark

manifold is learned by means of a variational auto-encoder.

This representation is further used to learn a conditional

recurrent network (LSTM) which takes as input the land-

marks automatically extracted from the initial neutral face

and generates a sequence of landmark embeddings condi-

tioned on a given facial expression. This sequence is then

fed to a multi-mode recurrent landmark generator, which

consists of multiple LSTMs and is able to output a set of

clearly distinct landmark embedding sequences. Remark-

ably, the second generating layer does not require addi-

tional ground truth to be trained. The input face image is

then used for translating the generated landmark embed-

ding sequences into distinct face videos. The joint archi-

tecture is named Conditional Multi-Mode (CMM) recurrent

network. We evaluate the proposed method on three public

datasets: the UvA-NEMO Smile [9], the DISFA [27] and

DISFA+ [26].

2. Related Work

Image Generation. Recent developments in the deep

learning field have brought significant advances in the area

of image generation. Deep generative models such as gener-

ative adversarial networks (GAN) [13] and variational auto-

encoders (VAE) [22] have shown to be extremely powerful

for synthesizing still images.

GANs, and in particular conditional GANs [28], have

been exploited in many applications, e.g. to modify the ap-

pearance of a picture according to the user inputs [54], to

synthesize faces from landmark images [8], to translate syn-

thetic images into realistic photos [6], and for image col-

orization [17]. Due to the good performance and wide ap-

plications, GANs have received an increasing interest lately

and several variations over the original model in [13] have

been introduced, such as CycleGAN [55], DiscoGAN [19],

and Wasserstein GAN (W-GAN) [2]. Similarly to GANs,

VAEs have also been extensively used to generate images

and many VAE-like models have been introduced, such as

Gaussian Mixture VAE [10], Hierarchical VAE [14] and

VAE-GAN [23]. VAEs have been exploited for synthesizing

images of handwritten digits [34], pictures of house num-

bers [15] and future frames [42].

Recent works have considered both GANs and VAEs

models for generating face images. For instance, in [16] a

variational autoencoder adopting a perceptual loss is shown

to be effective for synthesizing faces while encoding infor-

mation about facial expressions. In [49] the problem of gen-

erating face images given some specific attributes, e.g. re-

lated to age, gender or expressions, is addressed with deep

generative models. Similarly, in [24] a GAN-based model is

proposed for transferring facial attributes while preserving

as much as possible information about identity. However,

these previous works considered the problem of generating

images, while in this paper we explicitly aim to synthesize

face videos (e.g. of smiling people).

Video Generation. Fostered by the success in image

generation, recent works have started to explore deep net-

works to generate videos [53, 41, 32, 29]. Two types of

approaches have been proposed for this. A first strategy is

based on the use of a spatio-temporal network which syn-

thesizes all the frames simultaneously. For instance, in [41]

a 3D spatio-temporal DCGAN [31, 18] is introduced. Sim-

ilarly, in [32] a temporal generative adversarial network

which generates multiple frames of a sequence at the same

time is presented. However, these methods usually are typ-

ically associated to a poor image quality. The second strat-

egy models temporal dependencies by taking advantage of

recurrent neural networks (RNNs) which generate images

sequentially. For instance, in [29] a convolutional long-

short term memory (LSTM) network is used to predict the

future frames in Atari games conditioned on an action la-

bel. In [38] a gated recurrent neural network (GRU) is em-
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Figure 2. Overview of the proposed framework. The input image

is used together with the conditioning label to generate a set of K

distinct landmark sequences. These landmark sequences guide the

neutral face image to translate into face videos.

ployed within an adversarial learning framework to gener-

ate videos decoupling appearance from motion information.

Similarly, in [39] the authors proposer a hierarchical pre-

diction pipeline based on LSTMs in order to estimate a se-

quence of full-body poses and generate a realistic video.

Our work belongs to the second category. However, dif-

ferent from previous studies on face generation, we inves-

tigate the use of landmark images which can be extracted

using [45, 44, 5] for this purpose. We demonstrate that op-

erating on landmarks we can better encode the dynamics

of facial expressions. Furthermore, the landmark manifold

space is relatively easier to learn with respect to that as-

sociated to the original face images, as landmark images

only contain binary values and are very sparse. This fact

has a clear impact in reducing the computational overhead.

The benefits of exploiting landmark information to generate

smile sequences are shown in the experimental section. To

the best of our knowledge, this is the first study proposing a

method able to generate multiple sequences given a neutral

face image and a conditioning class label. Indeed, current

video generation models only focus on creating a single se-

quence and the problem of synthesizing visual contents in

a one-to-many setting has only recently been addressed in

case of images [11].

3. Conditional Multi-Mode Generation

3.1. Overview

The overall architecture consists of three blocks (see

Fig. 2) that are able to generate multiple facial expression

sequences corresponding to a person and of a given fa-

cial expression class (e.g. spontaneous vs. posed smile).

First, the conditional recurrent landmark generator (purple

box) computes a landmark image from the input face, en-

codes it into a compact representation and generates a land-

mark sequence corresponding to the desired facial expres-

sion class. Second the multi-mode recurrent landmark gen-

erator (turquoise box) receives this sequence and generates

K sequences of the same class with clearly distinct fea-

tures. Finally, the landmark sequence to video translation

module (ocher box) receives these landmark sequences and

the initial neutral face image to produce the output facial

expression videos. The entire architecture is named Con-

ditional Multi-Mode recurrent network. In summary, the

input consists of (i) a neutral face image and (ii) the desired

expression label. The output is a set of K face videos each

one containing a different facial expression sequence corre-

sponding to the specified class. In the following we describe

the three main blocks in details.

3.2. Conditional Recurrent Landmark Generator

The conditional recurrent landmark generator (magenta

box in Figure 3) receives a face image and a conditioning

facial expression label as inputs. We automatically extract

the landmark image from the face image and encode it using

a standard VAE [22] into a compact embedding, denoted as

h0. Details are in Section 4. A conditional Long-Short Term

Memory (LSTM) recurrent neural network is used to gen-

erate a sequence of T facial landmark embeddings, denoted

by h = (h1, . . . , hT ). The conditional label is encoded

and input at all time steps of the conditional LSTM. The

embedding sequence h is further decoded into a landmark

image sequence, x = (x1, . . . , xT ), which is encouraged

to be close to the training landmark image sequence y by

computing a pixel-wise binary cross-entropy (BCE) loss. In

more detail, given a training set of N sequences of length

T , {yn = (yn
1
, . . . , ynT )}

N
n=1

, the loss of the conditional re-

current landmark generator writes:

LBCE =

N,T∑

n,t=1

ynt ⊙ log xn
t + (1− ynt )⊙ log(1− xn

t ), (1)

where ⊙ and log denote the element-wise product and nat-

ural logarithm operations respectively.1

If one needs to generate face videos of a given class

this methodological apparatus would suffice. However, how

could we generate diverse sequences of the same class given

one single image? First, this would require recording sev-

eral times the “same” facial expression of a person with

different patterns, which is particularly difficult for sponta-

neous facial expressions. Even if such dataset was ready, it

is still unclear how to make one single conditional LSTM

to generate diverse distinct sequences: a straightforward

training would do nothing else but learn the average land-

mark sequence. The module described in the next section is

specifically designed to overcome this limitation.

3.3. Multi­Mode Recurrent Landmark Generator

As briefly discussed in the previous section, we would

like to avoid recording several sequences of the same per-

son, since it may be a tedious process and, more impor-

tantly, spontaneous facial expressions are scarce and hard

to capture. Ideally, the network module used to generate

1To keep the notation simple, the addition over the pixels in the image

is not explicit. In addition, the upper index denotes correspondence to the

n-th training sample.
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Figure 3. Detail of the conditional multi-mode recurrent network. The left block (magenta) encodes the landmark image and generates

a sequence of landmark embeddings according to the conditioning label. The second block (turquoise) generates K different landmark

embedding sequences. Finally, the third block (ocher) translates each of the sequences into a face video.

multiple modes should not require more supervision than

the one already needed by the previous module.

We designed the multi-mode recurrent landmark gener-

ator (turquoise box of Fig. 3) on these grounds. It con-

sists of K LSTMs, whose input is the sequence of em-

beddings generated by the conditional LSTM: h1, . . . , hT

and the output is a set of K generated sequences {hk =
(h1k, . . . , hTk)}

K
k=1

. In a nutshell this is a one-to-many se-

quence mapping that has to be learned in an unsupervised

fashion. On the one side, we would like the sequences to

exhibit clearly distinct features. On the other side, the se-

quences must encode the desired facial expression. Intu-

itively, the method finds an optimal trade-off between push-

ing the sequences to be distinct and pulling them towards

a common pattern. While the differentiating characteristics

can happen at various instants in time, the common pattern

must respect the dynamics of the smile. This is why, as

formalized in the following, the pushing happens over the

temporally-averaged sequences while the pulling is encour-

age on the mode/generator-wise averages.

Formally, we define (h1∗, . . . , hT∗) as the sequence of

mode-wise averaged generated landmark encodings (hor-

izontal turquoise arrows) and {h∗k}
K
k=1

as the set of

temporally-averaged landmark embedding sequences. With

this notation, and following the intuition described in the

previous paragraph the push-pull loss is defined as follows.

First, we impose a mean squared error loss between the

generator-wise average (h1∗, . . . , hT∗) and the sequence

generated by conditional LSTM (h1, . . . , hT ):

LPull =

N,T∑

n,t=1

‖hn
t − hn

t∗‖2. (2)

Second, inspired by the multi-agent diverse GAN [11],

we use the cross-entropy loss so as to discriminate between

the sequences obtained from the K generators:

LPush = −

N,K∑

n,k=1

log φk(h
n
∗k), (3)

where φk represents the k-th output of the discriminator (a

fully connected layer followed by a soft-max layer). There-

fore, the overall architecture is GAN-flavored in the sense

that the hierarchical LSTMs are topped with a discriminator

to differentiate between the various generators. Importantly,

this discriminative loss is complementary with the BCE.

The entire loss pushes the multiple sequences far away from

each other while encouraging the overall system to behave

accordingly to the training data. In GAN, the generator and

discriminator compete with each other. In contrast, they

work cooperatively in our module.

Note that the combination of the conditional and multi-

mode landmark recurrent generators has several advantages.

First, as already discussed, the multi-mode generator does

not require more ground truth than the conditional one. Sec-

ond, thanks to the push-pull loss, the generated sequences

are pushed to be diverse while pulled to stay around a com-

mon pattern. Third, while the conditional block is, by

definition, conditioned by the label, the second block is

transparent to the input label. This is important on one

hand because we do not have a specific multi-mode recur-

rent landmark generator per conditional label, thus reducing

the number of network parameters and the amount of data

needed for training. On the other hand, because by training

the multi-mode generator with data associated to different

class labels, it will focus on facial attributes that are not

closely correlated with the conditioning labels, and one can

expect a certain generalization ability when a new facial ex-

pression is added in the system.

3.4. Landmark Sequence to Video Translation

The last module of the architecture is responsible for

generating the face videos, i.e., translating the facial land-

mark embeddings generated by the two first modules into

image sequences. To do so we employ a U-Net like struc-

ture [17] after the facial landmark image decoder. Let zn
0

denote the input neutral face image associated to the n-

th training sequence. Together with the facial landmark

images {yn = (yn
1
, . . . , ynT )}

N
n=1

already used to train

the previous modules, the dataset contains the face images

(from which the facial landmarks are annotated) denoted by

{zn = (zn
1
, . . . , znT )}

N
n=1

.

In order to train the translation module we employ a
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combination of a reconstruction loss and an adversarial loss,

since we want the generated images to be locally close to

the ground-truth and to be globally realistic. Let wn
t (θG) =

G(ynt , z
n
0
; θG) denote the face image generated with the fa-

cial landmark image ynt and the neutral face image zn
0

, with

parameters θG . The reconstruction loss writes:

LRec =

N,T∑

n,t=1

‖znt − wn
t (θG)‖1. (4)

The adversarial loss is defined over real [zn
0
, znt ] and gen-

erated [zn
0
, wn

t ] image pairs:

LAdv =

N,T∑

n,t=1

logD([zn
0
, znt ]; θD)

+

N,T∑

n,t=1

log(1−D([zn
0
, wn

t (θG)]; θD)) (5)

When the generator is fixed, the discriminator is trained

to maximize (5). When the discriminator is fixed, the gen-

erator is trained to jointly minimize the adversarial and re-

construction losses with respect to θG :
N,T∑

n,t=1

‖znt −wn
t (θG)‖1+log(1−D([zn

0
, wn

t (θG)]; θD)) (6)

Furthermore, inspired by [50], we use the adversarial

loss at the pixel-level of the feature map. In other words,

there is one label per pixel of the coarsest feature map, in-

stead of one label per image. Intuitively, this loss should

be able to focus in many parts of the image individually,

instead of seeing the image as a whole.

3.5. Training Strategy

The training of the CMM architecture is done in three

phases. First, we train the landmark embedding VAE so as

to reconstruct a set of landmark images {ynt }
N,T
n,t=1

. This

VAE is trained for 50 epochs before the conditional LSTM

is added. The second phase consists on fine-tuning the

VAE and training the first layer LSTM on the dataset of se-

quences of landmark images {yn}Nn=1
for 20 epochs. The

third stage consists on adding the multi-model recurrent

landmark generator. Therefore the VAE and LSTM are fine

tuned at the same time the K different LSTMs are learned

from scratch. This phase includes the reconstruction, pull

and push loss functions previously defined and lasts 10

epochs. Finally, the landmark sequence to video translation

module is trained apart from the rest for 20 epochs. More

details can be found in the supplementary material.

4. Experimental Validation

4.1. Experimental Setup

Datasets and Preprocessing. We demonstrate the ef-

fectiveness of the proposed approach by performing exper-

iments on three publicly available datasets, namely: UvA-

NEMO Smile [9], DISFA [27] and DISFA+ [26].

A
U

 I
n
te

n
s
it

y

Time

Neutral Neutral-to-smile Smile

AU6: Cheek

Raiser

AU12: Lip 

Corner Puller

Figure 4. Action unit dynamics in neutral-to-smile transitions:

cheek raiser and lip corner puller.

The UvA-NEMO dataset [9] contains 1240 videos, 643

corresponding to posed smiles and 597 to spontaneous ones.

The dataset comprises 400 subjects (215 male and 185 fe-

male) with different ages ranging form 8 to 76 (50 subjects

wear glasses). The videos are sampled at 50 FPS and frames

have a resolution of 1920×1080 pixels, with an average du-

ration of 3.9 s. The beginning and the end of each video

corresponds to a neutral expression.

The DISFA dataset [27] contains videos with sponta-

neous facial expressions. In the dataset there are 27 adult

subjects (12 females and 15 males) with different ethnici-

ties. The videos are recorded at 20 FPS and the resolution is

1024×768 pixels. While the dataset contains several facial

expressions, in this work we only consider smile sequences

and manually segmented the videos to isolate spontaneous

smiles, obtaining 17 videos in total. To gather the associated

posed smiles, we also consider the DISFA+ dataset [26]

which contains posed smile expression sequences for nine

individuals present in the DISFA dataset.

The proposed CMM-Net framework requires training se-

quences of both posed and spontaneous smiles, as well as

the associated landmarks. To collect the training data we

process the video sequences from the original datasets and

extract the subsequences associated to smile patterns. To

do that, we rely on action Units (AUs) [37] and specifically

on the cheek raiser and lip corner puller AUs. Indeed, we

extract the intensity variations of these two AUs with the

method in [3]. As shown in Figure 4, the intensity variations

of these two action units are very characteristic of neutral-

to-smile (N2S) sequences. Similar to the pre-processing

steps of other works [46, 43], we also perform face align-

ment on the extracted sequences using OpenFace [5], align-

ing the faces with respect to the center of the two eyes hor-

izontally and to the vertical line passing through the cen-

ter of the two eyes and the mouth. We notice that in these

datasets, the average N2S length is T = 32 frames, with

tiny variations. We sample T frames from the first phase of

each video. If the number of video frames in the N2S phase

is less than T , we pad the sequence with subsequent frames.

Images are resized to 64× 64 pixels. The facial landmarks
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(a) Spontaneous Smile (b) Posed Smile

Figure 5. Landmark sequences generated with the first block of our CMM-Net. The associated face images are obtained using the landmark

sequence to video translation block. The left block corresponds to generated spontaneous smiles, while the right block to posed smiles.

The three row pairs correspond to the UvA-NEMO, DISFA & DISFA+ datasets respectively. Images better seen at magnification.

Original
Sequence

Bottom

Mode 1

Mode 2

Mode 3

Figure 6. Multi-mode generation example with a sequence of the UvA-NEMO dataset: landmarks (left) and associated face images (right).

The rows correspond to the original sequence, output of the Conditional LSTM, and output of the Multi-Mode LSTM (last three rows).

are extracted using [4], and 64 × 64 binary images are cre-

ated from them. In case of the UvA-NEMO dataset we fol-

low the splitting protocol of [9] and use 9 splits for training

and the 10-th for test. For the paired DISFA-DISFA+ se-

quences, we randomly select two thirds of the videos for

training and the rest for testing.

Network Architecture Details. The face-image to

landmark-image VAE consists of a symmetric convolu-

tional structure with five layers. The first four layers are

Conv(4,2,1) (kernel size, stride and padding) with 64, 128,

256 and 512 output channels respectively. All of them have

a Leaky ReLU layer and, except for the first one, they use

batch normalization. The final layer models the mean and

standard deviation of the VAE and are two Conv(4,1,0) lay-

ers with 100 output channels each. After the sampling layer,

there are the symmetric five convolutional layers with the

same parameters as the encoder and 512, 256, 128, 64, and

1 output channels. While the first four layers have a Leaky

ReLU layer and use batch normalization, the last layer’s

output is a sigmoid.

The generator of the adversarial translation structure

is a fully convolutional auto-encoder network with 6

Conv(4,2,1) layers with 64, 128, 256, 512, 512 and 512

output channels. The first five convolutional layers use a

Leaky ReLU, and except for the first, batch normalization.

The last layer uses plain ReLU. The decoder has the same

structure as the encoder. All layers except the last one use

ReLU and batch normalization, and the last one uses a hy-

perbolic tangent. Notice that the number of input channels

is four (neutral face image plus facial landmark image) and

the number of output channels is three.

The discriminator of the adversarial translation structure

has three Conv(4,2,1) and two Conv(4,1,1) with 64, 128,

256, 512 and 1 output channels respectively. While all ex-

cept the last one are followed by a Leaky ReLU, only the

three in the middle use batch normalization. Recall that,

since the input of the discriminator are image pairs, the in-

put number of channels is six. More details can be found in

the supplementary material.

Baselines. The literature on data-driven automatic

video generation is very limited and no previous works have

considered the problem of smile generation. Therefore, we

do not have direct methods to compare with. However, in

order to evaluate the proposed approach we compare with
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Table 1. Quantitative Analysis. The SSIM and Inception Score.

UvA-NEMO Spont. UvA-NEMO Posed DISFA Spont. DISFA+ Posed

Model IS ∆IS SSIM IS ∆IS SSIM IS ∆IS SSIM IS ∆IS SSIM

Original 1.419 - - 1.437 - - 1.426 - - 1.595 - -

Video GAN 1.576 0.157 0.466 1.499 0.062 0.450 1.777 0.351 0.243 1.547 0.048 0.434

CRA-Net 1.311 0.108 0.553 1.310 0.127 0.471 1.833 0.407 0.749 1.534 0.061 0.839

CMM-Net 1.354 0.065 0.854 1.435 0.002 0.827 1.447 0.021 0.747 1.533 0.062 0.810

(a) Spontaneous Smile (b) Posed Smile

Original
Sequence

CMM-Net

CRA-Net

Video GAN

Figure 7. Qualitative comparison. From top to bottom: original sequence, Video-GAN, CRA-Net and CMM-Net. Video-GAN introduces

many artifacts compared to the other two. CRA-Net learn the smile dynamics, but fail to preserve the identity, as opposed to CMM-Net

which produces realistic smiling image sequences.

the Video-GAN model [41], even if it has not been specif-

ically designed for face videos. Importantly, since one of

the motivations of the present study is to demonstrate the

importance of using facial landmarks, we also compare to

a variant of the proposed approach that learns an embed-

ding from the face images directly, instead from landmark

images, and we call it conditional recurrent adversarial net-

work (CRA-Net). The CRA-Net has the same structure as

the bottom layer conditional recurrent landmark generator.

The difference is that a discriminator is added on the top of

the generated images to improve the image quality.

4.2. Qualitative Evaluation
We first show that the proposed Conditional Recurrent

Landmark Generator is able to synthesize landmark se-

quences corresponding to different conditioning labels. Fig-

ure 5 shows the landmark images obtained for the same

neutral face and different conditioning labels (i.e. sponta-

neous/posed). From these results, it is clear that the gener-

ated landmarks (and associated face images) follow differ-

ent dynamics depending on the conditioning label.

To demonstrate the effectiveness of the proposed Multi-

Mode Recurrent Landmark Generator block, we also show

the results associated to generating multiple landmark se-

quences with different styles. In this experiment we set

K = 3. Given a neutral face, the associated landmark im-

age and the conditioning label, we can obtain 4 landmark

sequences: the first is obtained from the Conditional LSTM,

while the others are generated through the K LSTMs cor-

responding to different styles. An example of the generated

landmark sequences for a posed smile is shown in Fig. 6, to-

gether with the associated images recovered using the trans-

lation block. Our results show that the landmark sequence

generated by the Conditional LSTM is very similar to the

original sequence. Moreover, the landmark images corre-

sponding to multiple styles exhibit clearly distinct patterns,

e.g. the subject smiles with a wide open mouth (3rd row),

with mouth closed (4th row) and with closed eyes (5th row).

Figure 7 reports generated sequences of different meth-

ods, to benchmark them with the proposed CMM-Net. The

first row shows results obtained with Video-GAN [41], the

second row corresponds to CRA-Net, the third row is ob-

tained with the proposed CMM-Net, and the fourth row

is the original image sequence. From the results, we can

observe that the images generated by Video-GAN contain

much more artifacts than the other two methods. The im-

ages of CRA-Net are quite realistic, meaning that even with-

out learning the landmark manifold space the dynamics of

the smile is somehow captured. However, we can clearly

see that the identity of the person is not well preserved,

and therefore the sequences look unrealistic. The CMM-

Net decouples the person identity from the smile dynam-

ics (considering the translation and the recurrent blocks, re-

spectively), and thus being able to generate smooth smiling

sequences that preserve the identity of the original face.

4.3. Quantitative Analysis
To further demonstrate the effectiveness of our frame-

work we conduct a quantitative analysis computing some

objective measures of the reconstruction quality, perform-

ing a user study and measuring the AUs dynamics of gener-

ated sequences.

Objective Measures. Structure similarity (SSIM) [47]

and inception score (IS) [33] are employed to measure the

quality of the synthesized images. Table 1 reports these two

scores for the benchmarked methods. The interpretation of
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Table 2. CMM-Net vs Video-GAN and CMM-Net vs CRA-Net:

percentage (%) of the preferences of the generated videos.

Models Spontaneous Smile Posed Smile

Video-GAN [41] 10.14 7.24

CMM-Net 85.14 83.68

∼ 4.72 9.08

CRA-Net 17.76 11.94

CMM-Net 54.87 59.72

∼ 27.37 28.33

these scores must be done with care. Usually, and specially

for SSIM, larger image similarity score corresponds to more

realistic images. However, high quality images do not al-

ways correspond to large IS scores, as observed in [25, 35].

Indeed, a generative model could collapse towards low-

quality images with large inception score. This effect is also

observed in our experiments if we put Table 1 and Figure 7

side to side. This is why we also report the score difference

between the generated sequence and the original sequence

as ∆IS. Intuitively, the smaller this difference is, the more

similar is the quality of the generated images to the quality

of the original images. Overall, CMM-Net have the higher

SSIM score and the smallest difference in IS score.

User Study. To further demonstrate the validity of the

proposed framework, we perform a user-study and compare

the videos generated by CMM-Net to the ones generated

by Video GAN and CRA-Net. The Video-GAN approach

in [41] can only generate videos given an input frame but

does not employ conditioning labels. In order to perform

a comparison we train two different models corresponding

to the two different smiling labels. To compare with each

of the baseline, we show a subject a pair of videos (one

generated by our CMM-Net and the other by the baseline

method) and ask Which video looks more realistic?. We

prepared 37 video pairs and invited 40 subjects to do the

evaluation. We collected 1480 ratings for each of the ex-

periments. Table 2 shows the preferences expressed by the

annotators (%) both for spontaneous and posed smiles. The

symbol ∼ indicates that the two videos are rated as simi-

lar. When we compare the CMM-Net with the Video GAN

baseline (Table 2), most annotators prefer the videos gener-

ated by our CMM-Net. This is not surprising: by visually

inspecting the frames we observe that several artifacts are

present in the sequences generated with Video-GAN (see

Fig.7). Furthermore, comparing our approach with CRA-

Net (Table 2), we still observe that most annotators prefer

images obtained with CMM-Net, confirming the benefit of

adopting landmark for face video generation.

Analyzing the Dynamics of AUs. In a final series of

experiments we evaluate whether the AUs of the generated

data have the same dynamics as the original sequences. In

detail, we measure the intensity of the cheek raiser AU over

the generated sequences using the videos from the testing

set, smooth it with a 5-frames long window and plot the av-

Table 3. Distance between the AU curves of different methods and

those of the original sequences.

Model UvA-NEMO Spont. UvA-NEMO Posed DISFA DISFA+

Video GAN 2.976 2.618 3.775 7.979

CRA-Net 4.452 9.783 2.400 9.931

CMM-Net 2.234 1.472 2.035 1.812
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Figure 8. Dynamics of the action units in N2S sequences.

erage over the test set in Fig. 8. We clearly observe that

the curves closest to the original data are the ones associ-

ated to CMM-Net. This demonstrates the advantage of us-

ing a landmark image embedding and proves that the multi-

mode image sequences have dynamics that are very similar

to the real data. For Video-GAN, the generated videos usu-

ally have poor quality making it hard to automatically com-

pute the AU score. Thus, the curves of Video-GAN always

significantly deviate from the curve corresponding to the

original sequence. Table 3 shows the cumulative distance

between the AU curves of different models and those corre-

sponding to the original sequences. The values reported in

the table further confirm the previous observations.

5. Conclusions
In this paper we address the task of smile generation and,

in particular, we show how to synthesize distinct face videos

of one person given a facial expression (e.g. posed vs. spon-

taneous smile). We proposed a novel framework which de-

couples information about facial expression dynamics, en-

coded into landmarks, and face appearance. For generating

landmark sequences we proposed a two layer conditional

recurrent network. The first layer generates a sequence of

facial landmark embeddings conditioned on a given facial

expression label and an initial face landmark. The second

layer is responsible for generating multiple landmark se-

quences starting from the output of the first layer. The land-

mark sequences are then translated into face videos adopt-

ing a U-Net like architecture. The reported experiments

on two public datasets demonstrate the effectiveness of our

CMM-Net for generating multiple smiling sequences. In

the future, we would like to explore the role of low-level

characteristics (e.g. attention models or structured multi-

scale features [48]) of high-level subjective properties [1]

in facial expression generation.
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