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Abstract

Face aging is of great importance for cross-age recog-

nition and entertainment related applications. However,

the lack of labeled faces of the same person across a long

age range makes it challenging. Because of different aging

speed of different persons, our face aging approach aims

at synthesizing a face whose target age lies in some given

age group instead of synthesizing a face with a certain age.

By grouping faces with target age together, the objective of

face aging is equivalent to transferring aging patterns of

faces within the target age group to the face whose aged

face is to be synthesized. Meanwhile, the synthesized face

should have the same identity with the input face. Thus we

propose an Identity-Preserved Conditional Generative Ad-

versarial Networks (IPCGANs) framework, in which a Con-

ditional Generative Adversarial Networks module functions

as generating a face that looks realistic and is with the tar-

get age, an identity-preserved module preserves the identity

information and an age classifier forces the generated face

with the target age. Both qualitative and quantitative ex-

periments show that our method can generate more realis-

tic faces in terms of image quality, person identity and age

consistency with human observations.

1. Introduction

Face aging, also known as aging synthesis of the human

face, is a task of synthesizing faces of a certain person under

a given age. It is attracting more and more researchers’ at-

tention because of its various applications in cross-age face

recognition and entertainment. For example, it could be ap-

plied to help find lost children or to predict what someone

will look like in the future. Extensive studies have been

made on face aging [28] [11] [5]. However, the lack of

training samples for a given person over a long range of

years [15][20] [3] [21] makes face aging still an extremely

challenging task in computer vision.

∗Corresponding author.

Traditional face aging methods can roughly be catego-

rized into prototype-based approaches [11] and physical

model-based approaches [25]. Prototype-based approaches

usually compute an average face within a face age group

first, and the difference between different average faces

from different groups would be treated as aging pattern

which would be used for synthesizing an aged face [11].

Consequently, person-specific information of each person

would be lost, which results in the synthesized faces look

unrealistic. By contrast, physical model-based approaches

model the shape and texture changes with age in terms of

hair colors, muscles, and wrinkles, etc. with a parametric

model, which usually requires lots of training samples and

is computationally expensive.

Recently, Generative Adversarial Networks(GANs)

based approaches have been demonstrated their successes

in generating high quality images [7] [14] [18]. Of which,

as a special GANs, Conditional GANs (cGANs) [7] [14] [9]

take prior information in image generation and make gen-

erated images be with certain desired property. Inspired by

the success of CGANs, we propose an Identity-Preserved

Conditional Generative Adversarial Networks (IPCGANs)

for face aging. Specifically, our IPCGANs consists of three

modules: a CGANs module, an identity-preserved module

and an age classifier. The generator of CGANs takes an in-

put image and a target age code as its input and generates a

face with the target age. The generated face is expected

to be indistinguishable from real faces in that target age

group by the discriminator. To keep identity information,

we introduce a perceptual loss [4] in the objective of IPC-

GANs. Finally, to guarantee the synthesized faces fall into

the target age group, we send the generated aged faces to a

pre-trained age classifier and add an age classification loss

to the objective. Since all components of our IPCAGANs

are differentiable with respect to the model parameters, the

whole network can be trained in an end-to-end fashion.

The contributions of this paper are summarized as fol-

lows:

1. We propose to impose an identity-preserved term and

an age classification term into the objective of our IPC-
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GANs. The former lets the aged faces keep the same iden-

tity with the input face. The latter is to make sure the gen-

erated faces be with the target age. Extensive experiments

validate the effectiveness of both terms for preserving the

identity information and making the face aging effect evi-

dent.

2. Other than quantitatively evaluate the quality of the

synthesized faces, we also propose to conduct face verifica-

tion and face age classification for the generated aged faces

by means of user study. Our proposed data augmentation

experiment also validates the effectiveness of IPCGANs.

3. IPCGANs is not limited to face aging problem, it is

a general framework. Without any modification, IPCGANs

can be applied to multi-attribute generation task, like hair

colors, facial expressions, etc, which can be used for imbal-

anced data classification scenes.

2. Related Work

2.1. Face Aging

As aforementioned, traditional face aging approaches

can be categorized into prototype-based approaches and

physical model based approaches. We refer readers to [5]

for a comprehensive survey of these approaches. Specifi-

cally, physical model-based approaches usually focus on the

change of skin’s anatomy structure, facial muscle changes

and some other physical measurements for aged face mod-

eling [25][27]. These models are usually very complex, and

require lots of training data. Prototype-based approaches

leverage the differences between the average faces of dif-

ferent age groups for age pattern transfer [5] [11]. How-

ever, such strategy neglects the differences between differ-

ent persons, which makes the generated faces look unreal-

istic. Further, some important age clues, say wrinkles, may

be averaged out. To avoid this, in [23][30] [29], sparse rep-

resentation based approaches have been adopted to model

the person-specific facial properties for synthesizing aged

faces. Though the identity information can be preserved to

some extent by these methods, the reconstruction procedure

makes the synthesized faces suffer from the ghost artifacts.

Recently, a recurrent face aging framework [28] has been

proposed for face aging by leveraging a Recurrent Neural

Network model. Thus the change of synthesized faces be-

tween neighboring age groups is more smooth, but the iden-

tity information is not explicitly preserved in this work. [2]

is the first to apply conditional GANs to face aging. Their

training process is three-stage. This method is not efficient

at inference time because they have to solve a LBFGS op-

timization problem for each image. To better preserve the

identity information, they propose a Local Manifold Adap-

tation approach in [1]. Combined with [2], they boost the

cross-age face verification via age normalization. Similar to

us, [31] proposed an auto-encoder conditional GANs which

encodes the input image to a manifold and then reconstructs

aged images. However, their aged faces seem little change

given different age conditions. Recently, [24] proposed a

face editing method which can be extended to face aging

task. Their results show some aging effect, but the aged

faces look blurry.

2.2. Generative Adversarial Networks (GANs)

Generative Adversarial Networks(GANs) [7] has been

widely used for image generation. It has two components: a

generator and a discriminator. Given a noise vector z which

is sampled from a normal distribution or a uniform distribu-

tion pz(z), the generator maps z to a synthesized image x̃.

The discriminator takes either x̃ or x (x is images sampled

from real image distribution pdata(x)) as input and tries to

tell them apart. The generator is trained to let the discrim-

inator be unable to discriminate them. The objective func-

tion of original GANs is given as follows:

min
G

max
D

Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]

(1)

To facilitate the training of GANs, Radford et al. [18] pro-

pose a Deep Convolutional GANs (DCGANs) framework,

which promotes the application of GANs in many tasks,

such as video prediction [13], cross domain image gener-

ation [26], etc. Arjovsky et al. provide a rigorous analysis

on the objective of GAN and its instability in training phase,

which leads to a Wasserstein GANs (WGANs). Soon af-

ter WGANs, an improved version of WGANs is proposed

[8]. In [14], a Conditional GANs(CGANs) model which

employs prior information in image generation is proposed.

Reed et al.[19] demonstrate its capability in generating re-

alistic images from text descriptions. Recently, CycleGANs

[32] has also been successfully applied to image-to-image

translation task and achieves good performance. These

work greatly boosts the performance of GANs in image

generation.

2.3. Style transfer

The objective of synthesizing a face with a target age is

also related to the work of style transfer [10] [6]. Given

one input image (to be transferred with some artistic style)

and one artistic style image, the goal of style transfer is to

generate one image whose contents are taken from the for-

mer while the style is from the latter. To reach this goal,

a content loss and a style loss in feature space are jointly

optimized [10]. Specifically, both the content loss and the

style loss are called as perceptual loss because they depend

on features extracted from a pre-trained neural network. A

neural network extracts more abstract and perceptual mean-

ings features than raw pixel features. While [6] can generate

high quality images, it is slow in testing phase because the

inference needs to solve a LBFGS optimization problem.
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Figure 1. The pipeline of our proposed IPCGANs for face aging. The input image and target age label are concatenated together and then

is fed into the generator G. The label is of size 128× 128× 5. The discriminator D tries to separate the synthesized faces and faces within

the target age group. To preserve the identity information, we enforce the features of synthesized face and input to be similar. We also use

an age classifier to force the synthesized face to be with the target age.

To avoid this, in [10], a feed-forward network is adopted.

Different from style transfer, which transfers the style of

one image to another image, in face aging, it is desirable to

transfer the age pattern in the target age group to one face.

Therefore, style transfer cannot be directly applied to face

aging.

3. Identity-Preserved Conditional Generative

Adversarial Networks

3.1. Overview

We divide faces with different ages into 5 nonoverlap-

ping groups. The faces within these 5 groups corresponding

to aged 11-20, 21-30, 31-40, 41-50, and 50+, respectively.

Given a face image x, we use a code Cs ∈ R
h×w×5 to in-

dicate the age group that x belongs to, in which, h and w
represent the height and width of a feature map, 5 is the age

group number. Like one-hot code, only one feature map is

filled with ones while the rest feature maps are all filled with

zeros. Face aging aims to generate a synthesized face x̃ that

lies in target age group Ct. It is desirable that the generated

face x̃ has the following characteristics: i) x̃ looks realis-

tic; ii) x̃ has the same identity as x; iii) the age of x̃ lies

in the target age group Ct. To reach these goals, we pro-

pose an Identity-Preserved Conditional GANs (IPCGANs)

framework. In our implementation, we train multiple mod-

els based on the age group that x belongs to. In other words,

the model is only related to the Cs. The model corresponds

to Cs can map any face in group Cs to any target age group

Ct. For simplicity, We slightly abuse notions and do not

specify which Cs age group the model corresponding to in

the following sections.

3.2. Identity­Preserved Conditional Generative Ad­
versarial Networks

The whole framework of our Identity-Preserved Condi-

tional Generative Adversarial Networks (IPCGANs) is il-

lustrated in Figure 1. It contains three modules: i) A

CGANs module which generates a synthesized face with

target age Ct and guarantees x̃ looks realistic; ii) An

Identity-Preserved module which guarantees x̃ has the same

identity with x; iii) An age classifier module which further

enforces x̃ with the desired age Ct.

CGANs based face generation module. Since face ag-

ing aims at generating a synthesized face with a target age,

we adopt Conditional GANs (CGANs) for face generation.

Specifically, we denote y as real faces within the target age

group, and denote the distribution of x and y as px(x) and

py(y), respectively. With CGANs, the synthesized face

with the target age Ct should not be classified as a faked

sample by discriminator D. For real faces, the probability

that they belong to real face D(x|Ct) should be high. Be-

sides, D is also responsible for aligning the input label Ct

with the generated images. Consequently, we arrive at the

following objective function:

min
G

max
D

Ex∼px(x)[logD(x|Ct)]

+Ey∼py(y)[log(1−D(G(y|Ct))]
(2)

Similar to the standard GANs [7], the optimization of

CGANs in Equation (2) also suffers from instability. Con-

sequently, the generated images are unrealistic and of bad

quality. In [12], a Least Squares Generative Adversarial

Networks (LSGANs) model is proposed. As shown in [12],
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the objective of standard GANs can easily get stacked into

a very small loss for the faked samples because the dis-

criminator can easily tell the generated faces and real faces

apart. By contrast, LSGANs tries to push both the gener-

ated faces and real faces close to the decision boundary and

make them indistinguishable. Thus LSGANs is shown to

be able to generate high quality images and training is more

stable. Therefore, we choose a Conditional LSGANs for

our face generation task, which is a special CGANs. Math-

ematically, the Conditional LSGANs can be formulated as

follows:

LD =
1

2
Ex∼px(x)[(D(x|Ct)− 1)2]

+
1

2
Ey∼py(y)[(D(G(y|Ct))

2]

LG =
1

2
Ey∼py(y)[(D(G(y)|Ct)− 1)2]

(3)

To optimize Conditional LSGANs, we use the matching-

aware discriminator proposed in [19] which is shown effec-

tive for aligning conditions with the generated images.

Identity-preserved module. It is important to preserve

the identity information for the synthesized faces. However,

the adversarial loss only makes the generator generate sam-

ples that follow the target data distribution, consequently,

the generated samples can be like any person in the target

age group. In other words, adversarial loss alone can not

guarantee that the generated samples can preserve the iden-

tity information. To keep the identity information for the

generated faces, we introduce the following perceptual loss

into our face aging objective:

Lidentity =
∑

x∈px(x)

‖h(x)− h(G(x|Ct)‖
2 (4)

Here h(·) corresponds to features extracted by a specific

feature layer in a pre-trained neural network. The reason of

not using mean square error (MSE) between x and its aged

face G(x|Ct) in pixel space is that the aged face contains

changes in terms of hair color, beard, wrinkles, receding

hairline, etc., therefore it is different from x any more. An

MSE loss will force G(x|Ct) to be the same as x. How-

ever, a perceptual loss encourages the generated images to

be close to the features of input face in the same feature

space.

Choosing features extracted from a proper layer h(·) is

of great importance for preserving the identity information.

Experiments in style transfer [10, 6] indicate that lower fea-

ture layers are good at keeping the content, while higher

layers help keep style related things like color, texture, etc.

Even though aged face has the change in terms of hair color,

wrinkles, etc., the identity information should not change.

Based on this, here we argue that the face content itself rep-

resents the identity information, lower feature layer of a pre-

trained neural network should be adopted as h(·). To bal-

ance the quality of aged images and the identity information

of the faces, in Sec. 4 we line search from fc7 to conv2 of

Alexnet pre-trained on ImageNet and empirically set h(x)
as the features of conv5 layer. Qualitative and quantitative

results show that this setting can preserve the identity well

and generate diverse aged faces.

Age classification module. To further guarantee the gen-

erated faces fall into the target age group Ct, we pre-train

an age classifier and use it to identify which age group the

face comes from. During the training of our IPCGANs, we

fix the parameters of this age classifier and use it to classify

the generated face, G(x|Ct). If the generated face is indeed

in group Ct, our age classifier gives a small penalty. On the

contrary, if G(x|Ct) is not in group Ct, the age classifier

will give a big penalty. Here we introduce an age classifica-

tion loss Lage into the objective of IPCGANs. We use Lage

to represent the age classification loss. We define Lage as

follows:

Lage =
∑

x∈px(x)

ℓ(G(x|Ct), Ct) (5)

Here ℓ(·) corresponds to a softmax loss. Through back-

propagation, age classification loss forces the parameters of

generator to change and generate faces that lie in the correct

age group.

Objective function Overall, to generate a face with the

target age and the same identity with CGANs, we arrive at

the following objective function:

Gloss = λ1LG + λ2Lidentity + λ3Lage

Dloss = LD

(6)

where λ1 controls to want extent the input image is aged. λ2

and λ3 controls to what extent we want to keep the identity

information and let the generated samples fall into the right

age group, respectively. In Sec. 4 we empirically find the

optimal λ1, λ2 and λ3.

3.3. Network Architecture

The generator and discriminator networks Inspired

by the impressive results of style transfer [10] and unpaired

image-to-image translation [32], our generator is the same

with [32] except the first convolution layer. Our generator

receives 128 × 128 × 3 images and 128 × 128 × 5 condi-

tion feature maps as input, so we adopt 6 residual blocks in

our generator. Like one-hot code, only one feature map is

filled with ones while the rest feature maps are all filled with

zeros. We inject the conditions before the first convolution

43247942



Figure 2. The aging effect of different age classification loss weights. We set λ1 = 75, λ2 = 5e− 5, input age lies in 11-20 group, target

age lies is in 50+ group, throughout. Here we use conv4 as the feature layer. ax means λ3 = x. As we can see that as λ3 grows, the aging

effect gets more and more evident. But this trend is limited by the age of the aged images. I.e., if the target age lies in 30-40 group, as λ3

grows, the aging effect gets more obvious but the aged images will not look like images of group 40-50 or 50+.

layer. The input images and condition feature maps are con-

catenated together and then the combined feature maps are

sent to the first convolution layer.

The architecture of discriminator is adapted from invert-

ible conditional GANs [17] and [32]. The way we inject

conditions into the discriminator is exactly the same with

[17], which is shown to be able to generate high quality

images that are consistent with the conditions. Specifi-

cally, as [32] did, we follow the naming convention used

in [10]. Let Convk represents a 4 × 4 convolution-

Batchnorm-leakyRelu layer with stride 2 and k output

channels. The architecture of discriminator is Conv64 −
Conv128 − Conv256 − Conv512 − Conv512. As [18] and

[17] suggested, we do not apply Batchnorm on the first

Conv64 layer and we inject the conditions after this layer.

LeakyRelu is with slope 0.2. As the feature map after the

Conv64 layer is of size 64 × 64, the size of the condition

feature maps that fed into the generator changes from 128 to

64, correspondingly. The Conv64 feature maps and condi-

tions are stacked together. The combined feature maps are

sent to the Conv128 layer.

Age classification network Our age classifier is

adapted from Alexnet. The age classifier shares the same

architecture from conv1 to pool5. After that, we add two

fully connected layers and a softmax layer, dropout is used

to prevent from overfitting.

4. Experiments and Evaluation

In this section, we first introduce the training dataset and

image pre-processing details. Then we will evaluate our

proposed IPCGANs both qualitatively and quantitatively.

4.1. Dataset

Following the work [28][31], we choose the Cross-Age

Celebrity Dataset (CACD) [3] for training and evaluation.

CACD contains more than 160,000 face images of 2,000

celebrities with age ranging from 16 to 62. All the images

are annotated with age, though not accurate. There are large

variations in pose, illumination, expression and even style

in this dataset. After face detection, aligning and center

cropping, we get 163,104 CACD images whose resolution

is 400 × 400 pixels. We split CACD into two parts, 90%
for training and the rest for test. The number of training im-

ages of group 11-20, 21-30, 31-40, 41-50, and 50+ is 8,656,

36,662, 38,736, 35,768 and 26,972, respectively.

4.2. Implementation details

We compare our method with the following latest

work: age conditional Generative Adversarial Networks

(acGANs) [2] and Conditional Adversarial Autoencoder

Network (CAAE) [31] which achieve state-of-the-art per-

formance for face aging. All of these methods are based

on conditional GANs and are closely related to our method.

For acGANs we change the number of age groups from 6

to 5 and replace FaceNet with the pre-trained face VGG net

[16]. We use the Tensorflow implementation of L-BFGS-B

algorithm and set the maximal iterations to be 1000. CAAE

originally has 10 age groups and uses gender information.

For fair comparison, we remove the gender information and

use 5 age groups instead.

The age classifier is finetuned based on Alexnet on the

CACD training set with 200, 000 steps. The learning rate

is set as 0.01 at first and is exponentially decreased every

15 epochs. The learning rate decay factor = 0.1, weight de-
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cay factor = 0.0005 and batch size = 64. For the training

of IPCGANs, we fix the learning rate as 0.001 and use a

batch size of 32. The whole training process takes 500,000

steps. As we use BatchNorm throughout, in order to avoid

problems with BatchNorm (Running mean and running var

from BatchNorm layers in test mode might be a bit off from

training, which causes significant differences between im-

ages generated on training mode and test mode.), we follow

the method in [17] to stabilize the BatchNorm layers before

using the generator models for image synthesis.

4.3. Qualitative comparison

Following previous work [2] [31] [28], we first qualita-

tively compare the synthesized faces of different methods.

We randomly choose 6 persons from the 11-20 CACD test

age group. Figure 3 shows the aged faces of different meth-

ods. Since the source code of acGAN is not available, we try

our best to implement the original work and tune the param-

eters to improve the performance. We think we reproduce

the same image quality as presented in the original paper of

acGANs. For CAAE, we retrain a model with their released

code. We can see that images generated by acGANs have

lots of artifacts. Besides, acGANs has the danger of losing

identities when the target age grows. By contrast, images

generated by CAAE look blurry and unrealistic. Due to the

use of pixel loss between the input image and its aged ones,

the aging effect is not evident. Compared with CAAE and

acGANS, the synthesized images of IPCGANs have fewer

artifacts, higher image quality and lower possibilities of los-

ing identities.

4.3.1 The effect of identity-preserved module

Figure 4 shows the objective with/without identity-

preserved module. Without identity-preserved term, al-

though the adversarial loss makes the input face aged, some-

times the generated images have lots of artifacts and have

the danger to lose their identities. With Lidentity , the qual-

ity of synthesized images is closely related to which layer

is chosen as the feature layer. We fix the other factors un-

changed and line search the optimal feature layer from fc7
to conv2. We can see that as feature layer goes from shallow

to deep, the aging effect gets more and more evident and ar-

tifacts and distortions will appear. To balance between the

image quality and the face aging effect, we empirically set

h(x) as the features of conv5 layer.

4.3.2 The effect of age classifier module

Lage pushes the generator to generate samples that lie in the

target age group. Figure 2 shows the effect of age classifi-

cation term. Keep the other factors unchanged, as the age

loss weight λ3 grows, the aging effect gets more evident.

Table 1. The performance of different methods.

CAAE acGANs IPCGANs

Face verification (%) 91.53 85.83 96.90

Image quality (%) 68.85 39.67 71.74

Age classification (%) 24.84 32.70 31.74

VGG-face score 19.53±1.76 23.42±1.82 36.33±1.85

Time cost (s) 0.71 38.68 0.28

4.4. Quantitative comparison

4.4.1 User study evaluation

Most existing work quantitatively evaluate the performance

of different methods based on user study [31][28]. Follow-

ing these work, we also conduct user study experiments to

compare the quality of faces generated by different meth-

ods. Specifically, we invite 80 volunteers who have no

knowledge about our work to rate the faces generated by

different methods. Different from previous work, besides

the image quality evaluation [31][28], we also ask users to

conduct face verification task and age classification task for

synthesized faces. We randomly select 100 images in the

11-20 age group. Then for each image, we generate 4 aged

faces with different target age conditions. Finally, we get

400 aged faces for each aging method. Throughout this part,

we use these images for user study evaluation. So the same

input → output mappings are generated for each model and

images presented to all volunteers are the same, which guar-

antees the fairness of comparison.

Image quality. In this part, we ask volunteers to rate the

quality of each face (good or bad). Then we calculate the

percentage of images rated as good.

Age classification. Given a synthesized face, we ask vol-

unteers to vote which age group that this face belongs to.

By repeating this process for each method, finally, the per-

centage of faces whose target age agrees with that of user

estimation is reported.

Face verification. For each input image, we generate 4

aged images given different age labels. We denote the 4

aged images as age1-4. We form 3 pairs here. (input, age1),

(age2, age3), (age4, one randomly selected generated image

of other persons). The first 2 pairs are to verify whether the

generated images are the same person as the input. The last

pair is to verify whether the generated image seems like the

other person. Then we ask the users to do face verification

task and report the accuracy of different methods. Here the

accuracy = (tp + tn)/(Np + Nn). If the trained model

is not identity preserved or generates the same person given

different inputs, face verification score must be low.

4.4.2 Inception score.

Inception score is another metric used for evaluating the

quality of generated images [22]. However, the inception
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Figure 3. Some synthesized faces generated by different methods. Each dotted box denotes one person’s images. In each box, from top to

bottom, they are images generated by IPCGANs, CAAE and acGANs. The input age lies in 11-20 age group and target age lies is in 50+

age group. conv5 is chosen as the feature layer of Lidentity .

Table 2. The effect of with/without identity-preserved module and age classifier module(%)

age classification face verification

with age classifier w/o age classifier with identity-preserved term w/o identity-preserved term

31.37 28.73 99.07 98.15

network on ImageNet is trained on 1000 object classes that

exclude human faces or human categories. Using the incep-

tion score calculated by the network trained on ImageNet

to measure the image quality of faces is inappropriate. In-

stead, we use the pre-trained face VGG net for evaluation.

We run the OpenAI source code to compute score. We term

this score as VGG-face score.

4.4.3 Computational cost

For fair comparison, here we evaluate the average time cost

of generating 4 aged images conditioned on one input im-

age by different methods. We set the maximal iterations of

L-BFGS-B to be 1000 and keep the same settings for all

methods. Each method is repeated 5 times then the average

time is computed.

The performance of all the measurements by different meth-

ods is reported in Table 1. We can see that our IPCGANs

achieves the highest performance on image quality and face

verification. Further, our IPCGAN also achieves the highest

VGG-face score, which validates the effectiveness of our

method for generating a high quality face with the same

identity and target age. As for the computation efficiency,
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Figure 4. The aging effect with different feature layers. Here we set λ3 = 0. The input age lies in 11-20 age group and target age lies is in

50+ age group. ’no’ means without the identity-preserving module. As we can see, the lower the layer, the stronger the ability to keep the

source image content. As the feature layer goes deeper, the aging effect gets more evident.

our method is nearly 100× faster than acGANs and 2.5×
faster than CAAE.

4.4.4 Face recognition with synthesized data

To avoid the suspicion that the limited images used for user

study is carefully selected and to further validate the ef-

fectiveness of our method, we use the synthesized data to

augment the real faces and train a classifier for face recog-

nition. Because of the slow speed of acGANs, We only

compare the performance of classifiers trained by using data

augmented with synthesized faces generated by CAAE and

IPCGANs. For each training image, we generate 4 images

given different age conditions. Thus the augmented train-

ing set is 4× larger than the original training set. Without

data augmentation, the face recognition accuracy with face

VGG classifier on the test set is 84.9%. We finetune on this

model with the augmented training set, then the best per-

formance achieved by CAAE and IPCGANs is 78.2% and

84.8%, respectively. It shows that after data augmentation,

IPCGANs model keeps the face recognition performance

while the CAAE model degrades the accuracy greatly.

The performance does not drop after finetuning with 4

times more synthesized data validates that our synthesized

images preserve the identity information and the image

quality. If synthesized faces cannot keep identities well, so

many synthesized faces would reduce the performance (as

CAAE does). So face recognition accuracy is another mea-

surement for comparing different face aging models. Mean-

while, this is the first work to use face recognition as a mea-

surement to measure different algorithms. This experiment

shows that as a data augmentation method, aged faces gen-

erated by our method can not improve the face recognition

performance.

4.4.5 The evaluation of identity-preserved module and

age classifier module

We also quantitatively evaluate the models with/without

identity-preserved term and age classification module by

conducting user study based face verification and age clas-

sification. The experimental setup is the same with Section

4.4. The results are shown in Table 2. We can see that with

age classifier, the age classification accuracy is boosted than

that without the age classifier. The identity-preserved mod-

ule also improves the face verification performance.

5. Conclusion

In light of the success of GANs for image generation,

we propose a conditional GANs based face aging approach.

The discriminator in CGANs guarantees the consistency

between the aged faces and the corresponding target age.

To preserve the identity of input images, we force the

high level features of input faces and the synthesized

faces to be similar. Further, we introduce an age classifier

module to force the synthesized faces to be with the

target age. In this way, our method can generate high

quality faces with the same identity and target age. Both

of qualitative and quantitative experiments validate the

effectiveness of our approach. Besides, IPCGANs is a

general framework. Without any modification, it can be

applied to multi-attribute transfer tasks like brown hair

to black/blond/gray hair, no beard to beard/5 o’clock

shadow/mustache/sideburns, etc. If we remove the condi-

tion part, our framework can be used for image translation

task, like from RGB domain to near infrared domain.
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