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Abstract

Both convolutional and recurrent operations are building

blocks that process one local neighborhood at a time. In

this paper, we present non-local operations as a generic

family of building blocks for capturing long-range depen-

dencies. Inspired by the classical non-local means method

[4] in computer vision, our non-local operation computes

the response at a position as a weighted sum of the features

at all positions. This building block can be plugged into

many computer vision architectures. On the task of video

classification, even without any bells and whistles, our non-

local models can compete or outperform current competition

winners on both Kinetics and Charades datasets. In static

image recognition, our non-local models improve object de-

tection/segmentation and pose estimation on the COCO suite

of tasks. Code will be made available.

1. Introduction

Capturing long-range dependencies is of central impor-

tance in deep neural networks. For sequential data (e.g.,

in speech, language), recurrent operations [38, 23] are the

dominant solution to long-range dependency modeling. For

image data, long-distance dependencies are modeled by the

large receptive fields formed by deep stacks of convolutional

operations [14, 30].

Convolutional and recurrent operations both process a

local neighborhood, either in space or time; thus long-range

dependencies can only be captured when these operations

are applied repeatedly, propagating signals progressively

through the data. Repeating local operations has several

limitations. First, it is computationally inefficient. Second,

it causes optimization difficulties that need to be carefully

addressed [23, 21]. Finally, these challenges make multi-

hop dependency modeling, e.g., when messages need to be

delivered back and forth between distant positions, difficult.

In this paper, we present non-local operations as an ef-

ficient, simple, and generic component for capturing long-

range dependencies with deep neural networks. Our pro-

posed non-local operation is a generalization of the classical

non-local mean operation [4] in computer vision. Intuitively,

a non-local operation computes the response at a position
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Figure 1. A spacetime non-local operation in our network trained

for video classification in Kinetics. A position xi’s response is

computed by the weighted average of the features of all positions

xj (only the highest weighted ones are shown here). In this example

computed by our model, note how it relates the ball in the first frame

to the ball in the last two frames. More examples are in Figure 3.

as a weighted sum of the features at all positions in the in-

put feature maps (Figure 1). The set of positions can be in

space, time, or spacetime, implying that our operations are

applicable for image, sequence, and video problems.

There are several advantages of using non-local opera-

tions: (a) In contrast to the progressive behavior of recurrent

and convolutional operations, non-local operations capture

long-range dependencies directly by computing interactions

between any two positions, regardless of their positional dis-

tance; (b) As we show in experiments, non-local operations

are efficient and achieve their best results even with only

a few layers (e.g., 5); (c) Finally, our non-local operations

maintain the variable input sizes and can be easily combined

with other operations (e.g., convolutions as we will use).

We showcase the effectiveness of non-local operations in

the application of video classification. In videos, long-range

interactions occur between distant pixels in space as well as

time. A single non-local block, which is our basic unit, can

directly capture these spacetime dependencies in a feedfor-

ward fashion. With a few non-local blocks, our architecures

called non-local neural networks are more accurate for video

classification than 2D and 3D convolutional networks [48]

(including the inflated variant [7]). In addition, non-local

neural networks are more computationally economical than

their 3D convolutional counterparts. Comprehensive abla-

tion studies are presented on the Kinetics [27] and Charades

[44] datasets. Using RGB only and without any bells and

whistles (e.g., optical flow, multi-scale testing), our method

achieves results on par with or better than the latest competi-

tions winners on both datasets.

17794



To demonstrate the generality of non-local operations,

we further present object detection/segmentation and pose

estimation experiments on the COCO dataset [33]. On top of

the strong Mask R-CNN baseline [19], our non-local blocks

can increase accuracy on all three tasks at a small extra

computational cost. Together with the evidence on videos,

these image experiments show that non-local operations are

generally useful and can become a basic building block in

designing deep neural networks.

2. Related Work

Non-local image processing. Non-local means [4] is a clas-

sical filtering algorithm that computes a weighted mean of

all pixels in an image. It allows distant pixels to contribute to

the filtered response at a location based on patch appearance

similarity. This non-local filtering idea was later developed

into BM3D (block-matching 3D) [10], which performs filter-

ing on a group of similar, but non-local, patches. BM3D is

a solid image denoising baseline even compared with deep

neural networks [5]. Block matching was used with neural

networks for image denoising [6, 31]. Non-local match-

ing is also the essence of successful texture synthesis [12],

super-resolution [16], and inpainting [1] algorithms.

Graphical models. Long-range dependencies can be mod-

eled by graphical models such as conditional random fields

(CRF) [29, 28]. In the context of deep neural networks, a

CRF can be exploited to post-process semantic segmenta-

tion predictions of a network [9]. The iterative mean-field

inference of CRF can be turned into a recurrent network

and trained [56, 42, 8, 18, 34]. In contrast, our method is a

simpler feedforward block for computing non-local filtering.

Unlike these methods that were developed for segmentation,

our general-purpose component is applied for classification

and detection. These methods and ours are also related to a

more abstract model called graph neural networks [41].

Feedforward modeling for sequences. Recently there

emerged a trend of using feedforward (i.e., non-recurrent)

networks for modeling sequences in speech and language

[36, 54, 15]. In these methods, long-term dependencies

are captured by the large receptive fields contributed by

very deep 1-D convolutions. These feedforward models are

amenable to parallelized implementations and can be more

efficient than widely used recurrent models.

Self-attention. Our work is related to the recent self-

attention [49] method for machine translation. A self-

attention module computes the response at a position in

a sequence (e.g., a sentence) by attending to all positions

and taking their weighted average in an embedding space.

As we will discuss in the next, self-attention can be viewed

as a form of the non-local mean [4], and in this sense our

work bridges self-attention for machine translation to the

more general class of non-local filtering operations that are

applicable to image and video problems in computer vision.

Interaction networks. Interaction Networks (IN) [2, 52]

were proposed recently for modeling physical systems. They

operate on graphs of objects involved in pairwise interactions.

Hoshen [24] presented the more efficient Vertex Attention

IN (VAIN) in the context of multi-agent predictive modeling.

Another variant, named Relation Networks [40], computes a

function on the feature embeddings at all pairs of positions

in its input. Our method also processes all pairs, as we will

explain (f(xi,xj) in Eq.(1)). While our non-local networks

are connected to these approaches, our experiments indicate

that the non-locality of the model, which is orthogonal to

the ideas of attention/interaction/relation (e.g., a network

can attend to a local region), is the key to their empirical

success. Non-local modeling, a long-time crucial element of

image processing (e.g., [12, 4]), has been largely overlooked

in recent neural networks for computer vision.

Video classification architectures. A natural solution to

video classification is to combine the success of CNNs for

images and RNNs for sequences [55, 11]. In contrast, feed-

forward models are achieved by 3D convolutions (C3D)

[26, 48] in spacetime, and the 3D filters can be formed by

“inflating” [13, 7] pre-trained 2D filters. In addition to end-

to-end modeling on raw video inputs, it has been found that

optical flow [45] and trajectories [50, 51] can be helpful.

Both flow and trajectories are off-the-shelf modules that

may find long-range, non-local dependency. A systematic

comparison of video architectures can be found in [7].

3. Non-local Neural Networks

We first give a general definition of non-local operations

and then we provide several specific instantiations of it.

3.1. Formulation

Following the non-local mean operation [4], we define a

generic non-local operation in deep neural networks as:

yi =
1

C(x)

∑

∀j

f(xi,xj)g(xj). (1)

Here i is the index of an output position (in space, time, or

spacetime) whose response is to be computed and j is the

index that enumerates all possible positions. x is the input

signal (image, sequence, video; often their features) and y

is the output signal of the same size as x. A pairwise func-

tion f computes a scalar (representing relationship such as

affinity) between i and all j. The unary function g computes

a representation of the input signal at the position j. The

response is normalized by a factor C(x).
The non-local behavior in Eq.(1) is due to the fact that

all positions (∀j) are considered in the operation. As a

comparison, a convolutional operation sums up the weighted

input in a local neighborhood (e.g., i− 1 ≤ j ≤ i+ 1 in a

1D case with kernel size 3), and a recurrent operation at time
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i is often based only on the current and the latest time steps

(e.g., j = i or i− 1).

The non-local operation is also different from a fully-

connected (fc) layer. Eq.(1) computes responses based on

relationships between different locations, whereas fc uses

learned weights. In other words, the relationship between xj

and xi is not a function of the input data in fc, unlike in non-

local layers. Furthermore, our formulation in Eq.(1) supports

inputs of variable sizes, and maintains the corresponding

size in the output. On the contrary, an fc layer requires a

fixed-size input/output and loses positional correspondence

(e.g., that from xi to yi at the position i).
A non-local operation is a flexible building block and can

be easily used together with convolutional/recurrent layers.

It can be added into the earlier part of deep neural networks,

unlike fc layers that are often used in the end. This allows us

to build a richer hierarchy that combines both non-local and

local information.

3.2. Instantiations

Next we describe several versions of f and g. Interest-

ingly, we will show by experiments (Table 2a) that our non-

local models are not sensitive to these choices, indicating

that the generic non-local behavior is the main reason for the

observed improvements.

For simplicity, we only consider g in the form of a linear

embedding: g(xj) = Wgxj , where Wg is a weight matrix

to be learned. This is implemented as, e.g., 1×1 convolution

in space or 1×1×1 convolution in spacetime.

Next we discuss choices for the pairwise function f .

Gaussian. Following the non-local mean [4] and bilateral

filters [47], a natural choice of f is the Gaussian function. In

this paper we consider:

f(xi,xj) = ex
T
i xj . (2)

Here xT
i xj is dot-product similarity. Euclidean distance as

used in [4, 47] is also applicable, but dot product is more

implementation-friendly in modern deep learning platforms.

The normalization factor is set as C(x) =
∑

∀j f(xi,xj).

Embedded Gaussian. A simple extension of the Gaussian

function is to compute similarity in an embedding space. In

this paper we consider:

f(xi,xj) = eθ(xi)
Tφ(xj). (3)

Here θ(xi) = Wθxi and φ(xj) = Wφxj are two embed-

dings. As above, we set C(x) =
∑

∀j f(xi,xj).
We note that the self-attention module [49] recently pre-

sented for machine translation is a special case of non-local

operations in the embedded Gaussian version. This can be

seen from the fact that for a given i, 1
C(x)f(xi,xj) becomes

the softmax computation along the dimension j. So we have

θ: 1×1×1 φ: 1×1×1 g: 1×1×1

1×1×1

softmax

z

T×H×W×1024

T×H×W×512 T×H×W×512 T×H×W×512

THW×512 512×THW

THW×THW

THW×512

THW×512

T×H×W×512

T×H×W×1024

x

Figure 2. A spacetime non-local block. The feature maps are

shown as the shape of their tensors, e.g., T×H×W×1024 for

1024 channels (proper reshaping is performed when noted). “⊗”

denotes matrix multiplication, and “⊕” denotes element-wise sum.

The softmax operation is performed on each row. The blue boxes de-

note 1×1×1 convolutions. Here we show the embedded Gaussian

version, with a bottleneck of 512 channels. The vanilla Gaussian

version can be done by removing θ and φ, and the dot-product

version can be done by replacing softmax with scaling by 1/N .

y = softmax(xTWT
θ Wφx)g(x), which is the self-attention

form in [49]. As such, our work provides insight by relating

this recent self-attention model to the classic computer vision

method of non-local means [4], and extends the sequential

self-attention network in [49] to a generic space/spacetime

non-local network for image/video recognition in computer

vision.

Despite the relation to [49], we show that the attentional

behavior (due to softmax) is not essential in the applications

we study. To show this, we describe two alternative versions

of non-local operations next.

Dot product. f can be defined as a dot-product similarity:

f(xi,xj) = θ(xi)
Tφ(xj). (4)

Here we adopt the embedded version. In this case, we set the

normalization factor as C(x) = N , where N is the number of

positions in x, rather than the sum of f , because it simplifies

gradient computation. A normalization like this is necessary

because the input can have variable size.

The main difference between the dot product and embed-

ded Gaussian versions is the presence of softmax, which

plays the role of an activation function.

Concatenation. Concatenation is used by the pairwise func-

tion in Relation Networks [40] for visual reasoning. We also

evaluate a concatenation form of f :

f(xi,xj) = ReLU(wT
f [θ(xi), φ(xj)]). (5)

Here [·, ·] denotes concatenation and wf is a weight vector

that projects the concatenated vector to a scalar. As above,

we set C(x) = N . In this case, we adopt ReLU [35] in f .
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The above several variants demonstrate the flexibility

of our generic non-local operation. We believe alternative

versions are possible and may improve results.

3.3. Non­local Block

We wrap the non-local operation in Eq.(1) into a non-local

block that can be incorporated into many existing architec-

tures. We define a non-local block as:

zi = Wzyi + xi, (6)

where yi is given in Eq.(1) and “+xi” denotes a residual

connection [21]. The residual connection allows us to insert

a new non-local block into any pre-trained model, without

breaking its initial behavior (e.g., if Wz is initialized as zero).

An example non-local block is illustrated in Figure 2. The

pairwise computation in Eq.(2), (3), or (4) can be simply

done by matrix multiplication as shown in Figure 2; the

concatenation version in (5) is straightforward.

The pairwise computation of a non-local block is

lightweight when it is used in high-level, sub-sampled fea-

ture maps. For example, typical values in Figure 2 are

T = 4, H = W = 14 or 7. The pairwise computation

as done by matrix multiplication is comparable to a typical

convolutional layer in standard networks. We further adopt

the following implementations that make it more efficient.

Implementation of Non-local Blocks. We set the number

of channels represented by Wg, Wθ, and Wφ to be half of

the number of channels in x. This follows the bottleneck

design of [21] and reduces the computation of a block by

about a half. The weight matrix Wz in Eq.(6) computes a

position-wise embedding on yi, matching the number of

channels to that of x. See Figure 2.

A subsampling trick can be used to further re-

duce computation. We modify Eq.(1) as: yi =
1

C(x̂)

∑
∀j f(xi, x̂j)g(x̂j), where x̂ is a subsampled version

of x (e.g., by pooling). We perform this in the spatial do-

main, which can reduce the amount of pairwise computation

by 1/4. This trick does not alter the non-local behavior, but

only makes the computation sparser. This can be done by

adding a max pooling layer after φ and g in Figure 2.

We use these efficient modifications for all non-local

blocks studied in this paper.

4. Video Classification Models

To understand the behavior of non-local networks, we

conduct comprehensive ablation experiments on video clas-

sification tasks. First we describe our baseline network archi-

tectures for this task, and then extend them into 3D ConvNets

[48, 7] and our proposed non-local nets.

2D ConvNet baseline (C2D). To isolate the temporal ef-

fects of our non-local nets vs. 3D ConvNets, we construct

layer output size

conv1 7×7, 64, stride 2, 2, 2 16×112×112

pool1 3×3×3 max, stride 2, 2, 2 8×56×56

res2





1×1, 64

3×3, 64

1×1, 256



×3 8×56×56

pool2 3×1×1 max, stride 2, 1, 1 4×56×56

res3





1×1, 128

3×3, 128

1×1, 512



×4 4×28×28

res4





1×1, 256

3×3, 256

1×1, 1024



×6 4×14×14

res5





1×1, 512

3×3, 512

1×1, 2048



×3 4×7×7

global average pool, fc 1×1×1

Table 1. Our baseline ResNet-50 C2D model for video. The di-

mensions of 3D output maps and filter kernels are in T×H×W (2D

kernels in H×W), with the number of channels following. The

input is 32×224×224. Residual blocks are shown in brackets.

a simple 2D baseline architecture in which the temporal

dimension is trivially addressed (i.e., only by pooling).

Table 1 shows our C2D baseline under a ResNet-50 back-

bone. The input video clip has 32 frames each with 224×224

pixels. All convolutions in Table 1 are in essence 2D ker-

nels that process the input frame-by-frame (implemented as

1×k×k kernels). This model can be directly initialized from

the ResNet weights pre-trained on ImageNet. A ResNet-101

counterpart is built in the same way.

The only operation involving the temporal domain are

the pooling layers. In other words, this baseline simply

aggregates temporal information.

Inflated 3D ConvNet (I3D). As done in [13, 7], one can

turn the C2D model in Table 1 into a 3D convolutional

counterpart by “inflating” the kernels. For example, a 2D

k×k kernel can be inflated as a 3D t×k×k kernel that spans

t frames. This kernel can be initialized from 2D models (pre-

trained on ImageNet): each of the t planes in the t×k×k
kernel is initialized by the pre-trained k×k weights, rescaled

by 1/t. If a video consists of a single static frame repeated

in time, this initialization produces the same results as the

2D pre-trained model run on a static frame.

We study two cases of inflations: we either inflate the

3×3 kernel in a residual block to 3×3×3 (similar to [7]), or

the first 1×1 kernel in a residual block to 3×1×1 (similar to

[13]). We denote these as I3D3×3×3 and I3D3×1×1. As 3D

convolutions are computationally intensive, we only inflate

one kernel for every 2 residual blocks; inflating more layers

shows diminishing return. We inflate conv1 to 5×7×7.

The authors of [7] have shown that I3D models are more

accurate than their CNN+LSTM counterparts.

Non-local network. We insert non-local blocks into C2D or

I3D to turn them into non-local nets. We investigate adding

1, 5, or 10 non-local blocks; the implementation details are

described in the next section in context.
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Figure 3. Examples of the behavior of a non-local block in res3 computed by a 5-block non-local model trained on Kinetics. These examples

are from held-out validation videos. The starting point of arrows represents one xi, and the ending points represent xj . The 20 highest

weighted arrows for each xi are visualized. The 4 frames are from a 32-frame input, shown with a stride of 8 frames. These visualizations

show how the model finds related clues to support its prediction.

4.1. Implementation Details

Training. Our models are pre-trained on ImageNet [39].

Unless specified, we fine-tune our models using 32-frame

input clips. These clips are formed by randomly cropping out

64 consecutive frames from the original full-length video and

then dropping every other frame. The spatial size is 224×224

pixels, randomly cropped from a scaled video whose shorter

side is randomly sampled in [256, 320] pixels, following [46].

We train on an 8-GPU machine and each GPU has 8 clips in a

mini-batch (so in total with a mini-batch size of 64 clips). We

train our models for 400k iterations in total, starting with a

learning rate of 0.01 and reducing it by a factor of 10 at every

150k iterations (see also Figure 4). We use a momentum

of 0.9 and a weight decay of 0.0001. We adopt dropout

[22] after the global pooling layer, with a dropout ratio of

0.5. We fine-tune our models with BatchNorm (BN) [25]

enabled when it is applied. This is in contrast to common

practice [21] of fine-tuning ResNets, where BN was frozen.

We have found that enabling BN in our application reduces

overfitting.

We adopt the method in [20] to initialize the weight layers

introduced in the non-local blocks. We add a BN layer right

after the last 1×1×1 layer that represents Wz; we do not add

BN to other layers in a non-local block. The scale parameter

of this BN layer is initialized as zero, following [17]. This

ensures that the initial state of the entire non-local block is an

identity mapping, so it can be inserted into any pre-trained

networks while maintaining its initial behavior.

Inference. Following [46] we perform spatially fully-

convolutional inference on videos whose shorter side is

rescaled to 256. For the temporal domain, in our practice we

sample 10 clips evenly from a full-length video and compute

the softmax scores on them individually. The final prediction

is the averaged softmax scores of all clips.

5. Experiments on Video Classification

We perform comprehensive studies on the challenging

Kinetics dataset [27]. We also report results on the Charades

dataset [44] to show the generality of our models.

5.1. Experiments on Kinetics

Kinetics [27] contains ∼246k training videos and 20k

validation videos. It is a classification task involving 400

human action categories. We train all models on the training

set and test on the validation set.
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model, R50 top-1 top-5

C2D baseline 71.8 89.7

Gaussian 72.5 90.2

Gaussian, embed 72.7 90.5

dot-product 72.9 90.3

concatenation 72.8 90.5

(a) Instantiations: 1 non-local block

of different types is added into the C2D

baseline. All entries are with ResNet-

50.

model, R50 top-1 top-5

baseline 71.8 89.7

res2 72.7 90.3

res3 72.9 90.4

res4 72.7 90.5

res5 72.3 90.1

(b) Stages: 1 non-local block is

added into different stages. All

entries are with ResNet-50.

model top-1 top-5

R50

baseline 71.8 89.7

1-block 72.7 90.5

5-block 73.8 91.0

10-block 74.3 91.2

R101

baseline 73.1 91.0

1-block 74.3 91.3

5-block 75.1 91.7

10-block 75.1 91.6

(c) Deeper non-local models: we

compare 1, 5, and 10 non-local blocks

added to the C2D baseline. We show

ResNet-50 (top) and ResNet-101 (bot-

tom) results.

model top-1 top-5

R50

baseline 71.8 89.7

space-only 72.9 90.8

time-only 73.1 90.5

spacetime 73.8 91.0

R101

baseline 73.1 91.0

space-only 74.4 91.3

time-only 74.4 90.5

spacetime 75.1 91.7

(d) Space vs. time vs. spacetime: we

compare non-local operations applied

along space, time, and spacetime dimen-

sions respectively. 5 non-local blocks

are used.

model, R101 params FLOPs top-1 top-5

C2D baseline 1× 1× 73.1 91.0

I3D3×3×3 1.5× 1.8× 74.1 91.2

I3D3×1×1 1.2× 1.5× 74.4 91.1

NL C2D, 5-block 1.2× 1.2× 75.1 91.7

(e) Non-local vs. 3D Conv: A 5-block non-local C2D

vs. inflated 3D ConvNet (I3D) [7]. All entries are with

ResNet-101. The numbers of parameters and FLOPs are

relative to the C2D baseline (43.2M and 34.2B).

model top-1 top-5

R50

C2D baseline 71.8 89.7

I3D 73.3 90.7

NL I3D 74.9 91.6

R101

C2D baseline 73.1 91.0

I3D 74.4 91.1

NL I3D 76.0 92.1

(f) Non-local 3D ConvNet: 5 non-local

blocks are added on top of our best I3D mod-

els. These results show that non-local opera-

tions are complementary to 3D convolutions.

model top-1 top-5

R50

C2D baseline 73.8 91.2

I3D 74.9 91.7

NL I3D 76.5 92.6

R101

C2D baseline 75.3 91.8

I3D 76.4 92.7

NL I3D 77.7 93.3

(g) Longer clips: we fine-tune and test the

models in Table 2f on the 128-frame clips.

The gains of our non-local operations are con-

sistent.

Table 2. Ablations on Kinetics action classification. We show top-1 and top-5 classification accuracy (%).
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Figure 4. Curves of the training procedure on Kinetics for the

ResNet-50 C2D baseline (blue) vs. non-local C2D with 5 blocks

(red). We show the top-1 training error (dash) and validation error

(solid). The validation error is computed in the same way as the

training error (so it is 1-clip testing with the same random jittering

at training time); the final results are in Table 2c (R50, 5-block).

Figure 4 shows the curves of the training procedure of a

ResNet-50 C2D baseline vs. a non-local C2D with 5 blocks

(more details in the following). Our non-local C2D model

is consistently better than the C2D baseline throughout the

training procedure, in both training and validation error.

Figure 1 and Figure 3 visualize several examples of the

behavior of a non-local block computed by our models. Our

network can learn to find meaningful relational clues regard-

less of the distance in space and time.

Table 2 shows the ablation results, analyzed as follows:

Instantiations. Table 2a compares different types of a sin-

gle non-local block added to the C2D baseline (right before

the last residual block of res4). Even adding one non-local

block can lead to ∼1% improvement over the baseline.

Interestingly, the embedded Gaussian, dot-product, and

concatenation versions perform similarly, up to some random

variations (72.7 to 72.9). As discussed in Sec. 3.2, the non-

local operations with Gaussian kernels become similar to the

self-attention module [49]. However, our experiments show

that the attentional (softmax) behavior of this module is not

the key to the improvement in our applications; instead, it is

more likely that the non-local behavior is important, and it

is insensitive to the instantiations.

In the rest of this paper, we use the embedded Gaussian

version by default. This version is easier to visualize as its

softmax scores are in the range of [0, 1].

Which stage to add non-local blocks? Table 2b compares

a single non-local block added to different stages of ResNet.

The block is added to right before the last residual block of a

stage. The improvement of a non-local block on res2, res3, or

res4 is similar, and on res5 is slightly smaller. One possible

explanation is that res5 has a small spatial size (7×7) and it

is insufficient to provide precise spatial information. More

evidence of a non-local block exploiting spatial information

will be investigated in Table 2d.
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model backbone modality top-1 val top-5 val top-1 test top-5 test avg test†

I3D in [7] Inception RGB 72.1 90.3 71.1 89.3 80.2

2-Stream I3D in [7] Inception RGB + flow 75.7 92.0 74.2 91.3 82.8

RGB baseline in [3] Inception-ResNet-v2 RGB 73.0 90.9 - - -

3-stream late fusion [3] Inception-ResNet-v2 RGB + flow + audio 74.9 91.6 - - -

3-stream LSTM [3] Inception-ResNet-v2 RGB + flow + audio 77.1 93.2 - - -

3-stream SATT [3] Inception-ResNet-v2 RGB + flow + audio 77.7 93.2 - - -

NL I3D [ours]
ResNet-50 RGB 76.5 92.6 - - -

ResNet-101 RGB 77.7 93.3 - - 83.8

Table 3. Comparisons with state-of-the-art results in Kinetics, reported on the val and test sets. We include the Kinetics 2017 competition

winner’s results [3], but their best results exploited audio signals (marked in gray) so were not vision-only solutions. †: “avg” is the average

of top-1 and top-5 accuracy; individual top-1 or top-5 numbers are not available from the test server at the time of submitting this manuscript.

Going deeper with non-local blocks. Table 2c shows the

results of more non-local blocks. We add 1 block (to res4), 5

blocks (3 to res4 and 2 to res3, to every other residual block),

and 10 blocks (to every residual block in res3 and res4) in

ResNet-50; in ResNet-101 we add them to the corresponding

residual blocks. Table 2c shows that more non-local blocks

in general lead to better results. We argue that multiple

non-local blocks can perform long-range multi-hop commu-

nication. Messages can be delivered back and forth between

distant positions in spacetime, which is hard to do via local

models.

It is noteworthy that the improvement of non-local blocks

is not just because they add depth to the baseline model.

To see this, we note that in Table 2c the non-local 5-block

ResNet-50 model has 73.8 accuracy, higher than the deeper

ResNet-101 baseline’s 73.1. However, the 5-block ResNet-

50 has only ∼70% parameters and ∼80% FLOPs of the

ResNet-101 baseline, and is also shallower. This compari-

son shows that the improvement due to non-local blocks is

complementary to going deeper in standard ways.

We have also tried to add standard residual blocks, instead

of non-local blocks, to the baseline models. The accuracy

is not increased. This again shows that the improvement of

non-local blocks is not just because they add depth.

Non-local in spacetime. Our method can naturally handle

spacetime signals. This is a nice property: related objects

in a video can present at distant space and long-term time

interval, and their dependency can be captured by our model.

In Table 2d we study the effect of non-local blocks applied

along space, time, or spacetime. For example, in the space-

only version, the non-local dependency only happens within

the same frame: i.e., in Eq.(1) it only sums over the index j
in the same frame of the index i. The time-only version can

be set up similarly. Table 2d shows that both the space-only

and time-only versions improve over the C2D baseline, but

are inferior to the spacetime version.

Non-local net vs. 3D ConvNet. Table 2e compares our non-

local C2D version with the inflated 3D ConvNets. Non-local

operations and 3D convolutions can be seen as two ways of

extending C2D to the temporal dimensions.

Table 2e also compares the number of parameters and

FLOPs, relative to the baseline. Our non-local C2D model

is more accurate than the I3D counterpart (e.g., 75.1 vs.

74.4), while having a smaller number of FLOPs (1.2× vs.

1.5×). This comparison shows that our method can be more

effective than 3D convolutions when used alone.

Non-local 3D ConvNet. Despite the above comparison,

non-local operations and 3D convolutions can model dif-

ferent aspects of the problem: 3D convolutions can capture

local dependency. Table 2f shows the results of inserting 5

non-local blocks into the I3D3×1×1 models. These non-local

I3D (NL I3D) models improve over their I3D counterparts

(+1.6 point accuracy), showing that non-local operations and

3D convolutions are complementary.

Longer sequences. Finally we investigate the generality

of our models on longer input videos. We use input clips

consisting of 128 consecutive frames without subsampling.

The sequences throughout all layers in the networks are thus

4× longer compared to the 32-frame counterparts. To fit

this model into memory, we reduce the mini-batch size to 2

clips per GPU. As a result of using small mini-batches, we

freeze all BN layers in this case. We initialize this model

from the corresponding models trained with 32-frame inputs.

We fine-tune on 128-frame inputs using the same number of

iterations as the 32-frame case (though the mini-batch size is

now smaller), starting with a learning rate of 0.0025. Other

implementation details are the same as before.

Table 2g shows the results of 128-frame clips. Comparing

with the 32-frame counterparts in Table 2f, all models have

better results on longer inputs. We also find that our NL I3D

can maintain its gain over the I3D counterparts, showing that

our models work well on longer sequences.

Comparisons with state-of-the-art results. Table 3 shows

the results from the I3D authors [7] and from the Kinetics

2017 competition winner [3]. We note that these are compar-

isons of systems which can differ in many aspects. Never-

theless, our method surpasses all the existing RGB or RGB +

flow based methods by a good margin. Without using optical

flow and without any bells and whistles, our method is on par

with the heavily engineered results of the 2017 competition

winner.
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model modality train/val trainval/test

2-Stream [43] RGB + flow 18.6 -

2-Stream +LSTM [43] RGB + flow 17.8 -

Asyn-TF [43] RGB + flow 22.4 -

I3D [7] RGB 32.9 34.4

I3D [ours] RGB 35.5 37.2

NL I3D [ours] RGB 37.5 39.5

Table 4. Classification mAP (%) in the Charades dataset [44], on

the train/val split and the trainval/test split. Our results are based

on ResNet-101. Our NL I3D uses 5 non-local blocks.

5.2. Experiments on Charades

Charades [44] is a video dataset with ∼8k training, ∼1.8k

validation, and ∼2k testing videos. It is a multi-label classifi-

cation task with 157 action categories. We use a per-category

sigmoid output to handle the multi-label property.

We initialize our models pre-trained on Kinetics (128-

frame). The mini-batch size is set to 1 clip per GPU. We train

our models for 200k iterations, starting from a learning rate

of 0.00125 and reducing it by 10 every 75k iterations. We use

a jittering strategy similar to that in Kinetics to determine the

location of the 224×224 cropping window, but we rescale

the video such that this cropping window outputs 288×288

pixels, on which we fine-tune our network. We test on a

single scale of 320 pixels.

Table 4 shows the comparisons with the previous results

on Charades. The result of [7] is the 2017 competition

winner in Charades, which was also fine-tuned from models

pre-trained in Kinetics. Our I3D baseline is higher than

previous results. As a controlled comparison, our non-local

net improves over our I3D baseline by 2.3% on the test set.

6. Extension: Experiments on COCO

We also investigate our models on static image recog-

nition. We experiment on the Mask R-CNN baseline [19]

for COCO [33] object detection/segmentation and human

pose estimation (keypoint detection). The models are trained

on COCO train2017 (i.e., trainval35k in 2014) and

tested on val2017 (i.e., minival in 2014).

Object detection and instance segmentation. We modify

the Mask R-CNN backbone by adding one non-local block

(right before the last residual block of res4). All models

are fine-tuned from ImageNet pre-training. We evaluate on

a standard baseline of ResNet-50/101 and a high baseline

of ResNeXt-152 (X152) [53]. Unlike the original paper

[19] that adopted stage-wise training regarding RPN, we use

an improved implementation with end-to-end joint training

similar to [37], which leads to higher baselines than [19].

Table 5 shows the box and mask AP on COCO. We see

that a single non-local block improves all R50/101 and X152

baselines, on all metrics involving detection and segmenta-

tion. APbox is increased by ∼1 point in all cases (e.g., +1.3

point in R101). Our non-local block is complementary to

increasing the model capacity, even when the model is up-

method APbox APbox
50

APbox
75

APmask APmask
50

APmask
75

R50
baseline 38.0 59.6 41.0 34.6 56.4 36.5

+1 NL 39.0 61.1 41.9 35.5 58.0 37.4

R101
baseline 39.5 61.4 42.9 36.0 58.1 38.3

+1 NL 40.8 63.1 44.5 37.1 59.9 39.2

X152
baseline 44.1 66.4 48.4 39.7 63.2 42.2

+1 NL 45.0 67.8 48.9 40.3 64.4 42.8

Table 5. Adding 1 non-local block to Mask R-CNN for COCO

object detection and instance segmentation. The backbone is

ResNet-50/101 or ResNeXt-152 [53], both with FPN [32].

model APkp AP
kp
50

AP
kp
75

R101 baseline 65.1 86.8 70.4

NL, +4 in head 66.0 87.1 71.7

NL, +4 in head, +1 in backbone 66.5 87.3 72.8

Table 6. Adding non-local blocks to Mask R-CNN for COCO

keypoint detection. The backbone is ResNet-101 with FPN [32].

graded from R50/101 to X152. This comparison suggests

that non-local dependency has not been sufficiently captured

by existing models despite increased depth/capacity.

In addition, the above gain is at a very small cost. The

single non-local block only adds <5% computation to the

baseline model. We also have tried to use more non-local

blocks to the backbone, but found diminishing return.

Keypoint detection. Next we evaluate non-local blocks in

Mask R-CNN for keypoint detection. In [19], Mask R-CNN

used a stack of 8 convolutional layers for predicting the

keypoints as 1-hot masks. These layers are local operations

and may overlook the dependency among keypoints across

long distance. Motivated by this, we insert 4 non-local blocks

into the keypoint head (after every 2 convolutional layers).

Table 6 shows the results on COCO. On a strong baseline

of R101, adding 4 non-local blocks to the keypoint head

leads to a ∼1 point increase of keypoint AP. If we add one

extra non-local block to the backbone as done for object

detection, we observe an in total 1.4 points increase of key-

point AP over the baseline. In particular, we see that the

stricter criterion of AP75 is boosted by 2.4 points, suggesting

a stronger localization performance.

7. Conclusion

We presented a new class of neural networks which cap-

ture long-range dependencies via non-local operations. Our

non-local blocks can be combined with any existing archi-

tectures. We show the significance of non-local modeling

for the tasks of video classification, object detection and

segmentation, and pose estimation. On all tasks, a simple

addition of non-local blocks provides solid improvement

over baselines. We hope non-local layers will become an

important component of future network architectures.
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