
Occlusion Aware Unsupervised Learning of Optical Flow

Yang Wang1 Yi Yang1 Zhenheng Yang2 Liang Zhao1 Peng Wang1 Wei Xu1,3

1Baidu Research 2 University of Southern California
3National Engineering Laboratory for Deep Learning Technology and Applications

{wangyang59, yangyi05, zhaoliang07, wangpeng54, wei.xu}@baidu.com zhenheny@usc.edu

Abstract

It has been recently shown that a convolutional neural

network can learn optical flow estimation with unsuper-

vised learning. However, the performance of the unsuper-

vised methods still has a relatively large gap compared to

its supervised counterpart. Occlusion and large motion are

some of the major factors that limit the current unsuper-

vised learning of optical flow methods. In this work we

introduce a new method which models occlusion explicitly

and a new warping way that facilitates the learning of large

motion. Our method shows promising results on Flying

Chairs, MPI-Sintel and KITTI benchmark datasets. Espe-

cially on KITTI dataset where abundant unlabeled samples

exist, our unsupervised method outperforms its counterpart

trained with supervised learning.

1. Introduction

Video motion prediction, or namely optical flow, is a fun-

damental problem in computer vision. With the accurate

optical flow prediction, one could estimate the 3D structure

of a scene [18], segment moving objects based on motion

cues [38], track objects in a complicated environment [11],

and build important visual cues for many high level vision

tasks such as video action recognition [45] and video object

detection [60].

Traditionally, optical flow is formulated as a variational

optimization problem with the goal of finding pixel cor-

respondences between two consecutive video frames [23].

With the recent development of deep convolutional neural

networks (CNNs) [32], deep learning based methods have

been adopted to learn optical flow estimation, where the

networks are either trained to compute discriminative im-

age features for patch matching [21] or directly output the

dense flow fields in an end-to-end manner [16]. One major

advantage of the deep learning based methods compared to

classical energy-based methods is the computational speed,

where most state-of-the-art energy-based methods require

1-50 minutes to process a pair of images, while deep nets

only need less than 100 milliseconds with a modern GPU.

Since most deep networks are built to predict flow using

two consecutive frames and trained with supervised learn-

ing [26], it would require a large amount of training data

to obtain reasonably high accuracy [35]. Unfortunately,

most large-scale flow datasets are from synthetic movies

and ground-truth motion labels in real world videos are gen-

erally hard to annotate [29]. To overcome this problem, un-

supervised learning framework is proposed to utilize the re-

sources of unlabeled videos [30]. The overall strategy be-

hind those unsupervised methods is that instead of directly

training the neural nets with ground-truth flow, they use a

photometric loss that measures the difference between the

target image and the (inversely) warped subsequent image

based on the dense flow field predicted from the fully con-

volutional networks. This allows the networks to be trained

end-to-end with a large amount of unlabeled image pairs,

overcoming the limitation from the lack of ground-truth

flow annotations.

However, the performance of the unsupervised methods

still has a relatively large gap compared to their supervised

counterparts [41]. To further improve unsupervised flow

estimation, we realize that occlusion and large motion are

among the major factors that limit the current unsupervised

learning methods. In this paper, we propose a new end-to-

end deep neural architecture that carefully addresses these

issues.

More specifically, the original baseline networks esti-

mate motion and attempt to reconstruct every pixel in the

target image. During reconstruction, there will be a fraction

of pixels in the target image that have no source pixels due

to occlusion. If we do not address this issue, it could limit

the optical flow estimation accuracy since the loss function

would prefer to compensate the occluded regions by moving

other pixels. For example, in Fig. 1, we would like to esti-

mate the optical flow from frame 1 to frame 2, and recon-

struct frame 1 by warping frame 2 with the estimated flow.

Let us focus on the chair in the bottom left corner of the

image. It moves in the down-left direction, and some part

of the background is occluded by it. When we warp frame
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Figure 1: (a) Input frame 1. (b) Input frame 2. (c) Ground-truth optical flow. (d) Image warped by ground-truth optical flow.

(e) Forward optical flow estimated by our method. (f) Image warped by our forward optical flow. (g) Backward optical flow

estimated by our method. (h) Occlusion map for input frame 1 estimated by our backward optical flow. (i) Optical flow from

[41]. (j) Image warped by [41].

2 back to frame 1 using the ground-truth flow (Fig. 1c), the

resulting image (Fig. 1d) has two chairs in it. The chair on

the top-right is the real chair, while the chair on the bottom-

left is due to the occluded part of the background. Because

the ground-truth flow of the background is zero, the chair

in frame 2 is carried back to frame 1 to fill in the occluded

background. Therefore, frame 2 warped by the ground-truth

optical flow does not fully reconstruct frame 1. From the

other perspective, if we use photometric loss of the entire

image to guide the unsupervised learning of optical flow,

the occluded area would not get the correct flow, which is

illustrated in Fig. 1i. It has an extra chair in the flow trying

to fill the occluded background with nearby pixels of simi-

lar appearance, and the corresponding warped image Fig. 1j

has only one chair in it.

To address this issue, we explicitly allow the network

to exploit the occlusion prediction caused by motion and

incorporate it into the loss function. More concretely, we

estimate the backward optical flow (Fig. 1g) and use it to

generate the occlusion map for the warped frame (Fig. 1h).

The white area in the occlusion map denotes the area in

frame 1 that does not have a correspondence in frame 2.

We train the network to only reconstruct the non-occluded

area and do not penalize differences in the occluded area,

so that the image warped by our estimated forward optical

flow (Fig. 1e) can have two chairs in it (Fig. 1f) without

incurring extra loss for the network.

Our work differs from previous unsupervised learning

methods in four aspects. 1) We proposed a new end-to-end

neural network that handles occlusion. 2) We developed a

new warping method that can facilitate unsupervised learn-

ing of large motion. 3) We further improved the previous

FlowNetS by introducing extra warped inputs during the de-

coder phase. 4) We introduced histogram equalization and

channel representation that are useful for optical flow esti-

mation. The last three components are created to mainly

tackle the issue of large motion estimation.

As a result, our method significantly improves the un-

supervised learning based optical flow estimation on multi-

ple benchmark dataset including Flying Chairs, MPI-Sintel

and KITTI. Our unsupervised networks even outperforms

its supervised counterpart [16] on KITTI benchmark, where

labeled data is limited compared to unlabeled data.

2. Related Work

Optical flow has been intensively studied in the past few

decades [23, 34, 10, 49, 37]. Due to page limitation, we will

briefly review the classical approaches and the recent deep

learning approaches.

Optical flow estimation. Optical flow estimation was

introduced as a fundamental computer vision problem since

the pioneering works [23, 34]. Starting from then, the

accuracy of optical flow estimation has been improving

steadily as evidenced by the results on Middlebury [8] and

MPI-Sintel [14] benchmark dataset. Most classical opti-

cal flow algorithms belong to the variants of the energy

minimization problem with the brightness constancy and

spatial smoothness assumptions [12, 42]. Other trends in-

clude a coarse-to-fine estimation or a hierarchical frame-

work to deal with large motion [13, 55, 15, 6], a design of

loss penalty to improve the robustness to lighting change

and motion blur [59, 46, 22, 54], and a more sophisticated

framework to handle occlusion [2, 50] which we will de-

scribe in more details in the next subsection.

Occlusion-aware optical flow estimation. Since oc-

clusion is a consequence of depth and motion, it is in-
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evitable to model occlusion in order to accurately estimate

flow. Most existing methods jointly estimate optical flow

and occlusion. Based on the methodology, we divide them

into three major groups. The first group treats occlusion

as outliers and predict target pixels in the occluded regions

as a constant value or through interpolation [47, 3, 4, 52].

The second group deals with occlusion by exploiting the

symmetric property of optical flow and ignoring the loss

penalty on predicted occluded regions [51, 2, 25]. The last

group builds more sophisticated frameworks such as mod-

eling depth or a layered representation of objects to reason

about occlusion [50, 48, 58, 43]. Our model is similar to

the second group, such that we do not take account the dif-

ference where the occlusion happens into the loss function.

To the best of our knowledge, we are the first to incorporate

such kind of method with a neural network in an end-to-end

trainable fashion. This helps our model to obtain more ro-

bust flow estimation around the occlusion boundary [27, 9].

Deep learning for optical flow. The success of deep

learning innovates new optical flow models. [21] uses deep

nets to extract discriminative features to compute optical

flow through patch matching. [5] further extends the patch

matching based methods by adding additional semantic in-

formation. Later, [7] proposes a robust thresholded hinge

loss for Siamese networks to learn CNN-based patch match-

ing features. [56] accelerates the processing of patch match-

ing cost volume and obtains optical flow results with high

accuracy and fast speed.

Meanwhile, [16, 26] propose FlowNet to directly com-

pute dense flow prediction on every pixel through fully con-

volutional neural networks and train the networks with end-

to-end supervised learning. [40] demonstrates that with

a spatial pyramid network predicting in a coarse-to-fine

fashion, a simple and small network can work quite ac-

curately and efficiently on flow estimation. Later, [24]

proposes a method for jointly estimating optical flow and

temporally consistent semantic segmentation with CNN.

The deep learning based methods obtain competitive ac-

curacy across many benchmark optical flow datasets in-

cluding MPI-Sintel [56] and KITTI [26] with a relatively

faster computational speed. However, the supervised learn-

ing framework limits the extensibility of these works due

to the lack of ground-truth flow annotation in other video

datasets.

Unsupervised learning for optical flow. [39] first intro-

duces an end-to-end differentiable neural architecture that

allows unsupervised learning for video motion prediction

and reports preliminary results on a weakly-supervised se-

mantic segmentation task. Later, [30, 41, 1] adopt a sim-

ilar unsupervised learning architecture with a more de-

tailed performance study on multiple optical flow bench-

mark datasets. A common philosophy behind these meth-

ods is that instead of directly supervising with ground-truth

Figure 2: Our network architecture. It contains two copies

of FlowNetS[16] with shared parameters which estimates

forward and backward optical flow respectively. The for-

ward warping module generates an occlusion map from the

backward flow. The backward warping module generates

the warped image that is used to compare against the orig-

inal frame 1 over the non-occluded area. There is also a

smoothness term applied to the forward optical flow.

flow, these methods utilize the Spatial Transformer Net-

works [28] to warp the current images to produce a target

image prediction and use photometric loss to guide back-

propagation [17]. The whole framework can be further ex-

tended to estimate the depth, camera motion and optical

flow simultaneously in an end-to-end manner [53]. This

overcomes the flow annotation problem, but the flow esti-

mation accuracy in previous works still lags behind the su-

pervised learning methods. In this paper, we show that un-

supervised learning can obtain competitive results to super-

vised learning models. After the initial submission of this

paper, we became aware of a concurrent work [36] which

tries to solve the occlusion problem in unsupervised optical

flow learning with a symmetric-based approach.

3. Network Structure and Method

We first give an overview of our network structure and

then describe each of its components in details.

Overall structure. The schematic structure of our neu-

ral network is depicted in Fig. 2. Our network contains

two copies of FlowNetS with shared parameters. The up-

per FlowNetS takes two stacked images (I1 and I2) as input

and outputs the forward optical flow (F12) from I1 to I2.

The lower FlowNetS takes the reverse stacked images (I2
and I1) as input and outputs the backward flow (F21) from

I2 to I1.

The forward flow F12 is used to warp I2 to reconstruct

Ĩ1 through a Spatial Transformer Network similar to [30].

We call this backward warping, since the warping direction

is different from the flow direction. The backward flow F21

is used to generate the occlusion map (O) by forward warp-

ing. The occlusion map indicates the region in I1 that is

correspondingly occluded in I2 (i.e. region in I1 that does
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Figure 3: Illustration of the forward warping module

demonstrating how the occlusion map is generated using

the backward optical flow. Here we only have horizontal

component optical flow F x
12 and F x

21 where 1 denotes mov-

ing right, -1 denote moving left and 0 denotes stationary. In

the occlusion map, 0 denotes occluded and 1 denotes non-

occluded.

not have a correspondence in I2).

The loss for training our network contains two parts: a

photometric term (Lp) and a smoothness term (Ls). For the

photometric term, we compare the warped image Ĩ1 and the

original target image I1 in the non-occluded region to ob-

tain the photometric loss Lp. Note that this is a key differ-

ence between our method and previous unsupervised learn-

ing methods. We also add a smoothness loss Ls applied to

F12 to encourage a smooth flow solution.

Forward warping and occlusion map. We model the

non-occluded region in I1 as the range of F21 [2], which

can be calculated with the following equation,

V (x, y) =

W∑

i=1

H∑

j=1

max (0, 1− |x− (i+ F x
21(i, j))|)

·max (0, 1− |y − (j + F
y
21(i, j))|)

where V (x, y) is the range map value at location (x, y).
(W,H) are the image width and height, and (F x

21, F
y
21) are

the horizontal and vertical components of F21.

Since F21 is continuous, the location of a pixel after

being translated by a floating number might not be ex-

actly on an image grid. We use reversed bilinear sam-

pling to distribute the weight of the translated pixel to its

nearest neighbors. The occlusion map O can be obtained

by simply thresholding the range map V at the value of

1 and results in a soft map with value between 0 and 1.

O(x, y) = min(1, V (x, y)). The whole forward warping

module is differentiable and can be trained end-to-end with

the rest of the network.

Figure 4: Illustration of the backward warping module with

an enlarged search space. The large green box on the right

side is a zoom view of the small green box on the left side.

In order to better illustrate the forward warping module,

we provide a toy example in Fig. 3. I1 and I2 have only

4 pixels each, in which different letters represent different

pixel values. The flow and reversed flow only have horizon-

tal component which we show as F x
12 and F x

21. The motion

from I1 to I2 is that pixel A moves to the position of B

and covers it, while pixel E in the background appears in

I2. To calculate the occlusion map, we first create an image

filled with ones and then translate them according to F21.

Therefore, the one at the top-right corner is translated to the

top-left corner leaving the top-right corner at the value of

zero. The top-right corner (B) of I1 is occluded by pixel

A and can not find its corresponding pixel in I2 which is

consistent with the formulation we discussed above.

Backward warping with a larger search space. The

backward warping module is used to reconstruct Ĩ1 from I2
with forward optical flow F12. The method adopted here

is similar to [30, 41] except that we include a larger search

space. The problem with the original warping method is

that the warped pixel value only depends on its four near-

est neighbors, so if the target position is far away from the

proposed position, the network will not get meaningful gra-

dient signals. For example in Fig. 4, a particular pixel lands

in the position of (x2, y2) proposed by the estimated opti-

cal flow, and its value is a weighted sum of its four nearest

neighbors. However, if the true optical flow land the pixel

at (x̂, ŷ), the network would not learn the correct gradient

direction, and thus stuck at a local minimum. This prob-

lem is particularly severe in the case of large motion. Al-

though one could use a multi-scale image pyramid to tackle

the large motion problem, if the moving object is small or

has a similar color to the background, the motion might not

be visible in small scale images.

More concretely, when we use the estimated optical flow

F12 to warp I2 back to reconstruct Ĩ1 at a grid point (x1, y1),
we first translate the grid point (x1, y1) in I1 (the yellow
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square) to (x2, y2) = (x1 + F x
12(x1, y1), y1 + F

y
12(x1, y1))

in I2. Because the point (x2, y2) is not on the grid point

in I2, we need to do bilinear sampling to obtain its value.

Normally, the value at (x2, y2) is a weighted sum of its four

nearest neighbors (black dots in the zoomed view on the

right side of Fig. 4). We instead first search an enlarged

neighbor (e.g. the blue dots at the outer circle in Fig. 4

together with the four nearest neightbors) around the point

(x2, y2). For instance, if in the enlarged neighbor of point

(x2, y2), the point that has the closest value to the target

value I1(x1, y1) is (x̂, ŷ), we assign the value at the point

(x2, y2) to be a weighted sum of values at (x̂, ŷ) and three

other symmetrical points (points labeled with red crosses in

Fig. 4) with respect to point (x2, y2). By doing this, we can

provide the neural network with gradient pointing towards

the location of (x̂, ŷ).
Loss term. The loss of our network contains two com-

ponents: a photometric loss (Lp) and a smoothness loss
(Ls). We compute the photometric loss using the Char-

bonnier penalty formula Ψ(s) =
√
s2 + 0.0012 over the

non-occluded regions with both image brightness and im-
age gradient.

L1

p =
[∑

i,j

Ψ(Ĩ1(i, j)− I1(i, j)) ·O(i, j)
]
/
[∑

i,j

O(i, j)
]

L2

p =
[∑

i,j

Ψ(∇Ĩ1(i, j)−∇I1(i, j)) ·O(i, j)
]
/
[∑

i,j

O(i, j)
]

where O is the occlusion map defined in the above section,

and i, j together indexes over pixel coordinates. The loss

is normalized by the total non-occluded area size to prevent

trivial solutions.

For the smoothness loss, we adopt an edge-aware formu-

lation similar to [20], because motion boundaries usually

coincide with image boundaries. Since the occluded area

does not have a photometric loss, the optical flow estima-

tion in the occluded area is solely guided by the smoothness

loss. By using an edge-aware smoothness penalty, the opti-

cal flow in the occluded area would be similar to the values

in its neighbor that has the closest appearance. We use both

first-order and second-order derivatives of the optical flow

in the smoothness loss term.

L1
s =

∑

i,j

∑

d∈x,y

Ψ
(
|∂dF12(i, j)|e−α|∂dI1(i,j)|

)

L2
s =

∑

i,j

∑

d∈x,y

Ψ
(
|∂2

dF12(i, j)|e−α|∂dI1(i,j)|
)

where α controls the weight of edges, and d indexes over

partial derivative on x and y directions. The final loss is a

weighted sum of the above four terms,

L = γ1L
1
p + γ2L

2
p + γ3L

1
s + γ4L

2
s

Flow network details. Our inner flow network is

adopted from FlowNetS [16]. Same as FlowNetS, we use

Figure 5: Our modification to the FlowNetS structure at one

of the decoding stage. On the left, we show the original

FlowNetS structure. On the right, we show our modifica-

tion of the FlowNetS structure. conv6 and conv5 1 are fea-

tures extracted in the encoding phase and named after [16].

Image1 6 and Image2 6 are input images downsampled 64

times. The decoding stages at other scales are modified ac-

cordingly.

a multi-scale scheme to guide the unsupervised learning

by down-sampling images to different smaller scales. The

only modification we made to the FlowNetS structure is that

from coarser to finer scale during the refinement phase, we

add the image warped by the coarser optical flow estima-

tion and its corresponding photometric error map as extra

inputs to estimate the finer scale optical flow in a fashion

similar to FlowNet2 [26]. By doing this, each layer only

needs to estimate the residual between the coarse and fine

scale. The detailed network structure can be found in Fig. 5.

Our modification only increases the number of parameters

by 2% compared to the original FlownetS, and it moderately

improves the result as seen in the later ablation study.

Preprocessing. In order to have better contrast for mov-

ing objects in the down-sampled images, we preprocess the

image pairs by applying histogram equalization and aug-

ment the RGB image with a channel representation. The

detailed channel representation can be found in [44]. We

find both preprocessing steps improve the final optical flow

estimation results.

4. Experimental Results

We evaluate our methods on standard optical flow bench-

mark datasets including Flying Chairs [16], MPI-Sintel [14]

and KITTI [19], and compare our results to existing deep

learning based optical flow estimation (both supervised and

unsupervised methods). We use the standard endpoint error

(EPE) measure as the evaluation metric, which is the aver-

age Euclidean distance between the predicted flow and the

ground truth flow over all pixels.
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Methods Chairs Sintel Clean Sintel Final KITTI 2012 KITTI 2015

test train test train test train test train test
S

u
p

er
v

is
e

FlowNetS [16] 2.71 4.50 7.42 5.45 8.43 8.26 – – –

FlowNetS+ft [16] – (3.66) 6.96 (4.44) 7.76 7.52 9.1 – –

SpyNet [40] 2.63 4.12 6.69 5.57 8.43 9.12 – – –

SpyNet+ft [40] – (3.17) 6.64 (4.32) 8.36 8.25 10.1 – –

FlowNet2 [26] – 2.02 3.96 3.14 6.02 4.09 – 10.06 –

FlowNet2+ft [26] – (1.45) 4.16 (2.01) 5.74 (1.28) 1.8 (2.3) 11.48%

U
n

su
p

er
v

is
e

DSTFlow [41] 5.11 6.93 10.40 7.82 11.11 16.98 – 24.30 –

DSTFlow-best [41] 5.11 (6.16) 10.41 (6.81) 11.27 10.43 12.4 16.79 39%

BackToBasic [30] 5.3 – – – – 11.3 9.9 – –

Ours 3.30 5.23 8.02 6.34 9.08 12.95 – 21.30 –

Ours+ft-Sintel 3.76 (4.03) 7.95 (5.95) 9.15 12.9 – 22.6 –

Ours-KITTI – 7.41 – 7.92 – 3.55 4.2 8.88 31.2%

Table 1: Quantitative evaluation of our method on different benchmarks. The numbers reported here are all average end-

point-error (EPE) except for the last column (KITTI2015 test) which is the percentage of erroneous pixels (Fl-all). A pixel

is considered to be correctly estimated if the flow end-point error is <3px or <5%. The upper part of the table contains

supervised methods and lower part of the table contains unsupervised methods. For all metrics, smaller is better. The best

number for each category is highlighted in bold. The numbers in parentheses are results from network trained on the same

set of data, and hence are not directly comparable to other results.

4.1. Implementation Details

Our network is trained end-to-end using Adam opti-

mizer [31] with β1 = 0.9 and β2 = 0.999. The learning

rate is set to be 10−4 for training from scratch and 10−5 for

fine-tuning. The experiments are performed on two Titan

Z GPUs with a batch size of 8 or 16 depending on the in-

put image resolution. The training converges after roughly

a day. During training, we first assign equal weights to

loss from different image scales and then progressively in-

crease the weight on the larger scale image in a way similar

to [35]. The hyper-parameters (γ1, γ2, γ3, γ4, α) are set to

be (1.0, 1.0, 10.0, 0.0, 10.0) for Flying Chairs and MPI-

Sintel datasets, and (0.03, 3.0, 0.0, 10.0, 10.0) for KITTI

dataset.Here we used higher weights of image gradient pho-

tometric loss and second-order smoothness loss for KITTI

because the data has more lightning changes and its opti-

cal flow has more continuously varying intrinsic structure.

In terms of data augmentaion, we only used horizontal flip-

ping, vertical flipping and image pair order switching. Dur-

ing testing, our network only predicts forward flow, the total

computational time on a Flying Chairs image pair is roughly

90 milliseconds with our Titian Z GPUs. Adding an ex-

tra 8 milliseconds for histogram equalization (an OpenCV

CPU implementation), the total prediction time is around

100 milliseconds.

4.2. Quantitative and Qualitative Results

Table 1 summarizes the EPE of our method and pre-

vious state-of-the-art deep learning methods, including

FlowNet [16], SpyNet [40], FlowNet2 [26], DSTFlow [41]

and BackToBasic [30]. Because DSTFlow reported mul-

tiple variations of their results, we cite their best number

across all of their results in ”DSTFlow-best” here.

Flying Chairs. Flying Chairs is a synthetic dataset cre-

ated by superimposing images of chairs on background im-

ages from Flickr. It was originally created for training

FlowNet in a supervised manner [16]. We use it to train our

network without using any ground-truth flow. We randomly

split the dataset into 95% training and 5% testing. We label

this model as ”Ours” in Table 1. Our EPE is significantly

smaller than the previous unsupervised methods (i.e. EPE

decreases from 5.11 to 3.30) and is approaching the level of

its corresponding supervised learning result (2.71).

MPI-Sintel. Since MPI-Sintel is relatively small and

only contains around a thousand image pairs, we use

the training data from both clean and final pass (without

ground-truth) to fine-tune our network pretrained on Fly-

ing Chairs and the resulting model is labeled as ”Ours+ft-

Sintel”. Compared to other unsupervised methods, we

achieve a much better performance (e.g., EPE decreases

from 10.40 to 7.95 on Sintel Clean test). Note that fine-

tuning did not improve much here, largely due to the small

number of training data. Fig.6 illustrates the qualitative re-

sult of our method on MPI-Sintel.

KITTI. The KITTI dataset is recorded under real-world

driving conditions, and it has more unlabeled data than la-

beled data. Unsupervised learning methods would have an

advantage in this scenario since they can learn from the

large amount of unlabeled data. The training data we use

here is similar to [41] which consists of multi-view exten-
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Figure 6: Qualitative examples for Sintel dataset. The top three rows are from Sintel Clean and the bottom three rows are

from Sintel Final.

Figure 7: Qualitative examples for KITTI dataset. The top three rows are from KITTI 2012 and the bottom three rows are

from KITTI 2015.

sions (20 frames for each sequence) from both KITTI2012

and KITTI2015. During training, we exclude two neigh-

boring frames from the image pairs with ground-truth flow

and testing pairs to avoid mixing training and testing data

(i.e. not including frame number 9-12 in each multi-view

sequence). We train the model from scratch since the opti-

cal flow in KITTI dataset has its own domain spatial struc-

ture (different from Flying Chairs) and abundant data. We

label this model as ”Ours-KITTI” in Table 1.

Table 1 suggests that our method not only significantly

outperforms existing unsupervised learning methods (i.e.

improves EPE from 9.9 to 4.2 on KITTI 2012 test), but

also outperforms its supervised counterpart (FlowNetS+ft)

by a large margin, although there is still a gap compared

to the state-of-the-art supervised network FlowNet2. Fig. 7

illustrates the qualitative results on KITTI. Our model cor-

rectly captures the occluded area caused by moving out of

the frame. Our flow results are also free from the artifacts

seen in DSTFlow (see [41] Figure 4c) in the occlusion area.

Occlusion Estimation. We also evaluate our occlusion

estimation on MPI-Sintel and KITTI dataset which pro-

vide ground-truth occlusion labels between two consecutive
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occlusion enlarged modified contrast Chairs Sintel Clean Sintel Final

handling search FlowNet enhancement test train train

5.11 6.93 7.82

X 4.51 6.80 7.32

X X 4.27 6.49 7.11

X X X 4.14 6.38 7.08

X 4.62 6.60 7.33

X X 4.04 6.09 7.04

X X X 3.76 5.70 6.54

X X X X 3.30 5.23 6.34

Table 2: Ablation study

Method Sintel Sintel KITTI KITTI

Clean Final 2012 2015

Our 0.54 0.48 0.95 0.88

S2D [33] – 0.57 – –

MODOF [57] – 0.48 – –

Table 3: Occlusion estimation evaluation. The numbers we

present here is maximum F-measure. The S2D method is

trained with ground-truth occlusion labels.

frames. Among the literatures, we only find limited reports

on occlusion estimation accuracy. Table 3 shows the occlu-

sion estimation performance by calculating the maximum

F-measure introduced in [33]. On MPI-Sintel, our method

has a comparable result with previous non-neural-network

based methods [33, 57]. On KITTI we obtain 0.95 and

0.88 for KITTI2012 and KITTI2015 respectively (we did

not find published occlusion estimation result on KITTI).

Note that S2D used ground-truth occlusion maps to do su-

pervised training of their occlusion model.

4.3. Ablation Study

We conduct systematic ablation analysis on different

components added in our method. Table 2 shows the over-

all effects of them on Flying Chairs and MPI-Sintel. Our

starting network is a FlowNetS without occlusion handling,

which is the same configuration as [41].

Occlusion handling. The top two rows in Table 2 sug-

gest that by only adding occlusion handling to the baseline

network, the model improves its EPE from 5.11 to 4.51 on

Flying-Chairs and from 7.82 to 7.32 on MPI-Sintel Final,

which is significant.

Enlarged search. The effect of enlarged search is also

significant. The bottom two rows in Table 2 show that

adding enlarged search, the final EPE improves from 3.76 to

3.30 on Flying-Chairs and from 6.54 to 6.34 on MPI-Sintel

Final.

Modified FlowNet. A small modification to the

FlowNet also improves significantly, as suggested in the 5-

th row in Table 2. By only adding a 2% more parameters

and computation, the EPE improves from 5.11 to 4.62 on

Flying-Chairs and from 7.82 to 7.33 on MPI-Sintel Final.

Contrast enhancement. We find that contrast enhance-

ment is also a simple but very effective preprocessing step

to improve the unsupervised optical flow learning. By com-

paring the 4th row and last row in Table 2, we find the final

EPE improves from 4.14 to 3.30 on Flying-Chairs and 7.08

to 6.34 on MPI-Sintel Final.

Combining all components. We also find that some-

times one component is not significant by itself, but the

overall model improves dramatically when we add all the

4 components into our framework.

Effect of data. We have tried to use more data from

KITTI raw videos (60,000 samples compared to 25,000

samples used in the paper) to train our model, but we did

not find any improvement. We have also tried to adopt the

network structure from SpyNet [40] and train them using

our unsupervised method. However we did not get better re-

sult either, which suggests that the learning capability of our

model is still the limiting factor, although we have pushed

this forward by a large margin.

5. Conclusion

We present a new end-to-end unsupervised learning

framework for optical flow prediction. We show that with

modeling occlusion and large motion, our unsupervised ap-

proach yields competitive results on multiple benchmark

datasets. This is promising since it opens a new path for

training neural networks to predict optical flow with a vast

amount of unlabeled videos and apply the flow estimation

for more higher level computer vision tasks.
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