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Abstract

In this paper, a novel deep architecture named Braid-

Net is proposed for person re-identification. BraidNet has a

specially designed WConv layer, and the cascaded WConv

structure learns to extract the comparison features of two

images, which are robust to misalignments and color dif-

ferences across cameras. Furthermore, a Channel Scaling

layer is designed to optimize the scaling factor of each in-

put channel, which helps mitigate the zero gradient prob-

lem in the training phase. To solve the problem of im-

balanced volume of negative and positive training sam-

ples, a Sample Rate Learning strategy is proposed to adap-

tively update the ratio between positive and negative sam-

ples in each batch. Experiments conducted on CUHK03-

Detected, CUHK03-Labeled, CUHK01, Market-1501 and

DukeMTMC-reID datasets demonstrate that our method

achieves competitive performance when compared to state-

of-the-art methods.

1. Introduction

Person re-identification (Person Re-ID) is the process of

discriminating whether two person images taken from dif-

ferent camera views belong to the same person [4]. It’s

challenging due to the problems brought by the variations of

viewpoints, poses, illumination conditions and backgrounds

[30].

The misalignment problem means that two images con-

tain different contents in the same location, due to the varia-

tions of viewpoints and poses. The color differences across

cameras means that the cameras in different illumination

conditions take the same color into different RGB value.

To solve these problems, we propose a novel deep architec-

ture named BraidNet. BraidNet has a type of specially de-

signed convolutional layer: WConv. As illustrated in Fig. 1,

WConv uses two convolution kernels for each of the two in-

∗Corresponding author: Zhenzhong Chen

Figure 1. Illustration of the computation in a WConv layer. The

3D boxes represent feature maps. “Conv P/Q” means convolution

with kernel P/Q.

puts and crossly sums the four intermediate outputs to form

two outputs. In our design, the cascaded WConv structure

can learn to extract the comparison features of two images,

which are robust to misalignments and color differences

across cameras.

The zero gradient problem exists in the DNN/CNN mod-

els with ReLU activation. The unit/channel which fre-

quently makes negative response can rarely get non-zero

gradient in the backward propagation (BP) process, thus

corresponding weights to compute the response can’t be

sufficiently trained and become useless. To mitigate this

problem, we propose a simple Channel Scaling (CS) layer

which optimizes the scaling factor of each input channel, to

guide the weights away from being negative.

The imbalanced training data problem in Person Re-ID

means that the negative samples are much more than pos-

itive samples. If all the samples are used for training, the

trained model tends to make negative prediction all the time;

if only a limited percentage of negative samples is used, the

abundant information in vast negative samples may be seri-

ously wasted [1]. To deal with this problem without prede-

fined percentage, an online batch generating strategy named

Sample Rate Learning (SRL) is proposed. Like the Hard

Negative Mining strategy [1, 35] which selects the negative

samples with large loss on current model, the SRL strategy

tries to increase the expected loss in each batch by adap-

tively adjusting the ratio of positive samples and negative

samples.
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The benefits of CS layer and SRL strategy are veri-

fied by the controlled experiments. With the combination

of BraidNet-CS + SRL, our method achieves competitive

performance on five datasets. Finally, the visualization of

WConv features proves the theoretical functions of the cas-

caded WConv structure.

2. Related Work

To deal with the misalignment problem, many works in-

corporate one-to-many patch matching or extract features

from detected body parts. For example, DNNIM [24] per-

forms inexact matching over a wide search space; DM-

LLV [25] uses specially designed distance functions to con-

sider vertical misalignments, horizontal misalignments and

leg posture variations; Spindle [36] separately captures se-

mantic features from different body regions thus the macro-

and micro-body features can be well aligned across images.

The problem of color differences across cameras is rarely

considered directly by existing approaches but also impor-

tant. OSML [3] tries to solve this problem by using a single

pair of ColorChecker images to learn a Mahalanobis metric

that directly models the relationship between color features

across a pair of cameras. We notice that some special com-

binations of different contents in the same location of two

images can also provide cues for matching. The cascaded

WConv structure is designed to learn these special combi-

nations, and judge whether these combinations exist in the

same location of two images.

To avoid the zero gradient problem, LReLU [18] and

PReLU [8] modify the ReLU function, but bring a little ex-

tra computational cost in the model’s inference. Batch nor-

malization (BN) [9] also solves this problem: when a chan-

nel makes nearly all-zero responses among all the samples,

the normalization process transfers some responses of this

channel to positive. We design a simple CS layer to solve

this problem by guiding the weights away from being nega-

tive. The CS layer brings no more computational cost in the

model’s inference.

To solve the imbalanced training data problem, one so-

lution is to assign different treatments on positive and nega-

tive samples. LOMO+MLAPG [16] uses asymmetric sam-

ple weighting strategy to take larger weight on the loss of

positive samples; DML [32] assigns asymmetric labels to

positive and negative samples; SSSL [34] imposes differ-

ent penalty parameters on positive and negative samples in

objective function. Another solution is to define the per-

centage of positive and negative training samples[1, 13, 28],

where the percentage of negative sample can be manually

adjusted in the training phase. As the optimal percentage

setting may vary with different datasets and training stages,

we design the SRL strategy to adaptively optimize the per-

centage of positive samples and negative samples in each

batch during the training phase.

3. BraidNet

3.1. Architecture

When the size of convolution window is d × d, input

feature map has m channels and output feature map has n
channels, conventional convolution operation in one spe-

cific convolution window can be written as:

yi = bi +

m
∑

j=1

wjixj , i = 1, 2, · · · , n (1)

where xj is a d2 × 1 vector that represents co-located d× d
elements in the jth input channel, wji is a 1 × d2 weight

vector, bi is the bias factor of the ith output channel, and yi
is the response value at corresponding pixel in the ith output

channel.

Our proposed WConv Layer has two input feature maps

with the same size and two output feature maps with the

same size. WConv operation in one specific convolution

window is defined as:
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where x
(p)
j and x

(q)
j represent co-located elements in the jth

channel of two input feature maps, respectively; w
(p)
ji and

w
(q)
ji are two different weight vectors; bi is the bias factor

of the ith channel in the two output feature maps; y
(p)
i and

y
(q)
i are the response value at corresponding pixels in the ith

channel of the two output feature maps, respectively. The

computation of a WConv layer is illustrated in Fig. 1.

In a BraidNet, feature maps of two input images are

firstly extracted by weight-sharing subnetworks, then these

feature maps are compared by cascaded WConv (with

ReLU, pooling, etc., the same below) structure. The output

feature maps of the last WConv layer are element-wisely

added together to obtain one feature map (i.e., comparison

features), then these comparison features are fed to another

subnetwork to obtain the final matching score.

3.2. Mechanism Analysis

In Person Re-ID, the variations of viewpoints, poses and

illumination make two pedestrian images usually contain

different local contents (e.g., objects, shapes, colors) in the

same location, even if the two images belong to the same

person. Therefore, directly judging whether two images

contain the same co-located content leads to unsatisfac-

tory Re-ID accuracy. Luckily, some special combinations
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(a) (b) (c) (d)

Figure 2. Examples of asymmetric matching pattern. (a) two spe-

cific RGB value provide evidence for matching, as they may come

from the same color but be effected by different illumination con-

ditions; (b) two specific plane shapes of braid provide evidence

for matching, as they may be caused by different viewpoints; (c) a

backpack and a strap provide evidence for matching, as almost all

the backpacks have straps; (d) hair and a hat provide evidence for

mismatching, as a man in a hat can’t reveal his hair.

of different local contents can provide cues for the match-

ing, which are named as “asymmetric matching pattern”.

Some examples of asymmetric matching pattern are shown

in Fig. 2. An asymmetric matching pattern can be written as

a set of two different subpatterns: {m(p),m(q)}. Given one

asymmetric matching pattern {m(p),m(q)}, two images IA,

IB and one specific location, when “m(p) and m(q) exist in

the same location of IA and IB , respectively”, or “m(q) and

m(p) exist in the same location of IA and IB , respectively”,

we say this asymmetric matching pattern exist in this loca-

tion of these two images, and it is useful cues for subsequent

matching computation. Above judging process is named as

asymmetric pattern matching, which can be implemented

by our proposed cascaded WConv structure. Detailed ex-

planation is presented below.

When the L2-Norm regularization is applied on the con-

volution kernels, some trained weights in the kernels be-

come very small. Given a very small positive scalar ǫ,
weight vectors in Eq. 2 can be divided into two categories:

c
(s)
ji =

{

0, ‖w
(s)
ji ‖22 ≤ ǫ

1, ‖w
(s)
ji ‖22 > ǫ

(3)

where s ∈ {p, q}, the same below.

According to Eq. 2, when c
(p)
ji = 0, w

(p)
ji x

(p)
j ≈ 0 and

w
(p)
ji x

(q)
j ≈ 0, thus the effect of x

(p)
j to y

(p)
i and the effect

of x
(q)
j to y

(q)
i can be ignored; when c

(q)
ji = 0, w

(q)
ji x

(q)
j ≈ 0

and w
(q)
ji x

(p)
j ≈ 0, thus the effect of x

(q)
j to y

(p)
i and the

effect of x
(p)
j to y

(q)
i can be ignored.

We divide the channels in the cascaded WConv structure

into five categories:

0) meaningless channel, whose responses are always ap-

proximately zero;

1) the feature of IA;

2) the feature of IB ;

3) the result of an asymmetric pattern matching in the com-

bination case of m(p)-IA, m(q)-IB ;

4) the result of an asymmetric pattern matching in the com-

bination case of m(q)-IA, m(p)-IB .

For each WConv layer, we use t
(p)
j and t

(q)
j to represent

the category of the jth channel in the input feature maps

marked with p and q, respectively. We use l
(p)
i and l

(q)
i to

represent the category of the ith channel in the output fea-

ture maps marked with p and q, respectively.

For the first WConv layer, the two input feature maps

come from the same subnetwork but different images, so

x
(p)
j and x

(q)
j represent features in the same type and

[t
(p)
j , t

(q)
j ] ∈ {[0, 0], [1, 2]}. The categories of output chan-

nels can be judged as:
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
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t
(p)
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t
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=2
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(q)
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(4)

For the second WConv layer, the two input feature

maps come from previous WConv layer, so [t
(p)
j , t

(q)
j ] ∈

{[0, 0], [1, 2], [2, 1], [3, 4]}. The categories of output chan-

nels can be judged as:
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t
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6=2
, c
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=1
, c
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t
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=2
, c
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[3, 4] ∃ (j, s)|
t
(s)
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∈{3,4}
, c

(s)
ji

= 1

(5)

As described in Eqs. 4 and 5, l
(s)
i = 0 when the effects

of IA and IB on y
(s)
i can be ignored; l

(s)
i = 1 when the

effect of IA on y
(s)
i can’t be ignored, but the effect of IB

on y
(s)
i can be ignored; l

(s)
i = 2 when the effect of IB on

y
(s)
i can’t be ignored, but the effect of IA on y

(s)
i can be

ignored; l
(s)
i ∈ {3, 4} when the effect of neither IA nor IB

on y
(s)
i can be ignored (the effects of IA and IB are dif-

ferent as corresponding weights are different, i.e., the sub-

patterns corresponding to IA and IB are different). When

[l
(p)
i , l

(q)
i ] ∈ {[1, 2], [2, 1]}, y

(p)
i and y

(q)
i represent the same

type of single-image feature, but correspond to different im-

ages; when [l
(p)
i , l

(q)
i ] = [3, 4], y

(p)
i and y

(q)
i are the results

of the same asymmetric pattern matching, but in different

combination cases of subpatterns and images.

The discussions on subsequent WConv layers is the same

as that of the second WConv layer.

To summarize, the cascaded WConv structure not only

extracts multi-level single-image features, but also extracts

multi-level cross-image features via asymmetric pattern

matching.
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We add together the two output feature maps of the

cascaded WConv structure, to judge whether correspond-

ing asymmetric matching patterns exist in the same loca-

tion of two images in any combination cases of images and

subpatterns (or judge whether the two images contain the

same content in the same location). As different compari-

son features have different roles in matching, a subnetwork

is used to further synthesize previous comparison features

and make the final matching score.

4. Channel Scaling Layer

4.1. Formulation

In one CS layer, the operation applied on one pixel of the

ith input channel is:

zi = γiyi (6)

where γi is the scaling factor and is shared across all the

pixels of corresponding channel. Additionally, in order to

confirm the scaling factor γi > 0, we let:

γi = eαi (7)

where αi ∈ R, αi is initialized to 0 and is trained in the

training phase. Eqs. 6 and 7 define the operation of CS

layer.

Each CS layer is trained using mini-batch SGD method

simultaneously with other layers. In the BP process, the

gradients of yi and αi are calculated as:































∇yi = ∇zi

∂zi

∂yi
= ∇ziγi

∇γi =
∑

zi

∇zi

∂zi

∂γi
=

∑

zi

∇ziyi

∇αi = ∇γi

∂γi

∂αi

= ∇γie
αi = ∇γiγi

(8)

4.2. Mechanism Analysis

For the convenience of discussion, we study the CS layer

with input feature map of 1× 1 spatial size and n channels.

The input feature map of this CS layer comes from a convo-

lutional layer, and the output feature map of this CS layer is

fed to a ReLU layer. The computation in above layers is:

oi = max{γi

r
∑

j=1

vjixj , 0}, i = 1, 2, · · · , n (9)

where r is the number of input elements in one convo-

lutional window (including a constant 1 for the bias op-

eration), xj is the jth element and vji is the correspond-

ing weight to calculate the response value in the ith output

channel, xj ≥ 0 as it comes from previous ReLU layer.

In the BP process,the gradient of γi is calculated as:

∇γi
=

{

∇oi

∑r

k=1 vkixk

∑r

k=1 vkixk > 0

0
∑r

k=1 vkixk ≤ 0
(10)

and the gradient of vji is calculated as:

∇vji =

{

∇oiγixj

∑r

k=1 vkixk > 0

0
∑r

k=1 vkixk ≤ 0
(11)

In the training phase, the value of a parameter will be

significantly changed when the gradient of it keeps to be

positive/negative in multiple continuous iterations (one it-

eration means the processes of forward propagation, back-

ward propagation and gradient descent with one batch, the

same below).

When ∇oi > 0 and
∑r

k=1 vkixk > 0 in multiple contin-

uous iterations, ∇vji ≥ 0 in these iterations and vji may de-

crease according to Eq. 11, ∇γi
> 0 in these iterations and

γi decreases according to Eq. 10. As γi is a multiplication

factor to compute ∇vji
, the decrease of vji is suppressed.

When ∇oi < 0 and
∑r

k=1 vkixk > 0 in multiple con-

tinuous iterations, ∇vji
≤ 0 in these iterations and vji may

increase; ∇γi
< 0 in these iterations and γi increases. As

γi is a multiplication factor to compute ∇vji
, the increase

of vji is promoted.

When
∑r

k=1 vkixk is always non-positive, which is eas-

ily to occur when v·i (“·” represents 1, 2, · · · , r) are partial to

be negative, ∇v·i
= 0 all the time. Thereafter, v·i can’t get

non-zero gradients to update their value, oi = 0 all the time,

so v·i and corresponding channel become useless in the net-

work. We can use CS layer to guide the weights away from

being negative, so as to alleviate this zero gradient problem.

After the training phase, we can update v·i with the value

of γiv·i and then remove the CS layer, so CS layer brings

no additional computational cost in the model’s inference.

5. Sample Rate Learning

To solve the problem of imbalanced training data, some

methods use fixed percentage of positive samples in each

batch, i.e., sample rate. As different datasets may have

different optimal percentage settings, and the optimal per-

centage may varies in different training phase, we design

the Sample Rate Learning (SRL) strategy to adaptively op-

timize the percentage of positive and negative samples in

each batch during the training phase.

Given sample rate r ∈ (0, 1) and batch size n, the num-

ber of positive samples (n+) and the number of negative

samples (n−) in the batch can be calculated as:

{

n
+ = round(nr)

n
− = n− n

+
(12)
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In order to confirm r ∈ (0, 1), we let:

r =
1

1 + e−λ
(13)

where λ ∈ R, and λ is a learned parameter in the training

phase.

Given prediction model s = f(X; θ) (X is a sample, θ
are the parameters in the model, s is the matching score) and

loss function l(s, c) (c is the label of corresponding sample,

c ∈ {+1,−1}), the expectations of loss on positive sample

and negative sample respectively in condition of θ are sup-

posed to exist and are written as E[Loss+|θ], E[Loss−|θ].
They can be estimated in each batch via:























Ê[Loss+|θ] =
1

n+

n+∑

i=1

l(S+
i ,+1)

Ê[Loss−|θ] =
1

n−

n−∑

i=1

l(S−
i ,−1)

(14)

where S+
i (S−i ) is the matching score of ith positive (nega-

tive) sample.

The expectation of loss in one batch which is generated

with sample rate r is:

E[Loss|θ, r] = rE[Loss+|θ] + (1− r)E[Loss−|θ] (15)

The partial derivative of E[Loss|θ, r] with respect to r
(the gradient of r) is:

∇r = E[Loss+|θ]− E[Loss−|θ] (16)

and can be estimated via:

∇̂r = Ê[Loss+|θ]− Ê[Loss−|θ] (17)

Inspired by the hard negative mining strategy used in Im-

provedDL [1] and DCSL [35], which chooses the negative

samples with large loss on current model, we try to increase

E[Loss|θ, r] by adjusting r, and the objective function in

the training phase can be written in a minimax form:

min
θ

{max
r

E[Loss|θ, r]} (18)

To satisfy Eq. 18, r should be updated to 1 when ∇r > 0,

and updated to 0 when ∇r < 0. Due to the uncertainty of

estimation, we can’t guarantee ∇r > 0 or ∇r < 0 when

∇̂r > 0 or ∇̂r < 0, but the larger the |∇̂r| is, the more

confident we are. Therefore, we don’t update r to 1 or 0

directly, but increase or decrease it gradually, and |∇̂r| can

be used as a dynamic changing ‘step size’ in this process.

Based on the above discussion, rather than using the gra-

dient descent method which updates parameters along the

opposite direction of gradients, r (λ indeed) should be up-

dated along the direction of gradient. As it is unnecessary

to let r converge to a fixed value, the learning rate of λ re-

mains unchanged in the training phase. The pseudo code

of mini-batch stochastic gradient descent method with SRL

strategy is shown in Algorithm 1.

Algorithm 1 Mini-batch SGD Method with SRL for Train-

ing Binary Classification Model

Require:

Training dataset {X1, C1}, {X2, C2}, · · · ,
Binary classification model s = f(x; θ),

Loss function l(s, c),

Batchsize n,

Learning rate of model parameters µ,

Learning rate of λ µλ.

Ensure: Trained parameters θ.

1: λ← 0 .

2: Initiate θ by a random generator.

3: for e← 1 to E do

4: for t← 1 to Te do

5: Calculate r using Eq. 13 .

6: Calculate n+ and n− using Eq. 12 .

7: Choose n+ positive samples and n− negative samples to make a batch

{x1, c1}, {x2, c2}, · · · {xn, cn}.
8: si ← f(xi; θ), i = 1, 2, · · · , n.

9: Calculate ∇̂r using Eqs. 14 and 17 , calculate ∇̂θ using BP method.

10: ∇̂λ ← r(1− r)∇̂r .

11: λ← λ + µλ∇̂λ, θ ← θ − µ∇̂θ .

12: end for

13: Decrease µ.

14: end for

15: return θ

6. Experiments

Experiments are implemented on the DagNN wrapper in

MatConvNet toolbox [29]. Firstly, we compare the per-

formance of networks with different settings to verify the

benefits brought by BraidNet architecture, CS layer and

SRL strategy, respectively. Then our method and some

other recently proposed methods are compared on multi-

ple datasets. Finally, some features in the cascaded WConv

structure are visualized to prove our theoretical analysis of

cascaded WConv structure.

Datasets and Evaluation Protocol. Five Person Re-ID

datasets are used in our experiments: CUHK03-Detected

(the detected version of CUHK03 [13]), CUHK03-Labeled

(the labeled version of CUHK03), CUHK01 [12], Market-

1501 [37], and DukeMTMC-reID [38] which was devel-

oped based on DukeMTMC dataset [22].

The single-query setting is followed in the test phase.

For each gallery image, the matching scores of the most

matching probe ID (in different camera views) are in-

creased to ensure the uniqueness of the matched one. For

Market-1501 and DukeMTMC-reID datasets, we use the

dataset split case and evaluation packages provided by [37]

and [38], respectively. For CUHK03-Detected, CUHK03-

Labeled and CUHK01 datasets, the number of individuals

in testing subset is set to 100. The images from the second

camera view are used as the probe set. In one evaluation

process, we randomly select one image from the first cam-

era view for each identity to make the gallery set, then we

average the CMC curves of all the probe images. Above

evaluation process is repeated 100 times and the mean value

is the final result.

Architecture. Three BraidNet architectures are included
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Figure 3. Illustration of BraidNet-CS architecture. Each input image is resized to [128,64]. Each Conv layer and WConv layer except the

last three Conv layers has window size 3×3, stride [1, 1] and padding [1, 1, 1, 1]; each Max Pooling layer has pooling size 2×2 and padding

[0, 0, 0, 0]; each Average Pooling layer has pooling size 4×2 and padding [0, 0, 0, 0]; the last three Conv layers apply 1×1 convolutions

upon 1×1 feature maps. W1 corresponds to M output channels and W2 ∼ W8 correspond to N output channels. For CUHK03-Detected,

CUHK03-Labeled and CUHK01 datasets, M=64, N=128; for Market-1501 and DukeMTMC-reID datasets, M=80, N=160.

in our experiments: BraidNet, BraidNet-BN, and BraidNet-

CS. The architecture of BraidNet-CS is illustrated in Fig. 3.

Feature maps of two images are firstly extracted by the

weight-sharing subnetworks with two Conv layers, and fed

to a four-layer cascaded WConv structure. The outputs

of the cascaded WConv structure are pooled to 1×1 spa-

cial size and then added together. Finally, a subnetwork

with three Conv layers is used to synthesize previous com-

parison features and output the final matching score. As

Market-1501 and DukeMTMC-reID datasets contain more

cameras and have more possible asymmetric matching pat-

terns, we use larger channel numbers when experiment is

implemented on these datasets. We remove the CS layers

from BraidNet-CS architecture to make the BraidNet archi-

tecture. We replace the CS layers with the BN layers in

BraidNet-CS architecture to make the BraidNet-BN archi-

tecture (the two BN layers connecting to the same WConv

layer share parameters).

Training Setting. Following the Binomial Deviance

used in [32], the loss function on each sample is:

loss = log(1 + e−sc) +
α

2
‖θ‖22 (19)

where s (s∈R) is the matching score and c (c∈{+1,−1})
is the sample label; α

2 ‖θ‖
2
2 is the L2-Norm regularization

term applied on all the convolution kernels, and the weight

decay parameter α is set to 0.0005.

The BraidNet is trained from scratch on each dataset sep-

arately. Data augmentation is applied by adding left-right

flipping version of original images. The batch size n is set

to 256. The momentum factor is set to 0.9; the learning rate

of λ in SRL strategy is set to 0.1. For CUHK03-Detected,

CUHK03-Labeled and CUHK01 datasets, the learning rate

of model parameters is set to 0.02 in the first 50k iterations,

then multiplied by 0.5 every 10k iterations until the 140k-th

iteration. For Market-1501 and DukeMTMC-reID datasets,

the learning rate of model parameters is set to 0.02 in the

first 70k iterations, then multiplied by 0.5 every 10k itera-

tions until the 190k-th iteration.

To reduce the memory cost, we generate samples on-

line in each iteration. To generate n+ positive samples,

we firstly randomly choose n+ different identities, then for

each chosen identity, we randomly choose two images to

make a positive sample; to generate each one of n− nega-

tive samples, we randomly choose two different identities,

then randomly choose one image from each chosen identity.

6.1. The Effectiveness of Our Method

On each dataset of CUHK03-Detected CUHK03-

Labeled and CUHK01, we evaluate the performance of

BraidNet, BraidNet-BN and BraidNet-CS trained with fixed

sample rate 1/4, and the performance of BraidNet-CS

trained with SRL strategy. The evaluation results are listed

with that of some recently proposed methods in Table 1.

The Effectiveness of BraidNet According to Table 1,

BraidNet outperforms most recently proposed methods. In

contrast with DNNIM [24] which performs inexact match-

ing over a wide search space in a single Normalized Cor-

relation layer, our BraidNet performs asymmetric pattern

matching in the same location of two feature maps in mul-

tiple WConv layers, and outperforms DNNIM by a large

margin.

The Effectiveness of Channel Scaling Layer Accord-

ing to Table 1, the additional CS layers contribute obvious

Rank-1 increase of 3.08% and 2.48% on CUHK03-Detected

and CUHK03-Labeled datasets, respectively. On CUHK01

dataset, the Rank-1 score of BraidNet-CS is a bit inferior

to that of BraidNet. As the CUHK01 dataset has only two

cameras, it contains less variations in misalignments and

color differences across cameras than the other datasets. For

CUHK01 dataset, limited numbers of useful channels and

parameters in the BraidNet are required, and additional CS

layers make no help to the performance improvement.

The BN layer can speed up the convergence and brings

performance improvement in most other works. As dis-

cussed in Section 2, BN layer also helps avoid the zero

gradient problem. The additional BN layers improve
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Table 1. Rank-1, Rank-10, Rank-20 scores (%) of different methods on CUHK03-Detected, CUHK03-Labeled and CUHK01 datasets.

Methods
CUHK03-Detected (p=100) CUHK03-Labeled (p=100) CUHK01 (p=100)

Rank-1 Rank-10 Rank-20 Rank-1 Rank-10 Rank-20 Rank-1 Rank-10 Rank-20

FPNN [13] 19.89 50.00 78.50 20.65 66.50 80.00 - - -

ImprovedDL [1] 44.96 83.47 93.15 54.74 93.88 98.10 65.00 93.12 97.20

LOMO + XQDA [15] 46.25 88.55 94.25 52.20 92.14 96.25 - - -

LOMO + MLAPG [16] 51.15 92.05 96.90 57.96 94.74 98.00 - - -

SSSL [34] 51.20 - - 57.00 - - - - -

EDM [23] 52.09 - - 61.32 - - 86.59 - -

SICIR [30] 52.17 91.00 95.00 - - - 71.80 94.00 98.00

Ensembles [21] - - - 62.10 94.30 97.80 - - -

LDNS [33] 54.70 84.75 95.20 62.55 90.05 98.10 - - -

SLSTM [28] 57.3 88.3 - - - - - - -

GOG + XQDA [20] 65.5 93.7 - 67.3 96.0 - - - -

MSCAN [11] 67.99 95.36 97.83 74.21 97.54 99.25 - - -

MTDnet [6] - - - 74.68 97.47 - 78.50 97.50 -

GSCNN [27] 68.1 94.6 - - - - - - -

DNNIM [24] 72.04 96.00 98.26 72.43 95.51 98.40 81.23 97.39 98.60

SSM [2] 72.70 - 96.05 76.63 - 97.95 - - -

LSRO [38] 73.1 96.7 - - - - - - -

DCSL [35] - - - 80.20 99.17 - 89.60 98.90 -

JLML [14] 80.6 98.7 99.2 83.2 99.4 99.8 87.0 98.6 99.4

SVDNet [26] 81.8 97.2 - - - - - - -

CRAFT-MFA + LOMO [7] 87.5 98.7 99.5 - - - - - -

BraidNet 80.24 97.72 99.34 84.81 98.59 99.33 90.74 99.51 100.00

BraidNet-BN 82.69 91.51 92.26 86.02 93.07 94.05 81.98 87.27 87.91

BraidNet-CS 83.32 98.00 99.11 87.29 98.82 99.23 89.14 99.96 100.00

BraidNet-CS + SRL 85.85 98.46 99.55 88.18 98.66 99.48 93.04 99.97 100.00

Table 2. Rank-1 scores (%) and mAP scores (%) of different meth-

ods on Market-1501 and DukeMTMC-reID datasets.

Methods
Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

BoW + KISSME [37] 44.42 20.76 25.13 12.17

LOMO + XQDA [15] - - 30.75 17.04

BoW + WARCA [10] 45.16 - - -

TMA [19] 47.92 22.31 - -

SCSP [5] 51.90 26.35 - -

LDNS [33] 55.43 29.87 - -

SLSTM [28] 61.6 35.3 - -

GSCNN [27] 65.88 39.55 - -

CRAFT-MFA + LOMO [7] 71.8 45.5 - -

CADL [17] 73.84 47.11 - -

Spindle [36] 76.9 -

K-reciprocal [39] 77.11 63.63 - -

LSRO [38] 78.06 56.23 67.68 47.13

MSCAN [11] 80.31 57.53 - -

OIM [31] - - 68.1 -

SSM [2] 82.21 68.80 - -

SVDNet [26] 82.3 62.1 76.7 56.8

JLML [14] 85.1 65.5 - -

BraidNet-CS + SRL 83.70 69.48 76.44 59.49

the Rank-1 scores on CUHK03-Detected and CUHK03-

Labeled datasets, but decrease the other scores significantly.

This unsatisfactory result may relate to the large fluctua-

tions of the expectations and variances’ estimations during

the training phase. In our experiments, the CS layer is more

stable and brings more performance improvements than the

BN layer.

The Effectiveness of Sample Rate Learning In addi-

tion to training with fixed sample rate 1/4 and SRL strategy,

we evaluate the performance of BraidNet-CS trained with

fixed sample rates 1/2 and 1/8 on three datasets, and com-

pare corresponding Rank-1 scores in Table 3. In Rank-1

score, BraidNet-CS is not very sensitive to fixed sample rate

Table 3. Rank-1 scores (%) of BraidNet-CS trained with different

sample strategies on three datasets.

Sample Rate CUHK03-Detected CUHK03-Labeled CUHK01

1/2 83.63 86.72 90.78

1/4 83.32 87.29 89.14

1/8 82.82 86.48 88.87

Learned 85.85 88.18 93.04

in the field [1/8, 1/2]. Even so, SRL strategy makes about

2% improvements in Rank-1 score among three datasets.

The evolutions of sample rate during training BraidNet-

CS with SRL strategy on the three datasets are shown in

Fig. 5. On each dataset, the sample rate decreases to a

certain degree in earlier training stage, then continuously

decreases with the learning rate update. As CUHK03-

Detected and CUHK03-Labeled datasets only vary in the

detection method, the sample rate evolutions of them are al-

most the same, while the sample rate evolution of CUHK01

is obviously different from them. Above observations

demonstrate that the sample rate learned by SRL strategy

varies with different training stages and different datasets.

6.2. Comparison with Other Methods

In addition to CUHK03-Detected, CUHK03-Labeled

and CUHK01 datasets, we also evaluate the performance of

BraidNet-CS trained with SRL strategy on Market-1501 and

DukeMTMC-reID datasets, respectively. Rank-1 scores

and mAP scores of some recently proposed methods and

our method are compared in Table 2.

According to Tables 1 and 2, our method achieves com-

petitive performance on all the five datasets. It outperforms

all the competitors in Rank-1 score on CUHK03-Labeled

1476



( 1 )

A B A C D B E F

( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 )

E G H F I J I K L K

Figure 4. Visualization of some feature pairs of given image pairs in the cascaded WConv structure. Feature pairs in the three dotted

boxes come from the 92nd channel of the first WConv-CS-ReLU operation’s outputs, the 127th channel of the second WConv-CS-ReLU

operation’s outputs and the 91st channel of the third WConv-CS-ReLU operation’s outputs, respectively.

Figure 5. The evolutions of sample rate during training BraidNet-

CS with SRL strategy on three datasets. The dotted lines mean the

learning rate of model parameters is updated.

and CUHK01 datasets, and in mAP score on Market-1501

and DukeMTMC-reID datasets.

6.3. Visualization of WConv Features

To verify the function of cascaded WConv structure,

we feed some samples into the BraidNet-CS architecture

trained with SRL strategy on CUHK03-Labeled dataset,

and visualize some feature pairs (i.e., the responses on

the ith channel of pairwise feature maps) in the cascaded

WConv structure in Fig. 4.

In the first dotted box, it is obvious that the right feature

in feature pair (1) and the right feature in feature pair (2)

are the same feature of image A; the left feature in feature

pair (1) and the left feature in feature pair (3) are the same

feature of image B. The effect of the other image on one

image’s feature can be neglected.

In the second dotted box, the responses of feature pair (5)

and feature pair (6) are low, so corresponding channels can’t

extract meaningful single-image feature from images of E,

G, H or F. However, images E and F make high responses in

the left feature of feature pair (4), indicating an asymmet-

ric matching pattern is found in the high-response locations

of the two input images. According to the high-response

field and the content of images E and F, this asymmetric

matching pattern may be {White, Gray}. {White, Gray}
may provide cues to support the matching decision, as they

may come from the same original color but are changed to

current RGB value by different illumination conditions.

In the third dotted box, the responses of feature pair (7)

and feature pair (9) are low, so corresponding channels can’t

extract meaningful single-image feature from images I, J, L

or K. However, images I and K make high responses in the

right feature of feature pair (8), indicating an asymmetric

matching pattern is found in the high-response locations of

the two input images. According to the high-response field

and the content of images I and K, this asymmetric match-

ing pattern may be {Hair, Hat}. {Hair, Hat} may provide

cues to support the mismatching decision, as a man in a hat

can’t reveal his hair.

Above discussions verify the theoretical functions of cas-

caded WConv structure: extracting features of two images

and comparing two images via asymmetric pattern match-

ing on multiple semantic levels.

7. Conclusion

This work proposes a deep architecture named BraidNet

for Person Re-ID, which can effectively handle the prob-

lems of misalignment and color differences across cameras.

In addition, the CS layer and SRL strategy are proposed to

solve the zero gradient problem and the imbalanced training

data problem in the training phase. Experiments demon-

strate the effectiveness of our method.
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