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Abstract

Neural net classifiers trained on data with annotated

class labels can also capture apparent visual similarity

among categories without being directed to do so. We study

whether this observation can be extended beyond the con-

ventional domain of supervised learning: Can we learn a

good feature representation that captures apparent similar-

ity among instances, instead of classes, by merely asking

the feature to be discriminative of individual instances?

We formulate this intuition as a non-parametric clas-

sification problem at the instance-level, and use noise-

contrastive estimation to tackle the computational chal-

lenges imposed by the large number of instance classes.

Our experimental results demonstrate that, under unsu-

pervised learning settings, our method surpasses the state-

of-the-art on ImageNet classification by a large margin.

Our method is also remarkable for consistently improv-

ing test performance with more training data and better

network architectures. By fine-tuning the learned feature,

we further obtain competitive results for semi-supervised

learning and object detection tasks. Our non-parametric

model is highly compact: With 128 features per image, our

method requires only 600MB storage for a million images,

enabling fast nearest neighbour retrieval at the run time.

1. Introduction

The rise of deep neural networks, especially convolu-

tional neural networks (CNN), has led to several break-

throughs in computer vision benchmarks. Most successful

models are trained via supervised learning, which requires

large datasets that are completely annotated for a specific

task. However, obtaining annotated data is often very costly

or even infeasible in certain cases. In recent years, unsu-

pervised learning has received increasing attention from the

community [5, 2].

Our novel approach to unsupervised learning stems from

a few observations on the results of supervised learning for

object recognition. On ImageNet, the top-5 classification

error is significantly lower than the top-1 error [18], and the

second highest responding class in the softmax output to an

leopard jaguar cheetah lifeboat shopcart bookcase

Figure 1: Supervised learning results that motivate our unsuper-

vised approach. For an image from class leopard, the classes that

get highest responses from a trained neural net classifier are all

visually correlated, e.g., jaguar and cheetah. It is not the seman-

tic labeling, but the apparent similarity in the data themselves that

brings some classes closer than others. Our unsupervised approach

takes the class-wise supervision to the extreme and learns a feature

representation that discriminates among individual instances.

image is more likely to be visually correlated. Fig. 1 shows

that an image from class leopard is rated much higher by

class jaguar rather than by class bookcase [11]. Such obser-

vations reveal that a typical discriminative learning method

can automatically discover apparent similarity among se-

mantic categories, without being explicitly guided to do so.

In other words, apparent similarity is learned not from se-

mantic annotations, but from the visual data themselves.

We take the class-wise supervision to the extreme of

instance-wise supervision, and ask: Can we learn a mean-

ingful metric that reflects apparent similarity among in-

stances via pure discriminative learning? An image is dis-

tinctive in its own right, and each could differ significantly

from other images in the same semantic category [23]. If we

learn to discriminate between individual instances, without

any notion of semantic categories, we may end up with a
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representation that captures apparent similarity among in-

stances, just like how class-wise supervised learning still

retains apparent similarity among classes. This formulation

of unsupervised learning as an instance-level discrimination

is also technically appealing, as it could benefit from latest

advances in discriminative supervised learning, e.g. on new

network architectures.

However, we also face a major challenge, now that the

number of “classes” is the size of the entire training set. For

ImageNet, it would be 1.2-million instead of 1,000 classes.

Simply extending softmax to many more classes becomes

infeasible. We tackle this challenge by approximating the

full softmax distribution with noise-contrastive estimation

(NCE) [9], and by resorting to a proximal regularization

method [29] to stabilize the learning process.

To evaluate the effectiveness of unsupervised learning,

past works such as [2, 31] have relied on a linear classifier,

e.g. Support Vector Machine (SVM), to connect the learned

feature to categories for classification at the test time. How-

ever, it is unclear why features learned via a training task

could be linearly separable for an unknown testing task.

We advocate a non-parametric approach for both training

and testing. We formulate instance-level discrimination as

a metric learning problem, where distances (similarity) be-

tween instances are calculated directly from the features in a

non-parametric way. That is, the features for each instance

are stored in a discrete memory bank, rather than weights

in a network. At the test time, we perform classification

using k-nearest neighbors (kNN) based on the learned met-

ric. Our training and testing are thus consistent, since both

learning and evaluation of our model are concerned with the

same metric space between images. We report and compare

experimental results with both SVM and kNN accuracies.

Our experimental results demonstrate that, under unsu-

pervised learning settings, our method surpasses the state-

of-the-art on image classification by a large margin, with

top-1 accuracy 42.5% on ImageNet 1K [1] and 38.7% for

Places 205 [49]. Our method is also remarkable for con-

sistently improving test performance with more training

data and better network architectures. By fine-tuning the

learned feature, we further obtain competitive results for

semi-supervised learning and object detection tasks. Fi-

nally, our non-parametric model is highly compact: With

128 features per image, our method requires only 600MB

storage for a million images, enabling fast nearest neigh-

bour retrieval at the run time.

2. Related Works

There has been growing interest in unsupervised learn-

ing without human-provided labels. Previous works mainly

fall into two categories: 1) generative models and 2) self-

supervised approaches.

Generative Models. The primary objective of generative

models is to reconstruct the distribution of data as faithfully

as possible. Classical generative models include Restricted

Bolztmann Machines (RBMs) [12, 39, 21], and Auto-

encoders [40, 20]. The latent features produced by gen-

erative models could also help object recognition. Recent

approaches such as generative adversarial networks [8, 4]

and variational auto-encoder [14] improve both generative

qualities and feature learning.

Self-supervised Learning. Self-supervised learning ex-

ploits internal structures of data and formulates predictive

tasks to train a model. Specifically, the model needs to pre-

dict either an omitted aspect or component of an instance

given the rest. To learn a representation of images, the

tasks could be: predicting the context [2], counting the ob-

jects [28], filling in missing parts of an image [31], recover-

ing colors from grayscale images [47], or even solving a jig-

saw puzzle [27]. For videos, self-supervision strategies in-

clude: leveraging temporal continuity via tracking [44, 45],

predicting future [42], or preserving the equivariance of

egomotion [13, 50, 30]. Recent work [3] attempts to com-

bine several self-supervised tasks to obtain better visual rep-

resentations. Whereas self-supervised learning may capture

relations among parts or aspects of an instance, it is unclear

why a particular self supervision task should help semantic

recognition and which task would be optimal.

Metric Learning. Every feature representation F induces

a metric between instances x and y: dF (x, y) = ‖F (x) −
F (y)‖. Feature learning can thus also be viewed as a

certain form of metric learning. There have been exten-

sive studies on metric learning [15, 33]. Successful ap-

plication of metric learning can often result in competitive

performance, e.g. on face recognition [35] and person re-

identification [46]. In these tasks, the classes at the test

time are disjoint from those at the training time. Once a

network is trained, one can only infer from its feature rep-

resentation, not from the subsequent linear classifier. Metric

learning has been shown to be effective for few-shot learn-

ing [38, 41, 37]. An important technical point on metric

learning for face recognition is normalization [35, 22, 43],

which we also utilize in this work. Note that all the methods

mentioned here require supervision in certain ways. Our

work is drastically different: It learns the feature and thus

the induced metric in an unsupervised fashion, without any

human annotations.

Exemplar CNN. Exemplar CNN [5] appears similar to our

work. The fundamental difference is that it adopts a para-

metric paradigm during both training and testing, while our

method is non-parametric in nature. We study this essen-

tial difference experimentally in Sec 4.1. Exemplar CNN is

computationally demanding for large-scale datasets such as

ImageNet.
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Figure 2: The pipeline of our unsupervised feature learning approach. We use a backbone CNN to encode each image as a feature

vector, which is projected to a 128-dimensional space and L2 normalized. The optimal feature embedding is learned via instance-level

discrimination, which tries to maximally scatter the features of training samples over the 128-dimensional unit sphere.

3. Approach

Our goal is to learn an embedding function v = fθ(x)
without supervision. fθ is a deep neural network with

parameters θ, mapping image x to feature v. This em-

bedding would induces a metric over the image space, as

dθ(x, y) = ‖fθ(x) − fθ(y)‖ for instances x and y. A

good embedding should map visually similar images closer

to each other.

Our novel unsupervised feature learning approach is

instance-level discrimination. We treat each image instance

as a distinct class of its own and train a classifier to distin-

guish between individual instance classes (Fig.2).

3.1. Non­Parametric Softmax Classifier

Parametric Classifier. We formulate the instance-level

classification objective using the softmax criterion. Sup-

pose we have n images x1, . . . , xn in n classes and their

features v1, . . . ,vn with vi = fθ(xi). Under the conven-

tional parametric softmax formulation, for image x with

feature v = fθ(x), the probability of it being recognized

as i-th example is

P (i|v) =
exp

(

w
T
i v

)

∑n

j=1 exp
(

wT
j v

) . (1)

where wj is a weight vector for class j, and w
T
j v measures

how well v matches the j-th class i.e., instance.

Non-Parametric Classifier. The problem with the para-

metric softmax formulation in Eq. (1) is that the weight vec-

tor w serves as a class prototype, preventing explicit com-

parisons between instances.

We propose a non-parametric variant of Eq. (1) that re-

places wT
j v with v

T
j v, and we enforce ‖v‖ = 1 via a L2-

normalization layer. Then the probability P (i|v) becomes:

P (i|v) =
exp

(

v
T
i v/τ

)

∑n

j=1 exp
(

vT
j v/τ

) , (2)

where τ is a temperature parameter that controls the con-

centration level of the distribution [11]. τ is important for

supervised feature learning [43], and also necessary for tun-

ing the concentration of v on our unit sphere.

The learning objective is then to maximize the joint prob-

ability
∏n

i=1 Pθ(i|fθ(xi)), or equivalently to minimize the

negative log-likelihood over the training set, as

J(θ) = −
n
∑

i=1

logP (i|fθ(xi)). (3)

Learning with A Memory Bank. To compute the proba-

bility P (i|v) in Eq. (2), {vj} for all the images are needed.

Instead of exhaustively computing these representations ev-

ery time, we maintain a feature memory bank V for stor-

ing them [46]. In the following, we introduce separate no-

tations for the memory bank and features forwarded from

the network. Let V = {vj} be the memory bank and

fi = fθ(xi) be the feature of xi. During each learning itera-

tion, the representation fi as well as the network parameters

θ are optimized via stochastic gradient descend. Then fi is

updated to V at the corresponding instance entry fi → vi.

We initialize all the representations in the memory bank V
as unit random vectors.

Discussions. The conceptual change from class weight vec-

tor wj to feature representation vj directly is significant.

The weight vectors {wj} in the original softmax formula-

tion are only valid for training classes. Consequently, they

are not generalized to new classes, or in our setting, new in-

stances. When we get rid of these weight vectors, our learn-

ing objective focuses entirely on the feature representation

and its induced metric, which can be applied everywhere in

the space and to any new instances at the test time.

Computationally, our non-parametric formulation elimi-

nates the need for computing and storing the gradients for

{wj}, making it more scalable for big data applications.
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3.2. Noise­Contrastive Estimation

Computing the non-parametric softmax in Eq.(2) is cost

prohibitive when the number of classes n is very large,

e.g. at the scale of millions. Similar problems have been

well addressed in the literature for learning word embed-

dings [25, 24], where the number of words can also scale

to millions. Popular techniques to reduce computation in-

clude hierarchical softmax [26], noise-contrastive estima-

tion (NCE) [9], and negative sampling [24]. We use NCE

[9] to approximate the full softmax.

We adapt NCE to our problem, in order to tackle the dif-

ficulty of computing the similarity to all the instances in the

training set. The basic idea is to cast the multi-class clas-

sification problem into a set of binary classification prob-

lems, where the binary classification task is to discrimi-

nate between data samples and noise samples. Specifically,

the probability that feature representation v in the memory

bank corresponds to the i-th example under our model is,

P (i|v) =
exp(vT

fi/τ)

Zi

(4)

Zi =

n
∑

j=1

exp
(

v
T
j fi/τ

)

(5)

where Zi is the normalizing constant. We formalize the

noise distribution as a uniform distribution: Pn = 1/n.

Following prior work, we assume that noise samples are m
times more frequent than data samples. Then the posterior

probability of sample i with feature v being from the data

distribution (denoted by D = 1) is:

h(i,v) := P (D = 1|i,v) =
P (i|v)

P (i|v) +mPn(i)
. (6)

Our approximated training objective is to minimize the neg-

ative log-posterior distribution of data and noise samples,

JNCE(θ) = −EPd
[log h(i,v)]

−m·EPn
[log(1− h(i,v′))] . (7)

Here, Pd denotes the actual data distribution. For Pd, v is

the feature corresponding to xi; whereas for Pn, v′ is the

feature from another image, randomly sampled according

to noise distribution Pn. In our model, both v and v
′ are

sampled from the non-parametric memory bank V .

Computing normalizing constant Zi according to Eq. (4)

is expensive. We follow [25], treating it as a constant and

estimating its value via Monte Carlo approximation:

Z ≃ Zi ≃ nEj

[

exp(vT
j fi/τ)

]

=
n

m

m
∑

k=1

exp(vT
jk
fi/τ),

(8)

where {jk} is a random subset of indices. Empirically, we

find the approximation derived from initial batches suffi-

cient to work well in practice.

NCE reduces the computational complexity from O(n)
to O(1) per sample. With such drastic reduction, our exper-

iments still yield competitive performance.

3.3. Proximal Regularization

Training Iterations

Tr
ai

ni
ng

 L
os

s

The Effect of Proximal Regularizer
lambda = 0
lambda = 10
lambda = 30
lambda = 50

Figure 3: The effect of our proximal regularization. The original

objective value oscillates a lot and converges very slowly, whereas

the regularized objective has smoother learning dynamics.

Unlike typical classification settings where each class

has many instances, we only have one instance per class.

During each training epoch, each class is only visited once.

Therefore, the learning process oscillates a lot from ran-

dom sampling fluctuation. We employ the proximal opti-

mization method [29] and introduce an additional term to

encourage the smoothness of the training dynamics. At

current iteration t, the feature representation for data xi is

computed from the network v
(t)
i = fθ(xi). The memory

bank of all the representation are stored at previous itera-

tion V = {v(t−1)}. The loss function for a positive sample

from Pd is:

− log h(i,v
(t−1)
i ) + λ‖v

(t)
i − v

(t−1)
i ‖22. (9)

As learning converges, the difference between iterations,

i.e. v
(t)
i − v

(t−1)
i , gradually vanishes, and the augmented

loss is reduced to the original one. With proximal regular-

ization, our final objective becomes:

JNCE(θ) = −EPd

[

log h(i,v
(t−1)
i )− λ‖v

(t)
i − v

(t−1)
i ‖22

]

−m·EPn

[

log(1− h(i,v′(t−1)))
]

. (10)

Fig. 3 shows that, empirically, proximal regularization helps

stabilize training, speed up convergence, and improve the

learned representation, with negligible extra cost.

3.4. Weighted k­Nearest Neighbor Classifier

To classify test image x̂, we first compute its feature f̂ =
fθ(x̂), and then compare it against the embeddings of all

the images in the memory bank, using the cosine similarity
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Training / Testing Linear SVM Nearest Neighbor

Param Softmax 60.3 63.0

Non-Param Softmax 75.4 80.8

NCE m = 1 44.3 42.5

NCE m = 10 60.2 63.4

NCE m = 512 64.3 78.4

NCE m = 4096 70.2 80.4

Table 1: Top-1 accuracies on CIFAR10, by applying linear SVM

or kNN classifiers on the learned features. Our non-parametric

softmax outperforms parametric softmax, and NCE provides close

approximation as m increases.

si = cos(vi, f̂). The top k nearest neighbors, denoted by

Nk, would then be used to make the prediction via weighted

voting. Specifically, the class c would get a total weight

wc =
∑

i∈Nk
αi · 1(ci = c). Here, αi is the contributing

weight of neighbor xi, which depends on the similarity as

αi = exp(si/τ). We choose τ = 0.07 as in training and we

set k = 200.

4. Experiments

We conduct 4 sets of experiments to evaluate our ap-

proach. The first set is on CIFAR-10 to compare our non-

parametric softmax with parametric softmax. The second

set is on ImageNet to compare our method with other unsu-

pervised learning methods. The last two sets of experiments

investigate two different tasks, semi-supervised learning

and object detection, to show the generalization ability of

our learned feature representation.

4.1. Parametric vs. Non­parametric Softmax

A key novelty of our approach is the non-parametric

softmax function. Compared to the conventional paramet-

ric softmax, our softmax allows a non-parametric metric to

transfer to supervised tasks.

We compare both parametric and non-parametric formu-

lations on CIFAR-10 [17], a dataset with 50, 000 training

instances in 10 classes. This size allows us to compute the

non-parametric softmax in Eq.(2) without any approxima-

tion. We use ResNet18 as the backbone network and its

output features mapped into 128-dimensional vectors.

We evaluate the classification effectiveness based on the

learned feature representation. A common practice [48, 2,

31] is to train an SVM on the learned feature over the train-

ing set, and to then classify test instances based on the fea-

ture extracted from the trained network. In addition, we also

use nearest neighbor classifiers to assess the learned feature.

The latter directly relies on the feature metric and may bet-

ter reflect the quality of the representation.

Table 1 shows top-1 classification accuracies on CI-

FAR10. On the features learned with parametric softmax,

we obtain accuracies of 60.3% and 63.0% with linear SVM

and kNN classifiers respectively. On the features learned

with non-parametric softmax, the accuracy rises to 75.4%
and 80.8% for the linear and nearest neighbour classifiers,

a remarkable 18% boost for the latter.

We also study the quality of NCE approximating non-

parametric softmax (Sec. 3.2). The approximation is con-

trolled by m, the number of negatives drawn for each in-

stance. With m = 1, the accuracy with kNN drops signifi-

cantly to 42.5%. As m increases, the performance improves

steadily. When m = 4, 096, the accuracy approaches that at

m = 49, 999 – full form evaluation without any approxima-

tion. This result provides assurance that NCE is an efficient

approximation.

4.2. Image Classification

We learn a feature representation on ImageNet

ILSVRC [34], and compare our method with representative

unsupervised learning methods.

Experimental Settings. We choose design parameters

via empirical validation. In particular, we set tempera-

ture τ = 0.07 and use NCE with m = 4, 096 to balance

performance and computing cost. The model is trained

for 200 epochs using SGD with momentum. The batch

size is 256. The learning rate is initialized to 0.03, scaled

down with coefficient 0.1 every 40 epochs after the first

120 epochs. Our code is available at: http://github.

com/zhirongw/lemniscate.pytorch.

Comparisons. We compare our method with a randomly

initialized network (as a lower bound) and various unsu-

pervised learning methods, including self-supervised learn-

ing [2, 47, 27, 48], adversarial learning [4], and Exemplar

CNN [3]. The split-brain autoencoder [48] serves a strong

baseline that represents the state of the art. The results

of these methods are reported with AlexNet architecture

[18] in their original papers, except for exemplar CNN [5],

whose results are reported with ResNet-101 [3]. As the

network architecture has a big impact on the performance,

we consider a few typical architectures: AlexNet [18],

VGG16 [36], ResNet-18, and ResNet-50 [10].

We evaluate the performance with two different proto-

cols: (1) Perform linear SVM on the intermediate features

from conv1 to conv5. Note that there are also corre-

sponding layers in VGG16 and ResNet [36, 10]. (2) Per-

form kNN on the output features. Table 2 shows that:

1. With AlexNet and linear classification on intermediate

features, our method achieves an accuracy of 35.6%,

outperforming all baselines, including the state-of-the-

art. Our method can readily scale up to deeper networks.

As we move from AlexNet to ResNet-50, our accuracy

is raised to 42.5%, whereas the accuracy with exemplar

CNN [3] is only 31.5% even with ResNet-101.
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Image Classification Accuracy on ImageNet

method conv1 conv2 conv3 conv4 conv5 kNN #dim

Random 11.6 17.1 16.9 16.3 14.1 3.5 10K

Data-Init [16] 17.5 23.0 24.5 23.2 20.6 - 10K

Context [2] 16.2 23.3 30.2 31.7 29.6 - 10K

Adversarial [4] 17.7 24.5 31.0 29.9 28.0 - 10K

Color [47] 13.1 24.8 31.0 32.6 31.8 - 10K

Jigsaw [27] 19.2 30.1 34.7 33.9 28.3 - 10K

Count [28] 18.0 30.6 34.3 32.5 25.7 - 10K

SplitBrain [48] 17.7 29.3 35.4 35.2 32.8 11.8 10K

Exemplar[3] 31.5 - 4.5K

Ours Alexnet 16.8 26.5 31.8 34.1 35.6 31.3 128

Ours VGG16 16.5 21.4 27.6 33.1 37.2 33.9 128

Ours Resnet18 16.0 19.9 26.3 35.7 42.1 40.5 128

Ours Resnet50 15.3 18.8 24.4 35.3 43.9 42.5 128

Table 2: Top-1 classification accuracies on ImageNet.

Image Classification Accuracy on Places

method conv1 conv2 conv3 conv4 conv5 kNN #dim

Random 15.7 20.3 19.8 19.1 17.5 3.9 10K

Data-Init [16] 21.4 26.2 27.1 26.1 24.0 - 10K

Context [2] 19.7 26.7 31.9 32.7 30.9 - 10K

Adversarial [4] 17.7 24.5 31.0 29.9 28.0 - 10K

Video [44] 20.1 28.5 29.9 29.7 27.9 - 10K

Color [47] 22.0 28.7 31.8 31.3 29.7 - 10K

Jigsaw [27] 23.0 32.1 35.5 34.8 31.3 - 10K

SplitBrain [48] 21.3 30.7 34.0 34.1 32.5 10.8 10K

Ours Alexnet 18.8 24.3 31.9 34.5 33.6 30.1 128

Ours VGG16 17.6 23.1 29.5 33.8 36.3 32.8 128

Ours Resnet18 17.8 23.0 30.3 34.2 41.3 36.7 128

Ours Resnet50 18.1 22.3 29.7 34.1 42.1 38.7 128

Table 3: Top-1 classification accuracies on Places, based directly

on features learned on ImageNet, without any fine-tuning.

2. Using nearest neighbor classification on the final 128 di-

mensional features, our method achieves 31.3%, 33.9%,

40.5% and 42.5% accuracies with AlexNet, VGG16,

ResNet-18 and ResNet-50, not much lower than the lin-

ear classification results, demonstrating that our learned

feature induces a reasonably good metric. As a com-

parison, for Split-brain, the accuracy drops to 8.9% with

nearest neighbor classification on conv3 features, and

to 11.8% after projecting the features to 128 dimensions.

3. With our method, the performance gradually increases as

we examine the learned feature representation from ear-

lier to later layers, which is generally desirable. With

all other methods, the performance decreases beyond

conv3 or conv4.

4. It is important to note that the features from interme-

diate convolutional layers can be over 10, 000 dimen-
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Figure 4: Our kNN testing accuracy on ImageNet continues to

improve as the training loss decreases, demonstrating that our un-

supervised learning objective captures apparent similarity which

aligns well with the semantic annotation of the data.

sions. Hence, for other methods, using the features from

the best-performing layers can incur significant storage

and computation costs. Our method produces a 128-

dimensional representation at the last layer, which is

very efficient to work with. The encoded features of

all 1.28M images in ImageNet only take about 600 MB

of storage. Exhaustive nearest neighbor search over this

dataset only takes 20 ms per image on a Titan X GPU.

Feature generalization. We also study how the learned

feature representations can generalize to other datasets.

With the same settings, we conduct another large-scale ex-

periment on Places [49], a large dataset for scene classifi-

cation, which contains 2.45M training images in 205 cate-

gories. In this experiment, we directly use the feature ex-

traction networks trained on ImageNet without finetuning.

Table 3 compares the results obtained with different meth-

ods and under different evaluation policies. Again, with

linear classifier on conv5 features, our method achieves

competitive performance of top-1 accuracy 34.5% with

AlexNet, and 42.1% with ResNet-50. With nearest neigh-

bors on the last layer which is much smaller than intermedi-

ate layers, we achieve an accuracy of 38.7% with ResNet-

50. These results show remarkable generalization ability of

the representations learned using our method.

Consistency of training and testing objectives. Unsu-

pervised feature learning is difficult because the training

objective is agnostic about the testing objective. A good

training objective should be reflected in consistent improve-

ment in the testing performance. We investigate the relation

between the training loss and the testing accuracy across it-

erations. Fig. 4 shows that our testing accuracy continues to

improve as training proceeds, with no sign of overfitting. It

also suggests that better optimization of the training objec-

tive may further improve our testing accuracy.
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Figure 5: Retrieval results for example queries. The left column are queries from the validation set, while the right columns show the 10

closest instances from the training set. The upper half shows the best cases. The lower half shows the worst cases.

embedding size 32 64 128 256

top-1 accuracy 34.0 38.8 40.5 40.1

Table 4: Classification performance on ImageNet with ResNet18

for different embedding feature sizes.

The embedding feature size. We study how the perfor-

mance changes as we vary the embedding size from 32 to

256. Table 4 shows that the performance increases from 32,

plateaus at 128, and appears to saturate towards 256.

Training set size. To study how our method scales with

the data size, we train different representations with vari-

ous proportions of ImageNet data, and evaluate the classi-

fication performance on the full labeled set using nearest

neighbors. Table 5 shows that our feature learning method

benefits from larger training sets, and the testing accuracy

improves as the training set grows. This property is crucial

for successful unsupervised learning, as there is no shortage

of unlabeled data in the wild.

Qualitative case study. To illustrate the learned features,

Figure 5 shows the results of image retrieval using the

learned features. The upper four rows show the best cases

training set size 0.1% 1% 10% 30% 100%

accuracy 3.9 10.7 23.1 31.7 40.5

Table 5: Classification performances trained on different amount

of training set with ResNet-18.

where all top 10 results are in the same categories as the

queries. The lower four rows show the worst cases where

none of the top 10 are in the same categories. However,

even for the failure cases, the retrieved images are still vi-

sually similar to the queries, a testament to the power of our

unsupervised learning objective.

4.3. Semi­supervised Learning

We now study how the learned feature extraction net-

work can benefit other tasks, and whether it can provide

a good basis for transfer learning to other tasks. A com-

mon scenario that can benefit from unsupervised learning is

when we have a large amount of data of which only a small

fraction are labeled. A natural semi-supervised learning ap-

proach is to first learn from the big unlabeled data and then

fine-tune the model on the small labeled data.

We randomly choose a subset of ImageNet as labeled
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Figure 6: Semi-supervised learning results on ImageNet with an

increasing fraction of labeled data (x axis). Ours are consistently

and significantly better. Note that the results for colorization-based

pretraining are from a deeper ResNet-152 network [19].

and treat others as unlabeled. We perform the above semi-

supervised learning and measure the classification accuracy

on the validation set. In order to compare with [19], we

report the top-5 accuracy here.

We compare our method with three baselines: (1)

Scratch, i.e. fully supervised training on the small labeled

subsets, (2) Split-brain [48] for pre-training, and (3) Col-

orization [19] for pre-training. Finetuning on the labeled

subset takes 70 epochs with initial learning rate 0.01 and a

decay rate of 10 every 30 epochs. We vary the proportion

of labeled subset from 1% to 20% of the entire dataset.

Fig. 6 shows that our method significantly outperforms

all other approaches, and ours is the only one outperform-

ing supervised learning from limited labeled data. When

only 1% of data is labeled, we outperform by a large 10%
margin, demonstrating that our feature learned from unla-

beled data is effective for task adaptation.

4.4. Object Detection

To further assess the generalization capacity of the

learned features, we transfer the learned networks to the

new task of object detection on PASCAL VOC 2007 [6].

Training object detection model from scratch is often dif-

ficult, and a prevalent practice is to pretrain the underlying

CNN on ImageNet and fine-tune it for the detection task.

We experiment with Fast R-CNN [7] with AlexNet and

VGG16 architectures, and Faster R-CNN [32] with ResNet-

50. When fine-tuning Fast R-CNN, the learning rate is ini-

tialized to 0.001 and scaled down by 10 times after every

50K iterations. When fine-tuning AlexNet and VGG16,

we follow the standard practice, fixing the conv1 model

weights. When fine-tuning Faster R-CNN, we fix the model

Method mAP

AlexNet Labels† 56.8
Gaussian 43.4

Data-Init [16] 45.6
Context [2] 51.1

Adversarial [4] 46.9
Color [47] 46.9
Video [44] 47.4

Ours Alexnet 48.1

Method mAP

VGG Labels† 67.3
Gaussian 39.7

Video [44] 60.2
Context [2] 61.5

Transitivity [45] 63.2
Ours VGG 60.5

ResNet Labels† 76.2
Ours ResNet 65.4

Table 6: Object detection performance on PASCAL VOC

2007 test, in terms of mean average precision (mAP), for

supervised pretraining methods (marked by †), existing un-

supervised methods, and our method.

weights below the 3rd type of residual blocks, only updat-

ing the layers above and freezing all batch normalization

layers. We follow the standard pipeline for finetuning and

do not use the rescaling method proposed in [2]. We use the

standard trainval set in VOC 2007 for training and testing.

We compare three settings: 1) directly training from

scratch (lower bound), 2) pretraining on ImageNet in a su-

pervised way (upper bound), and 3) pretraining on Ima-

geNet or other data using various unsupervised methods.

Table 6 lists detection performance in terms of mean

average precision (mAP). With AlexNet and VGG16, our

method achieves an mAP of 48.1% and 60.5%, on par with

the state-of-the-art unsupervised methods. With Resnet-50,

our method achieves an mAP of 65.4%, surpassing all ex-

isting unsupervised learning approaches. It also shows that

our method scales well as the network gets deeper. There

remains a significant gap of 11% to be narrowed towards

mAP 76.2% from supervised pretraining.

5. Summary

We present an unsupervised feature learning approach by

maximizing distinction between instances via a novel non-

parametric softmax formulation. It is motivated by the ob-

servation that supervised learning results in apparent image

similarity. Our experimental results show that our method

outperforms the state-of-the-art on image classification on

ImageNet and Places, with a compact 128-dimensional rep-

resentation that scales well with more data and deeper net-

works. It also delivers competitive generalization results on

semi-supervised learning and object detection tasks.
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