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Abstract

Suffering from the extreme training data imbalance be-

tween seen and unseen classes, most of existing state-of-the-

art approaches fail to achieve satisfactory results for the

challenging generalized zero-shot learning task. To circum-

vent the need for labeled examples of unseen classes, we

propose a novel generative adversarial network (GAN) that

synthesizes CNN features conditioned on class-level seman-

tic information, offering a shortcut directly from a semantic

descriptor of a class to a class-conditional feature distribu-

tion. Our proposed approach, pairing a Wasserstein GAN

with a classification loss, is able to generate sufficiently dis-

criminative CNN features to train softmax classifiers or any

multimodal embedding method. Our experimental results

demonstrate a significant boost in accuracy over the state of

the art on five challenging datasets – CUB, FLO, SUN, AWA

and ImageNet – in both the zero-shot learning and general-

ized zero-shot learning settings.

1. Introduction

Deep learning has allowed to push performance consid-

erably across a wide range of computer vision and machine

learning tasks. However, almost always, deep learning re-

quires large amounts of training data which we are lacking

in many practical scenarios, e.g. it is impractical to anno-

tate all the concepts that surround us, and have enough of

those annotated samples to train a deep network. There-

fore, training data generation has become a hot research

topic [10, 18, 11, 37, 48, 41]. Generative Adversarial Net-

works [18] are particularly appealing as they allow generat-

ing realistic and sharp images conditioned, for instance, on

object categories [37, 48]. However, they do not yet gener-

ate images of sufficient quality to train deep learning archi-

tectures as demonstrated by our experimental results.

In this work, we are focusing on arguably the most ex-

treme case of lacking data, namely zero-shot learning [24,

46, 9], where the task is to learn to classify when no labeled

examples of certain classes are available during training.
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Figure 1: CNN features can be extracted from: 1) real im-

ages, however in zero-shot learning we do not have access

to any real images of unseen classes, 2) synthetic images,

however they are not accurate enough to improve image

classification performance. We tackle both of these prob-

lems and propose a novel attribute conditional feature gen-

erating adversarial network formulation, i.e. f-CLSWGAN,

to generate CNN features of unseen classes.

We argue that this scenario is a great testbed for evaluat-

ing the robustness and generalization of generative models.

In particular, if the generator learns discriminative visual

data with enough variation, the generated data should be

useful for supervised learning. Hence, one contribution of

our paper is a comparison of various existing GAN-models

and another competing generative model, i.e. GMMN, for

visual feature generation. In particular, we look into both

zero-shot learning (ZSL) where the test time search space is

restricted to unseen class labels and generalized zero-shot

learning (GZSL) for being a more realistic scenario as at test

time the classifier has to decide between both seen and un-

seen class labels. In this context, we propose a novel GAN-

method – namely f-CLSWGAN that generates features in-

stead of images and is trained with a novel loss improving

over alternative GAN-models.

We summarize our contributions as follows. (1) We pro-

pose a novel conditional generative model f-CLSWGAN

that synthesizes CNN features of unseen classes by optimiz-

ing the Wasserstein distance regularized by a classification

loss. (2) Across five datasets with varying granularity and

sizes, we consistently improve upon the state of the art in

both the ZSL and GZSL settings. We demonstrate a prac-
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tical application for adversarial training and propose GZSL

as a proxy task to evaluate the performance of generative

models. (3) Our model is generalizable to different deep

CNN features, e.g. extracted from GoogleNet or ResNet,

and may use different class-level auxiliary information, e.g.

sentence, attribute, and word2vec embeddings.

2. Related work

In this section we review some recent relevant literature

on Generative Adversarial Networks, Zero-Shot Learning

(ZSL) and Generalized Zero-Shot (GZSL) Learning.

Generative Adversarial Network. GAN [18] was origi-

nally proposed as a means of learning a generative model

which captures an arbitrary data distribution, such as im-

ages, from a particular domain. The input to a generator

network is a “noise” vector z drawn from a latent distri-

bution, such as a multivariate Gaussian. DCGAN [34] ex-

tends GAN by leveraging deep convolution neural networks

and providing best practices for GAN training. [43] im-

proves DCGAN by factorizing the image generation pro-

cess into style and structure networks, InfoGAN [12] ex-

tends GAN by additionally maximizing the mutual infor-

mation between interpretable latent variables and the gen-

erator distribution. GAN has also been extended to a condi-

tional GAN by feeding the class label [29], sentence de-

scriptions [36, 37, 48], into both the generator and dis-

criminator. The theory of GAN is recently investigated in

[4, 5, 19], where they show that the Jenson-Shannon diver-

gence optimized by the original GAN leads to instability

issues. To cure the unstable training issues of GANs, [5]

proposes Wasserstein-GAN (WGAN), which optimizes an

efficient approximation of the Wasserstein distance. While

WGAN attains better theoretical properties than the original

GAN, it still suffers from vanishing and exploding gradient

problems due to weight clipping to enforce the 1-Lipschitz

constraint on the discriminator. Hence, [19] proposes an

improved version of WGAN enforcing the Lipschitz con-

straint through gradient penalty. Although those papers

have demonstrated realistic looking images, they have not

applied this idea to image feature generation.

In this paper, we empirically show that images generated

by the state-of-the-art GAN [19] are not ready to be used as

training data for learning a classifier. Hence, we propose a

novel GAN architecture to directly generate CNN features

that can be used to train a discriminative classifier for zero-

shot learning. Combining the powerful WGAN [19] loss

and a classification loss which enforces the generated fea-

tures to be discriminative, our proposed GAN architecture

improves the original GAN [18] by a large margin and has

an edge over WGAN [19] thanks to our regularizer.

ZSL and GZSL. In the zero-shot learning setting, the set

of classes seen during training and evaluated during test are

disjoint [22, 24, 25, 39, 47]. As supervised learning meth-

ods can not be employed for this task, [24, 39] proposed to

solve it by solving related sub-problems. [50, 31, 8] learn

unseen classes as a mixture of seen class proportions, and

[2, 3, 14, 42, 45, 40, 16, 33, 1, 6, 17, 23] learn a compat-

ibility between images and classes. On the other hand, in-

stead of using only labeled data, [15, 38, 26] leverage unla-

beled data from unseen classes in the transductive setting.

While zero-shot learning has attracted a lot of attention,

there has been little work [42, 9] in the more realistic gen-

eralized zero-shot learning setting, where both seen and un-

seen classes appear at test time.

In this paper, we propose to tackle generalized zero-shot

learning by generating CNN features for unseen classes via

a novel GAN model. Our work is different from [20] be-

cause they generate additional examples for data-starved

classes from feature vectors alone, which is unimodal and

do not generalize to unseen classes. Our work is closer

to [7] in which they generate features via GMMN [27].

Hence, we directly compare with them on the latest zero-

shot learning benchmark [46] and show that WGAN [5]

coupled with our proposed classification loss can further

improve GMMN in feature generation on most datasets for

both ZSL and GZSL tasks.

3. Feature Generation & Classification in ZSL

Existing ZSL models only see labeled data from seen

classes during training biasing the predictions to seen

classes. The main insight of our proposed model is that

by feeding additional synthetic CNN features of unseen

classes, the learned classifier will also explore the embed-

ding space of unseen classes. Hence, the key to our ap-

proach is the ability to generate semantically rich CNN fea-

ture distributions conditioned on a class specific semantic

vector e.g. attributes, without access to any images of that

class. This alleviates the imbalance between seen and un-

seen classes, as there is no limit to the number of synthetic

CNN features that our model can generate. It also allows to

directly train a discriminative classifier, i.e. Softmax classi-

fier, even for unseen classes.

We begin by defining the problem of our interest. Let

S = {(x, y, c(y))|x ∈ X , y ∈ Ys, c(y) ∈ C} where

S stands for the training data of seen classes, x ∈ R
dx

is the CNN features, y denotes the class label in Ys =
{y1, . . . , yK} consisting of K discrete seen classes, and

c(y) ∈ R
dc is the class embedding, e.g. attributes, of class

y that models the semantic relationship between classes.

In addition, we have a disjoint class label set Yu =
{u1, . . . , uL} of unseen classes, whose class embedding set

U = {(u, c(u))|u ∈ Yu, c(u) ∈ C} is available but images

and image features are missing. Given S and U , the task of

ZSL is to learn a classifier fzsl : X → Yu and in GZSL we

learn a classifier fgzsl : X → Ys ∪ Yu.
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3.1. Feature Generation

In this section, we begin our discussion with Generative

Adversarial Networks (GAN) [18] for it being the basis of

our model. GAN consists of a generative network G and

a discriminative network D that compete in a two player

minimax game. In the context of generating image pixels,

D tries to accurately distinguish real images from generated

images, while G tries to fool the discriminator by generat-

ing images that are mistakable for real. Following [29], we

extend GAN to conditional GAN by including a conditional

variable to both G and D. In the following we give the de-

tails of the conditional GAN variants that we develop. Our

novelty lies in that we develop three conditional GAN vari-

ants, i.e. f-GAN, f-WGAN and f-CLSWGAN, to generate

image features rather than image pixels. It is worth noting

that our models are only trained with seen class data S but

can also generate image features of unseen classes.

f-GAN. Given the train data S of seen classes, we aim to

learn a conditional generator G : Z × C → X , which takes

random Gaussian noise z ∈ Z ⊂ R
dz and class embedding

c(y) ∈ C as its inputs, and outputs a CNN image feature x̃ ∈
X of class y. Once the generator G learns to generate CNN

features of real images, i.e. x, conditioned on the seen class

embedding c(y) ∈ Ys, it can also generate x̃ of any unseen

class u via its class embedding c(u). Our feature generator

f-GAN is learned by optimizing the following objective,

min
G

max
D

LGAN =E[logD(x, c(y))]+ (1)

E[log (1−D(x̃, c(y)))],

with x̃ = G(z, c(y)). The discriminator D : X × C →
[0, 1] is a multi-layer perceptron with a sigmoid function

as the last layer. While D tries to maximize the loss, G
tries to minimizes it. Although GAN has been shown to

capture complex data distributions, e.g. pixel images, they

are notoriously difficult to train [4].

f-WGAN. We extend the improved WGAN [19] to a con-

ditional WGAN by integrating the class embedding c(y) to

both the generator and the discriminator. The loss is,

LWGAN =E[D(x, c(y))]− E[D(x̃, c(y))]− (2)

λE[(||∇x̂D(x̂, c(y))||2 − 1)
2
],

where x̃ = G(z, c(y)), x̂ = αx + (1 − α)x̃ with α ∼
U(0, 1), and λ is the penalty coefficient. In contrast to the

GAN, the discriminative network here is defined as D : X×
C → R, which eliminates the sigmoid layer and outputs a

real value. The log in Equation 1 is also removed since we

are not optimizing the log likelihood. Instead, the first two

terms in Equation 2 approximate the Wasserstein distance,

and the third term is the gradient penalty which enforces

the gradient of D to have unit norm along the straight line

CNN

f-CLSWGAN
z ~ N(0, 1)
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Figure 2: Our f-CLSWGAN: we propose to minimize

the classification loss over the generated features and the

Wasserstein distance with gradient penalty.

between pairs of real and generated points. Again, we solve

a minmax optimization problem,

min
G

max
D

LWGAN (3)

f-CLSWGAN. f-WGAN does not guarantee that the gener-

ated CNN features are well suited for training a discrimi-

native classifier, which is our goal. We conjecture that this

issue could be alleviated by encouraging the generator to

construct features that can be correctly classified by a dis-

criminative classifier trained on the input data. To this end,

we propose to minimize the classification loss over the gen-

erated features in our novel f-CLSWGAN formulation. We

use the negative log likelihood,

LCLS = −Ex̃∼px̃
[logP (y|x̃; θ)], (4)

where x̃ = G(z, c(y)), y is the class label of x̃, P (y|x̃; θ)
denotes the probability of x̃ being predicted with its true

class label y. The conditional probability is computed by a

linear softmax classifier parameterized by θ, which is pre-

trained on the real features of seen classes. The classifica-

tion loss can be thought of as a regularizer enforcing the

generator to construct discriminative features. Our full ob-

jective then becomes,

min
G

max
D

LWGAN + βLCLS (5)

where β is a hyperparameter weighting the classifier.

3.2. Classification

Given c(u) of any unseen class u ∈ Yu, by resampling

the noise z and then recomputing x̃ = G(z, c(u)), arbitrar-

ily many visual CNN features x̃ can be synthesized. After

repeating this feature generation process for every unseen

class, we obtain a synthetic training set Ũ = {(x̃, u, c(u))}.

We then learn a classifier by training either a multimodal

embedding model or a softmax classifier. Our generated

features allow to train those methods on the combinations

of real seen class data S and generated unseen class data Ũ .
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Multimodal Embedding. Many zero-shot learning

approaches, e.g. ALE [2], DEVISE [14], SJE [3], ES-

ZSL [40] and LATEM [45], learn a multimodal embedding

between the image feature space X and the class embedding

space C using seen classes data S . With our generated fea-

tures, those methods can be trained with seen classes data S
together with unseen classes data Ũ to learn a more robust

classifier. The embedding model F (x, c(y);W ), parameter-

ized by W , measures the compatibility score between any

image feature x and class embedding c(y) pair. Given a

query image feature x, the classifier searches for the class

embedding with the highest compatibility via:

f(x) = argmax
y

F (x, c(y);W ), (6)

where in ZSL, y ∈ Yu and in GZSL, y ∈ Ys ∪ Yu.

Softmax. The standard softmax classifier minimizes the

negative log likelihood loss,

min
θ

−
1

|T |

∑

(x,y)∈T

logP (y|x; θ), (7)

where θ ∈ R
dx×N is the weight matrix of a fully con-

nected layer which maps the image feature x to N unnor-

malized probabilities with N being the number of classes,

and P (y|x; θ) =
exp(θT

y x)
∑

N
i

exp(θT
i
x)

. Depending on the task,

T = Ũ if it is ZSL and T = S ∪ Ũ if it is GZSL. The

prediction function is:

f(x) = argmax
y

P (y|x; θ), (8)

where in ZSL, y ∈ Yu and in GZSL, y ∈ Ys ∪ Yu.

4. Experiments

First we detail our experimental protocol, then we

present (1) our results comparing our framework with the

state of the art for GZSL and ZSL tasks on four challenging

datasets, (2) our analysis of f-xGAN 1 under different con-

ditions, (3) our large-scale experiments on ImageNet and

(4) our comparison of image and image feature generation.

Datasets. Caltech-UCSD-Birds 200-2011 (CUB) [44], Ox-

ford Flowers (FLO) [30] and SUN Attribute (SUN) [32]

are all fine-grained datasets. CUB contains 11,788 im-

ages from 200 different types of birds annotated with 312

attributes. FLO dataset 8189 images from 102 different

types of flowers without attribute annotations. However, for

both CUB and FLO we use the fine-grained visual descrip-

tions collected by [35]. SUN contains 14,340 images from

717 scenes annotated with 102 attributes. Finally, Animals

with Attributes (AWA) [24] is a coarse-grained dataset with

1We denote our f-GAN, f-WGAN, f-CLSWGAN as f-xGAN

Dataset att stc |Ys|+ |Yu| |Ys| |Yu|

CUB [44] 312 Y 200 100 + 50 50

FLO [30] – Y 102 62 + 20 20

SUN [32] 102 N 717 580 + 65 72

AWA [24] 85 N 50 27 + 13 10

Table 1: CUB, SUN, FLO, AWA datasets, in terms of num-

ber of attributes per class (att), sentences (stc), number

of classes in training + validation (Ys) and test classes (Yu).

30,475 images, 50 classes and 85 attributes. Statistics of the

datasets are presented in Table 1. We use the zero-shot splits

proposed by [46] for AWA, CUB and SUN insuring that

none of the training classes are present in ImageNet [13]2.

For FLO, we use the standard split provided by [35].

Features. As real CNN features, we extract 2048-dim top-

layer pooling units of the 101-layered ResNet [21] from the

entire image. We do not do any image pre-processing such

as cropping or use any other data augmentation techniques.

ResNet is pre-trained on ImageNet 1K and not fine-tuned.

As synthetic CNN features, we generate 2048-dim CNN

features using our f-xGAN model. As the class embed-

ding, unless it is stated otherwise, we use per-class attributes

for AWA (85-dim), CUB (312-dim) and SUN (102-dim).

Furthermore, for CUB and Flowers, we extract 1024-dim

character-based CNN-RNN [35] features from fine-grained

visual descriptions (10 sentences per image). None of the

Yu sentences are seen during training the CNN-RNN. We

build per-class sentences by averaging the CNN-RNN fea-

tures that belong to the same class.

Evaluation Protocol. At test time, in the ZSL setting, the

aim is to assign an unseen class label, i.e. Yu to the test

image and in GZSL setting, the search space includes both

seen or unseen classes, i.e. Ys ∪ Yu. We use the unified

evaluation protocol proposed in [46]. In the ZSL setting,

the average accuracy is computed independently for each

class before dividing their cumulative sum by the number of

classes; i.e., we measure average per-class top-1 accuracy

(T1). In the GZSL setting, we compute average per-class

top-1 accuracy on seen classes (Ys) denoted as s, average

per-class top-1 accuracy on unseen classes (Yu) denoted as

u and their harmonic mean, i.e. H = 2 ∗ (s ∗ u)/(s+ u).

Implementation details. In all f-xGAN models, both the

generator and the discriminator are MLP with LeakyReLU

activation. The generator consists of a single hidden layer

with 4096 hidden units. Its output layer is ReLU because

we aim to learn the top max-pooling units of ResNet-101.

While the discriminator of f-GAN has one hidden layer

with 1024 hidden units in order to stabilize the GAN train-

ing, the discriminators of f-WGAN and f-CLSWGAN have

2as ImageNet is used for pre-training the ResNet [21]
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Zero-Shot Learning Generalized Zero-Shot Learning

CUB FLO SUN AWA CUB FLO SUN AWA

Classifier FG T1 T1 T1 T1 u s H u s H u s H u s H

DEVISE [14]
none 52.0 45.9 56.5 54.2 23.8 53.0 32.8 9.9 44.2 16.2 16.9 27.4 20.9 13.4 68.7 22.4

f-CLSWGAN 60.3 60.4 60.9 66.9 52.2 42.4 46.7 45.0 38.6 41.6 38.4 25.4 30.6 35.0 62.8 45.0

SJE [3]
none 53.9 53.4 53.7 65.6 23.5 59.2 33.6 13.9 47.6 21.5 14.7 30.5 19.8 11.3 74.6 19.6

f-CLSWGAN 58.4 67.4 56.5 66.9 48.1 37.4 42.1 52.1 56.2 54.1 36.7 25.0 29.7 37.9 70.1 49.2

LATEM [45]
none 49.3 40.4 55.3 55.1 15.2 57.3 24.0 6.6 47.6 11.5 14.7 28.8 19.5 7.3 71.7 13.3

f-CLSWGAN 60.8 60.8 61.3 69.9 53.6 39.2 45.3 47.2 37.7 41.9 42.4 23.1 29.9 33.0 61.5 43.0

ESZSL [40]
none 53.9 51.0 54.5 58.2 12.6 63.8 21.0 11.4 56.8 19.0 11.0 27.9 15.8 6.6 75.6 12.1

f-CLSWGAN 54.7 54.3 54.0 63.9 36.8 50.9 43.2 25.3 69.2 37.1 27.8 20.4 23.5 31.1 72.8 43.6

ALE [2]
none 54.9 48.5 58.1 59.9 23.7 62.8 34.4 13.3 61.6 21.9 21.8 33.1 26.3 16.8 76.1 27.5

f-CLSWGAN 61.5 71.2 62.1 68.2 40.2 59.3 47.9 54.3 60.3 57.1 41.3 31.1 35.5 47.6 57.2 52.0

Softmax
none – – – – – – – – – – – – – – – –

f-CLSWGAN 57.3 67.2 60.8 68.2 43.7 57.7 49.7 59.0 73.8 65.6 42.6 36.6 39.4 57.9 61.4 59.6

Table 2: ZSL measuring per-class average Top-1 accuracy (T1) on Yu and GZSL measuring u = T1 on Yu, s = T1 on Ys,

H = harmonic mean (FG=feature generator, none: no access to generated CNN features, hence softmax is not applicable).

f-CLSWGAN significantly boosts both the ZSL and GZSL accuracy of all classification models on all four datasets.

one hidden layer with 4096 hidden units as WGAN [19]

does not have instability issues thus a stronger discrimina-

tor can be applied here. We do not apply batch normaliza-

tion our empirical evaluation showed a significant degrada-

tion of the accuracy when batch normalization is used. The

noise z is drawn from a unit Gaussian with the same di-

mensionality as the class embedding. We use λ = 10 as

suggested in [19] and β = 0.01 across all the datasets.

4.1. Comparing with State­of­the­Art

In a first set of experiments, we evaluate our f-xGAN

features in both the ZSL and GZSL settings on four chal-

lenging datasets: CUB, FLO, SUN and AWA. Unless it is

stated otherwise, we use att for CUB, SUN, AWA and

stc for FLO (as att are not available). We compare the

effect of our feature generating f-xGAN to 6 recent state-

of-the-art methods [46].

ZSL with f-CLSWGAN. We first provide ZSL results with

our f-CLSWGAN in Table 2 (left). Here, the test-time

search space is restricted to unseen classes Yu. First, our

f-CLSWGAN in all cases improves the state of the art that is

obtained without feature generation. The overall accuracy

improvement on CUB is from 54.9% to 61.5%, on FLO

from 53.4% to 71.2%, on SUN from 58.1% to 62.1% and

on AWA from 65.6% to 69.9%, i.e. all quite significant.

Another observation is that feature generation is applicable

to all the multimodal embedding models and softmax.

These results demonstrate that indeed our f-CLSWGAN

generates generalizable and strong visual features of pre-

viously unseen classes.

GZSL with f-CLSWGAN. Our main interest is GZSL

where the test time search space contains both seen and un-

seen classes, Ys ∪ Yu, and at test time the images come

both from seen and unseen classes. Therefore, we evalu-

ate both seen and unseen class accuracy, i.e. s and u, as

well as their harmonic mean (H). The GZSL results with

f-CLSWGAN in Table 2 (right) demonstrate that for all

datasets our f-xGAN significantly improves the H-measure

over the state-of-the-art. On CUB, f-CLSWGAN obtains

49.7% in H measure, significantly improving the state of

the art (34.4%), on FLO it achieves 65.6% (vs. 21.9%), on

SUN it reaches 39.4% (vs. 26.3%), and on AWA it achieves

59.6% (vs. 27.5%). The accuracy boost can be attributed to

the strength of the f-CLSWGAN generator learning to im-

itate CNN features of unseen classes although not having

seen any real CNN features of these classes before.

We also observe that without feature generation on all

models the seen class accuracy is significantly higher than

unseen class accuracy, which indicates that many samples

are incorrectly assigned to one of the seen classes. Fea-

ture generation through f-CLSWGAN finds a balance be-

tween seen and unseen class accuracies by improving the

unseen class accuracy while maintaining the accuracy on

seen classes. Furthermore, we would like to emphasize that

the simple softmax classifier beats all the models and is

now applicable to GZSL thanks to our CNN feature gener-

ation. This shows the true potential and generalizability of

feature generation to various tasks.

ZSL and GZSL with f-xGAN. The generative model is an

important component of our framework. Here, we evalu-
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(b) Generalized Zero-Shot Learning

Figure 3: Comparing f-xGAN versions with f-GMMN as well as comparing multimodal embedding methods with softmax.
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Figure 4: Measuring the seen class accuracy of the classi-

fier trained on generated features of seen classes w.r.t. the

training epochs (with softmax).

ate all versions of our f-xGAN and f-GMMN for it being

a strong alternative. We show ZSL and GZSL results of

all classification models in Figure 3. We selected CUB and

FLO for them being fine-grained datasets, however we pro-

vide full numerical results and plots in the supplementary

which shows that our observations hold across datasets. Our

first observation is that for both ZSL and GZSL settings all

generative models improve in all cases over “none” with

no access to the synthetic CNN features. This applies to

the GZSL setting and the difference between “none” and

f-xGAN is strikingly significant. Our second observation

is that our novel f-CLSWGAN model is the best performing

generative model in almost all cases for both datasets. Our

final observation is that although f-WGAN rarely performs

lower than f-GMMN, e.g. ESZL on FLO, our f-CLSWGAN

which uses a classification loss in the generator recovers

from it and achieves the best result among all these genera-

tive models. We conclude from these experiments that gen-

erating CNN features to support the classifier when there is

missing data is a technique that is flexible and strong.

We notice that recently [49] has shown great perfor-

mance on the old splits of AWA and CUB datasets. We

compare our method with [49] using the same evaluation

protocol as our paper, i.e same data splits and evaluation

metrics. On AWA, in ZSL task, the comparison is 66.1%

vs 69.9% (ours) and in GZSL task, it is 41.4% vs 59.6%

(ours). On CUB, in ZSL task, the comparison is 50.1% vs

61.5% (ours) and in GZSL task it is 29.2% vs 49.7% (ours).
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Figure 5: Increasing the number of generated f-xGAN fea-

tures wrt unseen class accuracy (with softmax) in ZSL.

4.2. Analyzing f-xGAN Under Different Conditions

In this section, we analyze f-xGAN in terms of stabil-

ity, generalization, CNN architecture used to extract real

CNN features and the effect of class embeddings on two

fine-grained datasets, namely CUB and FLO.

Stability and Generalization. We first analyze how well

different generative models fit the seen class data used

for training. Instead of using Parzen window-based log-

likelihood [18] that is unstable, we train a softmax classifier

with generated features of seen classes and report the classi-

fication accuracy on a held-out test set. Figure 4 shows the

classification accuracy w.r.t the number of training epochs.

On both datasets, we observe a stable training trend. On

FLO, compared to the supervised classification accuracy

obtained with real images, i.e. the upper bound marked with

dashed line, f-GAN remains quite weak even after conver-

gence, which indicates that f-GAN has underfitting issues.

A strong alternative is f-GMMN leads to a significant ac-

curacy boost while our f-WGAN and f-CLSWGAN improve

over f-GMMN and almost reach the supervised upper bound.

After having established that our f-xGAN leads to a

stable training performance and generating highly descrip-

tive features, we evaluate the generalization ability of the

f-xGAN generator to unseen classes. Using the pre-trained

model, we generate CNN features of unseen classes. We

then train a softmax classifier using these synthetic CNN

features of unseen classes with real CNN features of seen
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CNN FG u s H

GoogLeNet
none 20.2 35.7 25.8

f-CLSWGAN 35.3 38.7 36.9

ResNet-101
none 23.7 62.8 34.4

f-CLSWGAN 43.7 57.7 49.7

Table 3: GZSL results with GoogLeNet vs ResNet-101 fea-

tures on CUB (CNN: Deep Feature Encoder Network, FG:

Feature Generator, u = T1 on Yu, s = T1 on Ys, H = har-

monic mean, “none”= no generated features).

C FG u s H

Attribute (att)
none 23.7 62.8 34.4

f-CLSWGAN 43.7 57.7 49.7

Sentence (stc)
none 38.8 53.8 45.1

f-CLSWGAN 50.3 58.3 54.0

Table 4: GZSL results with conditioning f-xGANwith stc

and att on CUB (C: Class embedding, FG: Feature Gen-

erator, u = T1 on Yu, s = T1 on Ys, H = harmonic mean,

“none”= no generated features).

classes. On the GZSL task, Figure 5 shows that increasing

the number of generated features of unseen classes from 1

to 100 leads to a significant boost of accuracy, e.g. 28.2%
to 56.5% on CUB and 37.9% to 66.5% on FLO. As in the

case for generating seen class features, here the ordering is

f-GAN < f-WGAN < f-GMMN < f-CLSWGAN on CUB

and f-GAN < f-GMMN < f-WGAN < f-CLSWGAN on

FLO. With these results, we argue that if the generative

model can generalize well to previously unseen data dis-

tributions, e.g. perform well on GZSL task, they have prac-

tical use in a wide range of real-world applications. Hence,

we propose to quantitatively evaluate the performance of

generative models on the GZSL task.

Effect of CNN Architectures. The aim of this study is

to determine the effect of the deep CNN encoder that pro-

vides real features to our f-xGAN discriminator. In Table 3,

we first observe that with GoogLeNet features, the results

are lower compared to the ones obtained with ResNet fea-

tures. This indicates that ResNet features are stronger than

GoogLeNet, which is expected. Besides, most importantly,

with both CNN architectures we observe that our f-xGAN

outperforms the “none” by a large margin. Specifically,

the accuracy increases from 25.8% to 36.9% for GoogleNet

features and 34.4% to 49.7% for ResNet features. Those re-

sults are encouraging as they demonstrate that our f-xGAN

is not limited to learning the distribution of ResNet-101 fea-

tures, but also able to learn other feature distributions.

Effect of Class Embeddings. The conditioning variable,
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Figure 6: ZSL and GZSL results on ImageNet (ZSL: T1

on Yu, GZSL: T1 on Yu). The splits, ResNet features and

Word2Vec are provided by [46]. “Ours” = feature genera-

tor: f-CLSWGAN, classifier: softmax.

i.e. class embedding, is an important component of our

f-xGAN. Therefore, we evaluate two different class em-

beddings, per-class attributes (att) and per-class sentences

(stc) on CUB as this is the only dataset that has both.

In Table 4, we first observe that f-CLSWGAN features gen-

erated with att not only lead to a significantly higher result

(49.7% vs 34.4%), s and u are much more balanced (57.7%
and 43.7% vs. 62.8% and 23.7%) compared to the state-of-

the-art, i.e. “none”. This is because generated CNN fea-

tures help us explore the space of unseen classes whereas

the state of the art learns to project images closer to seen

class embeddings.

Finally, f-CLSWGAN features generated with per-class

stc significantly improve results over att, achieving

54.0% in H measure, and also leads to a notable u of 50.3%
without hurting s (58.3%). This is due to the fact that stc

leads to high quality features [35] reflecting the highly de-

scriptive semantic content language entails and it shows that

our f-CLSWGAN is able to learn higher quality CNN fea-

tures given a higher quality conditioning signal.

4.3. Large­Scale Experiments

Our large-scale experiments follow the same zero-shot

data splits of [46] and serve two purposes. First, we

show the generalizability of our approach by conducting

ZSL and GZSL experiments on ImageNet [13] for it be-

ing the largest-scale single-label image dataset, i.e. with

21K classes and 14M images. Second, as ImageNet does

not contain att, we use as a (weak) conditioning signal

Word2Vec [28] to generate f-CLSWGAN features. Figure 6

shows that softmax as a classifier obtains the state-of-the-

art of ZSL and GZSL on ImageNet, significantly improving

over ALE [2]. These results show that our f-CLSWGAN

is able to generate high quality CNN features also with

Word2Vec as the class embedding.

For ZSL, for instance, with the 2H split “Ours” almost

doubles the performance of ALE (5.38% to 10.00%) and

in one of the extreme cases, e.g. with L1K split, the accu-

racy improves from 2.85% to 3.62%. For GZSL the same
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CUB FLO

Generated Data u s H u s H

none 38.8 53.8 45.1 13.3 61.6 21.9

Image (with [48]) 23.8 48.5 31.9 39.4 64.9 49.0

CNN feature (Ours) 50.3 58.3 54.0 59.0 73.8 65.6

Table 5: Summary Table (u = T1 on Yu, s = T1 accuracy on

Ys, H = harmonic mean, class embedding = stc). “none”:

ALE with no generated features.

observations hold, i.e. the gap between ALE and “Ours” is

2.18 vs 4.38 with 2H split and 1.21 vs 2.50 with L1K split.

Note that, [46] reports the highest results with SYNC [8]

and “Ours” improves over SYNC as well, e.g. 9.26% vs

10.00% with 2H and 3.23% vs 3.56% with L1K. With these

results we emphasize that with a supervision as weak as a

Word2Vec signal, our model is able to generate CNN fea-

tures of unseen classes and operate at the ImageNet scale.

This does not only hold for the ZSL setting which discards

all the seen classes from the test-time search space assum-

ing that the evaluated images will belong to one of the un-

seen classes. It also holds for the GZSL setting where no

such assumption has been made. Our model generalizes to

previously unseen classes even when the seen classes are in-

cluded in the search space which is the most realistic setting

for image classification.

4.4. Feature vs Image Generation

As our main goal is solving the GZSL task which suf-

fers from the lack of visual training examples, one natu-

rally thinks that image generation serves the same purpose.

Therefore, here we compare generating images and image

features for the task of GZSL. We use the StackGAN [48]

to generate 256× 256 images conditioned on sentences.

In Table 5, we compare GZSL results obtained with

“none”, i.e. with an ALE model trained on real images

of seen classes, Image, i.e. image features extracted from

256 × 256 synthetic images generated by StackGAN [48]

and CNN feature, i.e. generated by our f-CLSWGAN.

Between “none” and “Image”, we observe that gener-

ating images of unseen classes improves the performance

i.e. harmonic mean on FLO (49.0% for “Image” vs 21.9%
for “none”), but hurts the performance on CUB (31.9% for

“Image” vs 45.1% for “none”). This is because generat-

ing birds is a much harder task than generating flowers.

Upon visual inspection, we have observed that although

many images have an accurate visual appearance as birds

or flowers, they lack the necessary discriminative details

to be classified correctly and the generated images are not

class-consistent. On the other hand, generating CNN fea-

tures leads to a significant boost of accuracy, e.g. 54.0%
on CUB and 65.6% on FLO which is clearly higher than

having no generation, i.e. “none”, and image generation.

We argue that image feature generation has the following

advantages. First, the number of generated image features

is limitless. Second, the image feature generation learns

from compact invariant representations obtained by a deep

network trained on a large-scale dataset such as ImageNet,

therefore the feature generative network can be quite shal-

low and hence computationally efficient. Third, generated

CNN features are highly discriminative, i.e. they lead to a

significant boost in performance of both ZSL and GZSL. Fi-

nally, image feature generation is a much easier task as the

generated data is much lower dimensional than high quality

images necessary for discrimination.

5. Conclusion

In this work, we propose f-xGAN, a learning frame-

work for feature generation followed by classification, to

tackle the generalized zero-shot learning task. Our f-xGAN

model adapts the conditional GAN architecture that is fre-

quently used for generating image pixels to generate CNN

features. In f-CLSWGAN, we improve WGAN by adding

a classification loss on top of the generator, enforcing it to

generate features that are better suited for classification. In

our experiments, we have shown that generating features of

unseen classes allows us to effectively use softmax classi-

fiers for the GZSL task.

Our framework is generalizable as it can be integrated

to various deep CNN architectures, i.e. GoogleNet and

ResNet as a pair of the most widely used architectures. It

can also be deployed with various classifiers, e.g. ALE,

SJE, DEVISE, LATEM, ESZSL that constitute the state of

the art for ZSL but also the GZSL accuracy improvements

obtained with softmax is important as it is a simple classifier

that could not be used for GZSL before this work. More-

over, our features can be generated via different sources of

class embeddings, e.g. Sentence, Attribute, Word2vec, and

applied to different datasets, i.e. CUB, FLO, SUN, AWA

being fine and coarse-grained ZSL datasets and ImageNet

being a truly large-scale dataset.

Finally, based on the success of our framework, we moti-

vated the use of GZSL tasks as an auxiliary method for eval-

uation of the expressive power of generative models in addi-

tion to manual inspection of generated image pixels which

is tedious and prone to errors. For instance, WGAN [19]

has been proposed and accepted as an improvement over

GAN [18]. This claim is supported with evaluations based

on manual inspection of the images and the inception score.

Our observations in Figure 3 and in Figure 5 support this

and follow the same ordering of the models, i.e. WGAN

improves over GAN in ZSL and GZSL tasks. Hence, while

not being the primary focus of this paper, we strongly ar-

gue, that ZSL and GZSL are suited well as a testbed for

comparing generative models.
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