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Abstract

In this paper, we propose a novel MoNet model to deeply

exploit motion cues for boosting video object segmenta-

tion performance from two aspects, i.e., frame represen-

tation learning and segmentation refinement. Concretely,

MoNet exploits computed motion cue (i.e., optical flow) to

reinforce the representation of the target frame by align-

ing and integrating representations from its neighbors. The

new representation provides valuable temporal contexts for

segmentation and improves robustness to various common

contaminating factors, e.g., motion blur, appearance varia-

tion and deformation of video objects. Moreover, MoNet ex-

ploits motion inconsistency and transforms such motion cue

into foreground/background prior to eliminate distraction

from confusing instances and noisy regions. By introducing

a distance transform layer, MoNet can effectively separate

motion-inconstant instances/regions and thoroughly refine

segmentation results. Integrating the proposed two motion

exploitation components with a standard segmentation net-

work, MoNet provides new state-of-the-art performance on

three competitive benchmark datasets.

1. Introduction

Given the segmentation mask of a target object in the first

frame, semi-supervised Video Object Segmentation (VOS)

aims to automatically segment the specified object in subse-

quent video frames. Recently remarkable progress has been

made by CNN-based approaches [3, 5, 13, 15, 26] which

generally solve the task in two stages: offline training a seg-

mentation model and online fine-tuning it on the test video.

Conventionally, CNN-based methods [3, 26] ignore the

temporal information among adjacent frames and cast VOS

as a static image segmentation problem. Such frame-by-

frame methods suffer a lot from unconstrained video con-

ditions like deformation, scale variation and motion blur,

which lead to large appearance changes of the target ob-

ject from the initial frame to subsequent ones (see results in

Fig. 1 by OSVOS [3] which processes each frame indepen-

dently). Moreover, new instances with confusing appear-

Figure 1. Segmentation results (red masks) of the proposed

MoNet, OSVOS [3] and MSK [15] on two video sequences from

DAVIS [21], which include several typical challenges for VOS,

e.g., appearance change, scale variation (the top example) and

confusing instances (the bottom example). MoNet deeply exploits

motion cues from adjacent frames and well copes with these chal-

lenges, producing better segmentation results than state-of-the-art

OSVOS and MSK. Best viewed in color with 4× zoom.

ance appearing in subsequent frames may fail VOS models

in distinguishing the target object from distracting ones (see

the bottom example in Fig. 1).

To tackle these challenges, leveraging motion cues (i.e.,

optical flow in this work) as additional information along

the temporal domain becomes necessary for VOS models

to enhance segmentation consistency and quality. One sim-

ple way is to apply segmentation models to optical flow

field [15, 29]. However, in this case, the model performance

would be limited by the quality of flow estimation (see re-

sults in Fig. 1 by MSK [15] employing RGB image and

optical flow as the inputs). To exploit motion cues more

effectively, [5, 11] introduce learnable networks to extract

motion features from optical flow to complement appear-

ance features, but they learn these two types of features

separately, which limits their robustness to various video

challenges. Different from simply treating motion as extra

inputs or external features, this work attempts to give a new

insight into exploiting and utilizing such informative cues

better for CNN-based VOS.

First of all, we exploit motion cues to reinforce the

learned representation of a target frame. Intense changes

in object appearance and scale can bring great difficulties in
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segmenting a target object throughout a sequence (see the

top example in Fig. 1), as the online fine-tuning only has

access to a single labeled frame without foreseeing such

variations. An effective way to deal with this challenge

is to utilize consecutive motion information about the tar-

get object. Thus we propose to integrate the features from

adjacent frames into the representation of the target frame.

Inspired by the success in video object detection [37, 38],

we propose to align the features from adjacent frames, us-

ing optical flow to regulate their integration, through a warp

layer with bilinear interpolation. Different from directly ex-

tracting frame representation from motion domain [5, 11],

the motion-aligned representations include necessary ap-

pearance information and valuable temporal contexts for

normalizing unknown variations, thus benefiting the qual-

ity and temporal consistency of VOS results.

Secondly, we exploit motion cues to identify motion-

inconsistent instances/regions with confusing appearance,

separate the target object from the distractions and improve

the segmentation results. This is important for segmenting

object in video as new and unexpected similar instances

may appear in subsequent frames, which typically con-

fuse and fail existing VOS methods (the bottom example

in Fig. 1). To inspect inconsistent motion patterns, we pro-

pose a distance transform (DT) layer to separate the target

object with notable movement from the background motion.

The DT layer measures the connectivity between each loca-

tion in the optical flow and the background motion using the

Minimum Barrier Distance (MBD) [6] and maps the optical

flow into a simple foreground/background mask. As an ab-

stract motion prior, the mask is combined with the segmen-

tation prediction to refine the results. Superior to employing

fully-supervised CNN-based models to learn motion pat-

terns [29], the DT layer is free of ground truth optical flow

to learn a CNN model, and much simpler yet provides com-

parable performance (see results in Tab. 7).

The proposed two components are integrated into a train-

able model, named MoNet, which deeply exploits motion

cues in videos and thus addresses the challenging uncon-

strained conditions better than state-of-the-art VOS meth-

ods. We extensively evaluate MoNet on three benchmark

datasets, i.e., DAVIS [21], Youtube-Objects [10, 23] and

SegTrack-v2 [18], and observe superior performance w.r.t.

various metrics.

The main contributions of this paper are three-fold.

• We revive attention to motion cues for solving VOS

and advance its exploitation by developing the MoNet

model. Results on multiple datasets confirm benefits

of more elegantly exploiting motion cues.

• We propose to utilize motion cues to reinforce frame

representations by integrating motion-aligned features

within the temporal domain, which is shown effective

for video object detection but is new to VOS.

• We develop an effective approach to extract segmenta-

tion prior directly from motion cues, which highly fits

unique requirements of VOS but is ignored by existing

solutions. The extracted prior can filter out the dis-

tracting instances/regions and purify the segmentation.

2. Related Work

Unsupervised VOS methods aim to segment a primary

object without human inputs, by utilizing visual saliency [8,

33] and motion cues [16, 20]. Recently, Tokmakov et

al. [29] employed synthetic video data to learn a model to

segment moving objects from optical flow. Jain et al. [11]

proposed a two-stream CNN to extract features from input

frames and optical flow to jointly segment the object. Based

on [29], recurrent units are introduced by [30] to propagate

spatial information over time.

This work focuses on semi-supervised VOS where an-

notation on the first frame is given. Besides some classic

methods segmenting objects by minimizing an energy func-

tion defined over different constraints [19, 22, 31], recent

VOS methods benefit much from adopting CNN. For ex-

ample, [3] proposed to independently process each frame

using CNN without any temporal information. Perazzi et

al. [15] directly inferred segmentation results from optical

flow. Jampani et al. [12] proposed a temporal bilateral net-

work to propagate previous masks to the current frame. [13]

adopted a three-branch network w.r.t. different segmenta-

tion results. In [5], mutual features of object segmenta-

tion and optical flow are concatenated at different scales for

mutual boosting. Yoon et al. [26] formulated video object

segmentation as matching a query object at the first frame

in subsequent frames. However, the motion cues have not

been adequately leveraged. Instead of using motion cues

as extra inputs [15, 29] or complementary features [5, 11],

we deeply exploit their utilization in frame representation

learning and segmentation refinement.

3. The Proposed Model

3.1. Overview

The overall architecture of the proposed MoNet is illus-

trated in Fig. 2. To learn to exploit motion cues, MoNet

receives triple inputs, including the target frame and two

adjacent frames. The two adjacent frames are randomly

selected within a predefined temporal neighborhood. The

triple inputs are passed to a segmentation network [4] and

an optical flow estimation network [9], outputting their ap-

pearance features and optical flow.

Instead of merging features of the three input frames

directly, MoNet aligns features from adjacent frames us-

ing their optical flow at first and then integrates them into

the target frame feature. Taking in the merged feature, a

segmentation model segregates the target frame into fore-
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Figure 2. Architecture of the proposed MoNet. The target frame It and its two adjacent frames It−m and It+k are passed to a segmentation

network [4] and a FlowNet [9] respectively. The features Ft−m and Ft+k from adjacent frames are aligned (by their corresponding optical

flow Mt−m and Mt+k) and combined with the target frame feature Ft, giving a new feature F̂t. Based on F̂t, two separative branches

segment the target frame into foreground and background mask. The distance transform layer maps the optical flow to motion prior, which

is fused with the foreground/background mask to produce refined object segmentations. Best viewed in color.

ground and background mask. To alleviate susceptibility of

the segmentation model to confusing instances (e.g., the tar-

get camel on the right and a similar instance on the left in

Fig. 2), MoNet exploits motion cues to filter out the distract-

ing instances/regions whose motion is usually in disagree-

ment with the movement of target object. It introduces the

distance transform layer to map the estimated optical flow

to motion prior, which extracts the moving foreground with

distinct motion. MoNet fuses such motion prior to refine its

foreground/background segmentation results.

3.2. Aligning Feature with Motion Cues

The features learned from a single frame cannot repre-

sent the temporal variation of the target object, which limits

VOS performance due to loss of important temporal infor-

mation. To model short temporal dynamics of a given frame

It, we propose to include features from two randomly se-

lected adjacent frames It−m and It+k within a predefined

neighborhood of It. The features from It−m and It+k com-

plement and enhance the feature of It by embedding tem-

poral contexts. However, directly aggregating these fea-

tures cannot improve VOS performance as expected (see

results in Tab. 6). Because the spatial locations of tempo-

ral contexts in these features always disagree with the loca-

tions of It. Inspired by the success in video object detec-

tion [37, 38], we propose to align the features from adjacent

frames It−m and It+k to It by exploiting motion cues, be-

fore combining them.

Formally, let Ft−m denote the feature of frame It−m

output by the segmentation network, and F̂t−m denote

its aligned feature w.r.t. frame It. Aligning Ft−m(x′, y′)
to F̂t−m(x, y) needs correspondence between the location

(x, y) in It and (x′, y′) in It−m. The optical flow map

Mt−m provides the needed displacement (u, v) pointing

from (x, y) in It to (x′, y′) in It−m. With (u, v), the aligned

feature F̂t−m(x, y) can be computed by bilinear interpola-

tion:

F̂t−m(x, y) = θ1Ft−m(⌊x′⌋, ⌊y′⌋) + θ2Ft−m(⌈x′⌉, ⌊y′⌋)

+ θ3Ft−m(⌊x′⌋, ⌈y′⌉) + θ4Ft−m(⌈x′⌉, ⌈y′⌉),

where (x′, y′) = (x+ u, y + v), θ1 = (1− x′ + ⌊x′⌋)(1−
y′ + ⌊y′⌋), θ2 = (x′−⌊x′⌋)(1− y′ + ⌊y′⌋), θ3 = (1−x′ +
⌊x′⌋)(y′ − ⌊y′⌋), and θ4 = (x′ − ⌊x′⌋)(y′ − ⌊y′⌋).

The above equation is implemented as a warp layer

in MoNet. After feature alignment, three channel-wise

weighting vectors are learned to merge the feature Ft from

It with F̂t−m and F̂t+k as follows:

F̂t = wt−m ⊗ F̂t−m +wt ⊗ Ft +wt+k ⊗ F̂t+k, (1)

where⊗ denotes channel-wise scalar-matrix multiplication.

Eqn. (1) dynamically combines the features along the

channel dimension, assigning suitable weights to different

channels. After alignment and aggregation, F̂t includes var-

ious tailored temporal information, provides enriched rep-

resentation of It and effectively extends temporal-domain

receptive field of the segmentation classifier.

3.3. Distance Transform Layer

When segmenting the target object in a video sequence,

the segmentation model may be distracted by some confus-

ing factors (e.g., instances from the same category, simi-

lar instances the model had seen during its offline train-

ing and visually similar regions) and produces false posi-

tive predictions. Usually, the motion of such confusing in-

stances/regions is inconsistent with the movement of target

object. To utilize such motion cue to eliminate negative ef-

fects of these distractions, we propose to perform MBD-

based distance transform [28] on the estimated optical flow

map M to obtain relatively clean and robust motion prior.

Such prior helps identify the moving object with distinct

motion and remove the instances/regions with inconsistent

motion patterns as the identified movement.
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Frame Optical Flow MPNet [29] DT Layer

Figure 3. Comparison on moving object extraction from optical

flow between MPNet [29] and the proposed DT layer. Although

the MPNet provides sharper details about the moving object, it is

susceptible to minor motion in optical flow. In contrast, the DT

layer is more robust to complicated motions and gives smoother

and better extracted objects. Best viewed in color.

Formally, for each spatial location (i.e., pixel) l in M , a

path πl = 〈πl(1), · · · , πl(n)〉 connecting to l is defined as a

sequential collection of its spatially neighboring locations,

where n is the number of considered neighbors and takes a

typical value of 4. The distance transform D(·) on M is to

map each location l to a distance value w.r.t. a target set S
with the minimum path cost:

D(l) = min
πl∈

∏
S,l

P(πl), (2)

where P(·) denotes a path cost function and S denotes a set

of predefined locations.
∏

S,l denotes the set of all paths

that connect S and l.
In particular, we calculate the path cost function P(·) in

DT using the minimum barrier distance [28], for its appeal-

ing robustness [6, 36]. The MBD-based path cost function

at location l is defined as

P(πl) = max
i∈{1,...,n}

‖M(πl(i))‖−min
i∈{1,...,n}

‖M(πl(i))‖, (3)

where ‖M(·)‖ is the flow magnitude of a location in M .

We use the FastMBD algorithm [36] to solve the MBD-

based DT in Eqns. (2) and (3) approximately, which visits

each location l of M in a raster scan or inverse raster scan

order. At each scanning step , only half of adjacent locations

of l contribute to updating the distance map D(l):

D(l)← min{D(l),P(πh,l)}, (4)

where h denotes an adjacent location of l and πh,l denotes

the path combining πh with connections from h to l. The

path cost function P(πh,l) is defined as

P(πh,l) = max{U(h), ‖M(l)‖} −min{V (h), ‖M(l)‖},
(5)

where U(h) and V (h) denote the largest and smallest value

of ‖M(πh)‖ respectively. The computation of Eqn. (5) is

efficient by caching U and V of all locations.

We implement the FastMBD algorithm as a distance

transform layer in MoNet. The DT layer takes the flow map

M as input and outputs the distance map D, which mea-

sures connectivity of each location in M to the predefined

S. As we aim to separate the target object motion from

cluttered background motion, with the common assumption

that background motion is usually connected to optical flow

borders, we define S to include locations along the borders

of optical flow M .

For each M , the DT layer visits all the locations of M
twice, i.e., one raster and the other inverse raster scan-

ning, which are sufficient to perform well without signifi-

cant computation overhead. For a given frame It, we av-

erage and normalize the distance maps Dt−m and Dt+k

from Mt−m and Mt+k into the final Dt. Path cost in

Eqn. (5) is calculated by the flow magnitude, where larger

path cost indicates more inconsistent motion between the

location l and the locations in S. Thus a larger value of

Dt(l) demonstrates a lower probability for l corresponding

to background motion. Namely, the distance map D pro-

vides an abstract motion prior for the foreground object.

Considering the complex nature of optical flow, MP-

Net [29] learns a complicated encoder-decoder network to

extract the moving object from the optical flow. In this pa-

per, we use DT layer to solve this problem in a much simpler

way. Fig. 3 qualitatively compares the DT layer with the

CNN-based MPNet [29] on segmenting foreground mov-

ing objects. The MPNet is trained from synthetic sequences

with ground truth optical flow. Thus it provides sharper

details about the moving object but is susceptible to minor

motion. In contrast, the DT layer is more robust to various

motion complexities in optical flow and provides smoother

and better motion prior. Moreover, the DT layer is fully

unsupervised.

3.4. Object Segmentation

Based on the aligned feature, two segmentation

branches [2] are designed to predict the mask of foreground

and background respectively. To remedy the possible unre-

liabilities in the motion prior (as it completely derives from

estimated optical flow without context information), we em-

ploy two complementary classifiers to integrate the motion

prior from the DT layer and they respond to normal and in-

verse motion prior respectively.

Formally, the final prediction is made upon the aligned

feature F̂ and motion prior D as follows:

Cs(F̂ ,D) = D ⊗ Cf (F̂ ,Wf ) +D ⊗ (1− Cb(F̂ ,Wb)),

where Cs(F̂ ,D) is the segmentation classifier, Cf (F̂ ,Wf )

and Cb(F̂ ,Wb) denote the foreground and background pre-

diction branch respectively, with parameters Wf and Wb.

The above segmentation classifier Cs is trained by minimiz-
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Semi-supervised Unsupervised

Metric MoNet OSVOS MSK SFL CTN VPN PLM OFL FCP LVO ARP FSEG MPNet SFL

MeanM↑ 84.7 79.8 79.7 76.1 75.5 70.2 70.0 68.0 58.4 75.9 76.2 70.7 70.0 67.4

J Recall O ↑ 96.8 93.6 93.1 88.2 89.0 82.3 - 75.6 71.5 89.1 91.1 83.5 85.0 81.4

Decay D ↓ 6.4 14.9 8.9 12.1 14.4 12.4 - 26.4 -2.0 0.0 7.0 1.5 1.3 6.2

MeanM↑ 84.8 80.6 75.4 76.0 71.4 65.6 62.0 63.4 49.2 72.1 70.6 65.3 65.9 66.7

F Recall O ↑ 94.7 92.6 87.1 85.5 84.8 69.0 - 70.4 49.5 83.4 83.5 73.8 79.2 77.1

Decay D ↓ 8.6 15.0 9.0 10.4 14.0 14.4 - 27.2 -1.1 1.3 7.9 1.8 2.5 5.1

G MeanM↑ 84.7 80.2 77.6 76.1 73.5 67.8 66.0 65.7 53.8 74.0 73.4 68.0 67.9 67.1

Table 1. Quantitative comparison of the unsupervised and semi-supervised models on DAVIS validation set. The up-arrow ↑ means larger

is better while the down-arrow ↓ means smaller is better.

ing the following balanced binary cross-entropy loss [35]:

O(W ) =− β
∑

j∈Y+

log Cs(Yj = 1|F̂ ,D,W )

− (1− β)
∑

j∈Y
−

log Cs(Yj = 0|F̂ ,D,W ),
(6)

where Y is the ground truth and divided into the back-

ground label map Y− and the foreground label map Y+.

β = |Y−|/(|Y−|+ |Y+|). |Y−| and |Y+| denote the number

of labels in Y− and Y+ respectively. W denotes the pa-

rameters of the whole network, including Wf , Wb and the

parameters of the segmentation network in Fig. 2.

3.5. Implementation Details

We focus on exploiting motion cues to improve VOS per-

formance. Therefore, extensive engineering on the segmen-

tation architecture is out of the scope of this work. We use

the well established VGG16 [27] based DeepLab architec-

ture [4] as the backbone segmentation network without any

further modification. Each segmentation branch adopts the

structure of atrous spatial pyramid pooling [4]. The CNN-

based FlowNet21 [9] is employed to online estimate the op-

tical flow. The sampling neighborhood of a given frame is

set to 3 frames. For each triple input, the conv5 3 feature

is extracted and aligned by Eqn. (1).

Before training on video sequences, we pretrain the seg-

mentation network with static images from PASCAL VOC

2012 dataset [7]. At the stage of offline training on video

sequences, we first fine-tune the pretrained model with the

feature alignment. The wt−m, wt and wt+k in Eqn. (1) are

initialized as 0, 1 and 0. The segmentation network with

Fg/Bg branches are trained together on the training set of

DAVIS, by SGD with learning rate 5×10−8 for 20K itera-

tions. Then the motion prior estimated by Eqn. (4) is used

to train the final offline model. The learning rate is set to

1×10−8 for 10K iterations.

1To balance the accuracy and running speed, we adopt the thin version

of FlowNet2, i.e., FlowNet2-css-ft-sd, for the estimation of optical flow.

When performing inference on a specific video se-

quence, the model is online fine-tuned on the first frame,

from the offline pretrained model, and directly applied to

subsequent frames. Considering randomness of selecting

adjacent frames, we repeat inference for a specific tar-

get frame multiple times, with equal neighborhood range.

Then we average the predictions into the final segmenta-

tion for the target frame. The segmentation results are post-

processed by a fully-connected CRF [17].

Our proposed MoNet is implemented by the publicly

available Caffe library [14]. All the experiments and anal-

yses are conducted on a Nvidia Titan X GPU and a 6 core

Intel i7-4930K CPU 3.4GHz.

4. Experiments

4.1. Experimental Setup

Datasets The proposed MoNet is evaluated on three video

object segmentation datasets, i.e., DAVIS [21], Youtube-

Objects [10, 23] and SegTrack-v2 [18]. DAVIS consists of

50 high-resolution video sequences with 3,455 frames in

total. Each video is annotated with multiple attributes such

as deformation, fast motion and scale variation, for com-

prehensively analyzing model performance. In Youtube-

Objects, there are 126 video sequences with more than

20,000 frames in total, divided into 10 common object cate-

gories. SegTrack-v2 is a relatively small dataset composed

of 14 video sequences.

Evaluation Metrics We adopt two conventional evalua-

tion metrics from [21], region similarity J and contour ac-

curacy F . The region similarity J is calculated by the

intersection-over-union between the predicted segmentation

and the ground truth. The contour accuracy F is defined as

the F-measure between the contour points of the predicted

segmentation and the ground truth. Each metric is quan-

tized by three different statistics: mean M, recall R and

decay D as described in [21]. In addition, an overall mea-

sure (global mean G) of the performance is defined as the

average ofMJ andMF .
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Category MoNet OSVOS MSK OFL JFS BVS

Aeroplane 89.2 88.2 86.0 89.9 89.0 86.8

Bird 88.8 85.7 85.6 84.2 81.6 80.9

Boat 81.1 77.5 78.8 74.0 74.2 65.1

Car 81.9 79.6 78.8 80.9 70.9 68.7

Cat 76.7 70.8 70.1 68.3 67.7 55.9

Cow 82.0 77.8 77.7 79.8 79.1 69.9

Dog 81.1 81.3 79.2 76.6 70.3 68.5

Horse 74.4 72.8 71.7 72.6 67.8 58.9

Motorbike 77.2 73.5 65.6 73.7 61.5 60.5

Train 85.2 75.7 83.5 76.3 78.2 65.2

Mean J ↑ 81.7 78.3 77.7 77.6 74.0 68.0

Table 2. Quantitative comparison of per-category region similarity

J on Youtube-Objects dataset.

Metric MoNet MSK OFL OSVOS BVS

Mean J ↑ 72.4 70.3 67.5 65.4 58.4

Table 3. Quantitative comparison of region similarity J on

SegTrack-v2 dataset.

Baselines We compare the proposed MoNet with 6 lat-

est and state-of-the-art CNN-based models: OSVOS [3],

MSK [15], SFL [5], CTN [13], VPN [12] and PLM [26],

and 4 non-CNN-based methods: OFL [31], FCP [22],

JFS [25] and BVS [19]. We also compare with unsupervised

models: LVO [30], ARP [16], FSEG [11] and MPNet [29].

4.2. Comparison with State­of­the­arts

DAVIS Tab. 1 shows the results of compared methods on

the DAVIS validation set [21]. Overall, the proposed MoNet

performs the best. In terms ofMG ,MJ andMF , the pro-

posed MoNet improves the state-of-the-art OSVOS [3] by

5.6%, 6.1% and 5.2% respectively. MSK [15] and SFL [5]

adopt motion cues as extra inputs and complementary fea-

tures respectively. MoNet outperforms them by 9.3% and

11.3% respectively w.r.t. MG . This proves MoNet can

better exploit motion cues. Very recently, OnAVOS [32]

improves the OSVOS using online adaption and achieves

85.5% w.r.t. MG . However, OnAVOS uses a much better

segmentation architecture [34] than the VGG16-based net-

work [4] used in our method. The baseline performance of

OnAVOS is 80.3% onMG . In contrast, our baseline model

performance is only 75.7%, as shown in Tab. 6. Our pro-

posed MoNet improves its baseline by a margin of 11.9%,

which is more significant than OnAVOS over its baseline

(6.5%). As extensive network architecture engineering is

out of the scope of this work, we will update MoNet with a

stronger baseline in the future.

Youtube-Objects and SegTrack-v2 Tab. 2 reports per-

category mean J on the Youtube-Objects dataset [10, 23].

The proposed MoNet achieves the best performance in 8 out
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Figure 4. Attribute-based analysis on DAVIS validation set. We

compare the proposed MoNet with 4 top-performing CNN-based

methods, i.e., OSVOS, MSK, SFL and CTN. For each method, the

dark color bin quantizes the mean J over all sequences with speci-

fied attribute labeled in x-axis, and the light color bin illustrates the

performance gain on video sequences without the specified chal-

lenging attribute. Best viewed in color.

of 10 categories, except for Aeroplane and Dog. In particu-

lar, MoNet outperforms the state-of-the-art OSVOS [3] and

MSK [15] by a margin as large as 4.3% and 5.2% respec-

tively for mean J . On the SegTrack-v2 dataset [18], MoNet

gives the best mean J of 72.4%, as shown in Tab. 3. Over-

all, the proposed MoNet provides new state-of-the-art for

CNN-based VOS in terms of region similarity J , contour

accuracy F and global mean G consistently.

Attribute-based Performance Analysis To more com-

prehensively analyze model performance under difference

video challenges, we perform attribute-based analysis on

the DAVIS validation set. Each video is annotated with one

or more attributes and each attribute features a specific chal-

lenging condition. Based on the results in Tab. 1, we select

4 top-performing semi-supervised approaches for compar-

ison, i.e., OSVOS [3], MSK [15], SFL [5] and CTN [13].

The results are plotted in Fig. 4. For each approach, the

dark color bin corresponds to the meanJ over all sequences

with the specific attribute (e.g., Shape Complexity), and

the light color bin quantizes the performance gain on the

video sequences without that attribute. Fig. 4 presents per-

formance with the most influential 8 attributes, including

Heterogeneus Object, Shape Complexity, Motion Blur, etc.

The proposed MoNet has the best performance (79.4%) on

the video sequences with these 8 attributes, while the mean

J of OSVOS and MSK is only 74.5% and 74.1% respec-

tively. MoNet presents the most stable performance—when

discarding these attributes, it has the smallest performance

difference in mean J . Namely, MoNet is more robust to

various video challenges.

Running Time Tab. 4 compares the per-frame running

time of different CNN-based models. For each model, we
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Method MoNet OSVOS MSK SFL CTN

Per-frame (s) 14.1 ∼5.0 12.0 7.9 30.0

Mean G ↑ 84.7 80.2 77.5 76.1 73.5

Table 4. Average per-frame running time of fine-tuning and infer-

ring a DAVIS sequence. Pre- and post-process are considered.

NBHD Variant Mean J ↑ Mean F ↑ Mean G ↑

Present Baseline 75.3 76.2 75.7

Only

Past

+ FA 77.9 +2.6 82.1 +5.9 79.9 +4.2

+ FA&MP 81.5 +3.6 84.9 +2.8 83.2 +3.3

+ CRF [17] 84.3 +2.8 84.6 -0.3 84.5 +1.3

Past &
Future

+ FA 78.2 +2.9 82.3 +6.1 80.2 +4.5

+ FA&MP 82.0 +3.8 85.5 +3.2 83.8 +3.6

+ CRF [17] 84.7 +2.7 84.8 -0.7 84.7 +0.9

Table 5. Ablation study on DAVIS validation set. NBHD denotes

the temporal neighborhood of a target frame. Present, Past, Future

denotes the NBHD from target frame, preceding frame and subse-

quent frame respectively. FA denotes the feature alignment while

MP denotes the motion prior.

report the average time of fine-tuning and inferring on a

DAVIS sequence with the resolution of 480 × 854 pixels.

The proposed MoNet has similar running time as the MSK

while providing better performance than the MSK. The DT

layer is conducted on the 1/4 down-sampled optical flow

map and takes about 0.1 seconds to estimate the motion

prior. It totally takes about 0.6 seconds for MoNet to in-

fer a 480× 854 frame.

4.3. Ablation Study

Tab. 5 summarizes the contributions of feature align-

ment, motion prior and fully-connected CRF [17] to the

performance of MoNet. The baseline in Tab. 5 is the

DeepLab [4] network trained on the PASCAL VOC 2012

dataset [7] and the DAVIS [21]. The baseline only uses

the present frame as input, and the predictions of its fore-

ground and background branches are averaged to generate

the segmentation result. We also evaluate two variants of

MoNet. One only samples the adjacent frames from pre-

ceding ones (Only Past), and the other samples from both

preceding and subsequent frames (Past & Future). For both

variants, +FA denotes training the baseline with the com-

ponent of aligning features from sampled adjacent frames,

which brings 4.0% improvement over the baseline in terms

ofMG . +FA&MP means employing the DT-based motion

prior to refine the results of +FA, which brings another 3.0%
enhancement. Sampling from subsequent frames only gives

0.6% improvement, which indicates the strong generaliza-

tion ability of MoNet to exploit both historical and subse-

quent motion. The CRF post-process [17] increases the per-

formance by another 1% in terms ofMG .
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Figure 5. Attribute-based component analysis on the DAVIS vali-

dation set. We compare the mean J performance of different com-

ponents, i.e., feature alignment (+FA), motion prior (+FA&MP)

and fully-connected CRF (+CRF), under various video attributes.

Attribute-based Component Analysis To understand

which component in Tab. 5 (Past & Future variant) is helpful

to providing robustness to various video challenging con-

ditions, we evaluate and summarize attribute-based perfor-

mance of these components in Fig. 5. We present the top

8 attributes which present greatest performance improve-

ment over the baseline. The component +FA is most ben-

eficial for addressing attributes including Out-of-view, Fast

Motion, Heterogeneus Object, Appearance Change and De-

formation. We attribute this benefit of feature alignment

to incorporating valuable temporal information. The mo-

tion prior eliminates motion-inconsistent regions and offers

great robustness to the long temporal range variation, thus

it helps a lot in addressing the attributes of Scale Variation

and Dynamic Background.

Feature Alignment Tab. 6 reports ablation studies on

effects of aligning different features (i.e., conv4 3 and

conv5 3) and effects of varying temporal neighborhood

ranges (denoted as #NBHD). From the results for the sec-

ond and third variants in Tab. 6, one can observe the align-

ing feature conv5 3 is better than conv4 3. Without re-

finement using motion prior, #NBHD=5 with the feature

conv5 3 performs the best. Increasing #NBHD (to 10

frames) leads to performance drop. The fourth variant di-

rectly combines the triple features without motion align-

ment, which decreases the performance significantly, prov-

ing motion-based feature alignment is effective and neces-

sary. The quality of the motion prior extracted from the

optical flow depends on #NBHD. Therefore, from the last

variant in Tab. 6, we observe that using motion prior im-

proves the performance most when using 3 frames. It is un-

derstandable the motion prior is more sensitive to the sam-

pling range than feature alignment, as feature alignment can

be stabilized by the weights in Eqn. (1) while motion prior

is directly estimated from the optical flow.
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Variant Baseline conv4 3 with FA conv5 3 with FA conv5 3 w/o FA conv5 3 with FA&MP

#NBHD 0 1 3 5 10 1 3 5 10 1 3 5 10 1 3 5 10

Mean J ↑ 75.3 77.6 77.1 77.2 76.4 77.2 78.2 79.2 77.5 76.2 76.6 76.6 74.8 81.6 82.0 81.9 79.7

Mean F ↑ 76.2 79.9 81.8 82.0 80.1 80.3 82.3 82.7 81.6 79.4 79.6 78.3 77.4 83.8 85.5 84.8 82.0

Mean G ↑ 75.7 78.7 79.5 79.6 78.3 79.0 80.2 80.9 79.6 77.8 78.1 77.4 76.1 82.7 83.8 83.4 80.9

Table 6. Ablation study on the feature alignment. #NBHD denotes the range of temporal neighborhood. FA denotes the feature alignment

while MP denotes the motion prior. All experiments are conducted on DAVIS validation set.

Method Flow Used Mean J ↑

MPNet LDOF [1] 52.4

DT Layer LDOF [1] 50.8

MPNet EpicFlow [24] 56.9

DT Layer EpicFlow [24] 55.4

MPNet + FA (#NBHD=1) FlowNet2 [9] 81.8

DT Layer + FA (#NBHD=1) FlowNet2 [9] 81.6

Table 7. Comparison of the proposed DT Layer with the MP-

Net [29] on DAVIS validation set.

Distance Transform Layer To investigate effectiveness

of the proposed DT layer in MoNet, we compare it with

the CNN-based MPNet [21], which is trained on the syn-

thetic videos with ground truth optical flow and applied on

the real-world videos with estimated optical flow. The first

four rows of Tab. 7 report their results on the DAVIS vali-

dation set with different optical flow computation methods,

i.e., LDOF [1] and EpicFlow [24]. The proposed DT layer

gives comparable performance as the MPNet although the

DT layer is unsupervised and much simpler. Furthermore,

we adopt the MPNet to estimate the motion prior for the

proposed MoNet. Due to the limit of memory capacity,

we cannot online estimate the motion prior with the MP-

Net. Thus we set the temporal neighborhood to be 1 frame

(#NBHD=1) and offline estimate the motion prior by MP-

Net. As shown in the last two rows of Tab. 7, the motion

prior by DT layer has similar performance as the one by

MPNet, which indicates the DT layer works sufficiently

well for MoNet. Besides, the DT layer can be easily ex-

tended to larger temporal neighborhood.

4.4. Qualitative Results

Fig. 6 shows example segmentation results of the pro-

posed MoNet on DAVIS [21], Youtube-Objects [10, 23] and

SegTrack-v2 [18]. In the figure, the first column shows the

first frame of the video sequence along with segmentation

annotation (green masks). The other columns show the seg-

mentation results (red masks) by MoNet. The example se-

quences feature typical video challenges, e.g., object defor-

mation, fast motion, scale variation and appearance change.

The proposed MoNet can cope with these challenges well

and produce robust and accurate segmentation results.

Figure 6. Qualitative results of the proposed MoNet on the DAVIS,

Youtube-Objects and SegTrack-v2. The first column is the first

frame of a specific sequence with its corresponding annotation

(green masks). The other columns are the segmentation results

(red masks) by our MoNet. Best viewed in color with 3× zoom.

5. Conclusion

This paper presents a novel trainable network MoNet to

effectively utilize motion cues to reinforce video frame rep-

resentation and refine segmentation results. Extensive ex-

periments on various datasets demonstrate that these two

exploitation strategies of motion cues are effective and of-

fer superior performance over existing motion utilization,

e.g., taking motion cues as extra input [15] or supportive

features [5, 11]. A distance transform layer is adopted to

filter out the motion-inconsistent instances/regions, which

has not been considered in existing works. We also vali-

date the effectiveness of the DT layer with comparison to a

CNN-based moving object segmentation method [29].
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