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Abstract

Taking a photo outside, can we predict the immediate

future, e.g., how would the cloud move in the sky? We

address this problem by presenting a generative adversar-

ial network (GAN) based two-stage approach to generat-

ing realistic time-lapse videos of high resolution. Given the

first frame, our model learns to generate long-term future

frames. The first stage generates videos of realistic con-

tents for each frame. The second stage refines the generated

video from the first stage by enforcing it to be closer to real

videos with regard to motion dynamics. To further encour-

age vivid motion in the final generated video, Gram matrix

is employed to model the motion more precisely. We build

a large scale time-lapse dataset, and test our approach on

this new dataset. Using our model, we are able to generate

realistic videos of up to 128× 128 resolution for 32 frames.

Quantitative and qualitative experiment results demonstrate

the superiority of our model over the state-of-the-art mod-

els.

1. Introduction

Humans can often estimate fairly well what will happen

in the immediate future given the current scene. However,

for vision systems, predicting the future states is still a chal-

lenging task. The problem of future prediction or video syn-

thesis has drawn more and more attention in recent years

since it is critical for various kinds of applications, such

as action recognition [22], video understanding [31], and

video captioning [35]. The goal of video prediction in this

paper is to generate realistic, long-term, and high-quality fu-

ture frames given one starting frame. Achieving such a goal

is difficult, as it is challenging to model the multi-modality

and uncertainty in generating both the content and motion

in future frames.

In terms of content generation, the main problem is to
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with Tencent AI Lab.

Figure 1. From top to bottom: example frames of generated videos

by VGAN [28], RNN-GAN [37], the first stage of our model, and

the second stage of our model, respectively. The contents gener-

ated by our model (the third and fourth rows) are visually more

realistic. The left column is the input starting frame.

define what to learn. Generating future on the basis of only

one static image encounters inherent uncertainty of the fu-

ture, which has been illustrated in [29]. Since there can be

multiple possibilities for reasonable future scenes following

the first frame, the objective function is difficult to define.

Generating future frames by simply learning to reconstruct

the real video can lead to unrealistic results [28, 16]. Sev-

eral models including [27] and [28] are proposed to address

this problem based on generative adversarial networks [5].

For example, 3D convolution is incorporated in an adver-

sarial network to model the transformation from an image

to a video in [28]. Their model produces plausible futures

given the first frame. However, the generated video tends to

be blurry and lose content details, which degrades the real-

ity of generated videos. A possible cause is that the vanilla

encoder-decoder structure in the generator fails to preserve

all the indispensable details of the content.

Regarding motion transformation, the main challenge is

to drive the given frame to transform realistically over time.
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Some prior work has investigated this problem. Zhou and

Berg [37] use an RNN to model the temporal transforma-

tions. They are able to generate a few types of motion pat-

terns, but not realistic enough. The reason may be that, each

future frame is based on the state of previous frames, so the

error accumulates and the motion distorts over time. The in-

formation loss and error accumulation during the sequence

generation hinder the success of future prediction.

The performance of the prior models indicates that it is

nontrivial to generate videos with both realistic contents in

each frame and vivid motion dynamics across frames with a

single model at the same time. One reason may be that the

representation capacity of a single model is limited in satis-

fying two objectives that may contradict each other. To this

end, we divide the modeling of video generation into con-

tent and motion modeling, and propose a Multi-stage Dy-

namic Generative Adversarial Network (MD-GAN) model

to produce realistic future videos. There are two stages

in our approach. The first stage aims at generating future

frames with content details as realistic as possible given an

input frame. The second stage specifically deals with mo-

tion modeling, i.e., to make the movement of objects be-

tween adjacent frames more vivid, while keeping the con-

tent realistic.

To be more specific, we develop a generative adversar-

ial network called Base-Net to generate contents in the first

stage. Both the generator and the discriminator are com-

posed of 3D convolutions and deconvolutions to model tem-

poral and spatial patterns. The adversarial loss of this stage

encourages the generator to produce videos of similar dis-

tributions to real ones. In order to preserve more content

details, we use a 3D U-net [21] like architecture in the gen-

erator instead of the vanilla encoder-decoder structure. Skip

connections [6] are used to link the corresponding feature

maps in the encoder and decoder so that the decoder can

reuse features in the encoder, thus reducing the information

loss. In this way, the model can generate better content de-

tails in each future frame, which are visually more pleasing

than those produced by the vanilla encoder-decoder archi-

tecture such as the model in [28].

The Base-Net can generate frames with concrete details,

but may not be capable of modeling the motion transforma-

tions across frames. To generate future frames with vivid

motion, the second stage MD-GAN takes the output of the

first stage as input, and refines the temporal transformation

with another generative adversarial network while preserv-

ing the realistic content details, which we call Refine-Net.

We propose an adversarial ranking loss to train this net-

work so as to encourage the generated video to be closer

to the real one while being further away from the input

video (from stage I) regarding motion. To this end, we in-

troduce the Gram matrix [4] to model the dynamic trans-

formations among consecutive frames. We present a few

example frames generated by the conventional methods and

our method in Fig. 1. The image frames generated by our

model are sharper than the state-of-the-art and are visually

almost as realistic as the real ones.

We build a large scale time-lapse video dataset called

Sky Scene to evaluate the models for future prediction. Our

dataset includes daytime, nightfall, starry sky, and aurora

scenes. MD-GAN is trained on this dataset and predicts fu-

ture frames given a static image of sky scene. We are able

to produce 128 × 128 realistic videos, whose resolution is

much higher than that of the state-of-the-art models. Un-

like some prior work which generates merely one frame at a

time, our model generates 32 future frames by a single pass,

further preventing error accumulation and information loss.

Our key contributions are as follows:

1. We build a large scale time-lapse video dataset, which

contains high-resolution dynamic videos of sky scenes.

2. We propose a Multi-stage Dynamic Generative Ad-

versarial Network (MD-GAN), which can effectively cap-

ture the spatial and temporal transformations, thus generat-

ing realistic time-lapse future frames up to 128× 128 reso-

lution given only one starting frame.

3. We introduce the Gram matrix for motion modeling

and propose an adversarial ranking loss to mimic motions of

real-world videos, which refines motion dynamics of pre-

liminary outputs in the first stage and forces the model to

produce more realistic and higher-quality future frames.

2. Related Work

Generative Adversarial Networks. A generative adver-

sarial network (GAN)[5, 1, 32, 30] is composed of a gen-

erator and a discriminator. The generator tries to fool the

discriminator by producing samples similar to real ones,

while the discriminator is trained to distinguish the gen-

erated samples from the real ones. GANs have been suc-

cessfully applied to image generation. In the seminal paper

[5], models trained on the MNIST dataset and the Toronto

Face Database (TFD), respectively, generate images of dig-

its and faces with high likelihood. Relying only on random

noise, GAN cannot control the mode of the generated sam-

ples, thus conditional GAN [17] is proposed. Images of

digits conditioned on class labels and captions conditioned

on image features are generated. Many subsequent works

are variants of conditional GAN, including image to image

translation [9, 38], text to image translation [20] and super-

resolution [13]. Our model is also a GAN conditioned on a

starting image to generate a video.

Inspired by the coarse-to-fine strategy, multi-stack meth-

ods such as StackGAN [36], LAPGAN [2] have been pro-

posed to first generate coarse images and then refine them

to finer images. Our model also employs this strategy to

stack GANs in two stages. However, instead of refining the

pixel-level details in each frame, the second stage focuses

2365



on improving motion dynamics across frames.

Video Generation. Based on conditional VAE [12], Xue

et al. [34] propose a cross convolutional network to model

layered motion, which applies learned kernels to image fea-

tures encoded in a multi-scale image encoder. The out-

put difference image is added to the current frame to pro-

duce the next frame. [16] is one of the earliest work that

adopts generative adversarial networks to produce future

frames. It uses the adversarial loss and an image gradient

difference loss instead of the standard Mean Square Error

to avoid blurry results. In [28], a two-stream CNN, one

for foreground and the other one for background, is pro-

posed for video generation. Combining the dynamic fore-

ground stream and the static background stream, the gener-

ated video looks real. In the follow-up work [29], Vondrick

and Torralba formulate the future prediction task as trans-

forming pixels in the past to future. Based on large scale

unlabeled video data, a CNN model is trained with adver-

sarial learning. Content and motion are decomposed and

encoded separately by multi-scale residual blocks, and then

combined and decoded to generate plausible videos on both

the KTH and the Weizmann datasets [26]. A similar idea is

presented in [25]. To generate long-term future frames, Vil-

legas et al. [27] estimate high-level structure (human body

pose), and learn a LSTM and an analogy-based encoder-

decoder CNN to generate future frames based on the current

frame and the estimated high-level structure.

The closest work to ours is [37], which also generates

time-lapse videos. However, there are important differences

between their work and ours. First, our method is based

on 3D convolution while a recurrent neural network is em-

ployed in [37] to recursively generate future frames, which

is prone to error accumulation. Second, as modeling motion

is indispensable for video generation, we explicitly model

motion by introducing the Gram matrix. Finally, we gener-

ate high-resolution (128 × 128) videos of dynamic scenes,

while the generated videos in [37] are simple (usually with

clean background) and of resolution 64×64.

3. Our Approach

3.1. Overview

The proposed MD-GAN takes a single RGB image as

input and attempts to predict future frames that are as re-

alistic as possible. This task is accomplished in two stages

in a coarse-to-fine manner: 1) Content generation by Base-

Net in Stage I. Given an input image x, the model generates

a video Y1 of T frames (including the starting frame, i.e.,

the input image). The Base-Net ensures that each produced

frame in Y1 looks like a real natural image. Besides, Y1 also

serves as a coarse estimation of the ground-truth Y regard-

ing motion. 2) Motion generation by Refine-Net in Stage II.

The Refine-Net makes efforts to refine Y1 with vivid motion

dynamics, and produces a more vivid video Y2 as the final

prediction. The discriminator D2 of the Refine-Net takes

three inputs, the output video Y1 of the Base-Net, the fake

video Y2 produced by the generator of the Refine-Net and

the real video Y. We define an adversarial ranking loss to

encourage the final video Y2 to be closer to the real video

and further away from video Y1. Note that on each stage,

we follow the setting in Pix2Pix [9] and do not incorporate

any random noise. The overall architecture of our model is

plotted in Fig. 2.

3.2. Stage I: Base­Net

As shown in Fig. 2, the Base-Net is a generative ad-

versarial network composed of a generator G1 and a dis-

criminator D1. Given an image x ∈ R
3×H×W as a start-

ing frame, we duplicate it T times, obtaining a static video

X ∈ R
3×T×H×W 1. By forwarding X through layers

of 3D convolutions and 3D deconvolutions, the generator

G1 outputs a video Y1 ∈ R
3×T×H×W of T frames, i.e.,

Y1 = G1(X).
For generator G1, we adopt an encoder-decoder archi-

tecture, which is also employed in [19] and [28]. How-

ever, such a vanilla encoder-decoder architecture encoun-

ters problems in generating decent results as the features

from the encoder may not be fully exploited. Therefore, we

utilize a 3D U-net like architecture [21] instead so that fea-

tures in the encoder can be fully made use of to generate

Y1. This U-net architecture is implemented by introducing

skip connections between the feature maps of the encoder

and the decoder, as shown in Fig. 2. The skip connections

build information highways between the features in the bot-

tom and top layers, so that features can be reused. In this

way, the generated video is more likely to contain rich con-

tent details. This may seem like a simple modification, yet

it plays a key role in improving the quality of videos.

The discriminator D1 then takes video Y1 and the real

video Y as input and tries to distinguish them. x is the first

frame of Y. D1 shares the same architecture as the encoder

part of G1, except that the final layer is a single node with a

sigmoid activation function.

To train our GAN-based model, the adversarial loss of

the Base-Net is defined as:

Ladv = min
G1

max
D1

E [logD1 (Y)] +

E [log (1−D1 (G1 (X)))] .
(1)

Prior work based on conditional GAN discovers that

combining the adversarial loss with an L1 or L2 loss [9]

in the pixel space will benefit the performance. Hence, we

define a content loss function as a complement to the adver-

sarial loss, to further ensure that the content of the generated

1In the generator, we can also use a 2D CNN to encode an image, but

we duplicate the input image to a video to better fit our 3D U-net like

architecture of G1.

2366



B ase-Net: Discriminator D1

Real/Fake?

B ase-Net: Generator G1
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128 x 128 (1)

Repeated V ideo
128x128 (32)

Generated V ideo
128x128 (32)

Real V ideo
128x128 (32)

B ase-Net Result
128x128 (32)

Refine-Net: Generator G2

Fewer Skip C onnections B ase-Net Result
128x128 (32)

Refine-Net Result
128x128 (32)

Real V ideo
128x128 (32)

Discriminator D2

Discriminator D2

Discriminator D2

Ranking

Refine-Net: Ranking Loss

Gram matrix

Gram matrix

Gram matrix

Figure 2. The overall architecture of our MD-GAN model. The input image is first duplicated to 32 frames as input to generator G1 of

the Base-Net, which produces a video Y1. Discriminator D1 then distinguishes the real video Y from Y1. Following the Base-Net, the

Refine-Net takes the generated video of G1 as the input and produces a more realistic video Y2. Discriminator D2 is updated with an

adversarial ranking loss to push Y2 (the result of Refine-Net) closer to real videos.

video follows similar patterns to the content of real-world

videos. As pointed out in [9], L1 distance usually results in

sharper outputs than those of L2 distance. Recently, instead

of measuring the similarity of images in the pixel space,

perceptual loss [10] is introduced in some GAN-based ap-

proaches to model the distance between high-level feature

representations. These features are extracted from a well-

trained CNN model and previous experiments suggest they

capture semantics of visual contents [13]. Although the

perceptual loss performs well in combination with GANs

[13, 14] on some tasks, it typically requires features to be

extracted from a pretrained deep neural network, which is

both time and space consuming. In addition, we observe

in experiments that directly combining the adversarial loss

and an L1 loss that minimizes the distance between the gen-

erated video and the ground-truth video in the pixel space

leads to satisfactory performance. Thus, we define our con-

tent loss as

Lcon (G1) = ‖Y −G1 (X)‖1 . (2)

The final objective of our Base-Net in Stage I is

Lstage1 = Ladv + Lcon . (3)

The adversarial training allows the Base-Net to produce

videos with realistic content details. However, as the learn-

ing capacity of GAN is limited considering the uncertainty

of the future, one single GAN model may not be able to

capture the correct motion patterns in the real-world videos.

As a consequence, the motion dynamics of the generated

videos may not be realistic enough. To tackle this problem,

we further process the output of Stage I by another GAN

model called Refine-Net in Stage II, to compensate it for

vivid motion dynamics, and generate more realistic videos.

3.3. Stage II: Refine­Net

Inputting video Y1 from Stage I, our Refine-Net im-

proves the quality of the generated video Y2 regarding mo-

tion to fool human eyes in telling which one is real against

the ground-truth video Y.

Generator G2 of the Refine-Net is similar to G1 in the

Base-Net. When training the model, we find it difficult to

generate vivid motion while retaining realistic content de-

tails using skip connections. In other words, skip connec-

tions mainly contribute to content generation, but may not

be helpful for motion generation. Thus, we remove a few

skip connections from G2, as illustrated in Fig. 2. The dis-

criminator D2 of the Refine-Net is also a CNN with 3D con-

volutions and shares the same structure as D1 in the Base-

Net.

We adopt the adversarial training to update G2 and D2.

However, naively employing the vanilla adversarial loss can

lead to an identity mapping since the input Y1 of G2 is an

optimal result of i.e. G1, which has a very similar structure

as G2. As long as G2 learns an identity mapping, the output

Y2 would not be improved. To force the network to learn ef-

fective temporal transformations, we propose an adversarial

ranking loss to drive the network to generate videos which
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are closer to real-world videos while further away from the

input video (Y1 from Stage I). The ranking loss is defined as

Lrank (Y1,Y2,Y), which will be detailed later, with regard

to the input Y1, output Y2 and the ground-truth video Y. To

construct such a ranking loss, we should take the advantage

of effective features that can well represent the dynamics

across frames. Based on such feature representations, dis-

tances between videos can be conveniently calculated.

We employ the Gram matrix [4] as the motion feature

representation to assist G2 to learn dynamics across video

frames. Given an input video, we first extract features of

the video with discriminator D2. Then the Gram matrix is

calculated across the frames using these features such that

it incorporates rich temporal information.

Specifically, given an input video Y, suppose that the

output of the l-th convolutional layer in D2 is Hl
Y ∈

R
N×Cl×Tl×Hl×Wl , where (N,Cl, Tl, Hl,Wl) are the

batch size, number of filters, length of the time dimension,

height and width of the feature maps, respectively. We re-

shape Hl
Y to Ĥ

l

Y ∈ R
N×Ml×Sl , where Ml = Cl × Tl and

Sl = Hl ×Wl. Then we calculate the Gram matrix g(Y; l)
of the n-th layer as follows:

g (Y; l) =
1

Ml × Sl

∑N

n=1
Ĥ

l,n

Y

(

Ĥ
l,n

Y

)T

, (4)

where Ĥ
l,n

Y is the n-th sample of Ĥ
l

Y. g (Y; l) calculates

the covariance matrix between the intermediate features of

discriminator D2. Since the calculation incorporates infor-

mation from different time steps, it can encode motion in-

formation of the given video Y.

The Gram matrix has been successfully applied to syn-

thesizing dynamic textures in previous works [3, 24], but

our work differs from them in several aspects. First, we use

the Gram matrix for video prediction, while the prior works

use it for dynamic texture synthesis. Second, we directly

calculate the Gram matrix of videos based on the features of

discriminator D2, which is updated in each iteration during

training. In contrast, the prior works typically calculate it

with a pre-trained VGG network [23], which is fixed during

training. The motivation of such a different choice is that,

as discriminator D2 is closely related to the measurement

of motion quality, it is reasonable to directly use features in

D2.

To make full use of the video representations, we adopt

a variant of the contrastive loss introduced in [7] and [15]

to compute the distance between videos. Our adversarial

ranking loss with respect to features from the l-th layer is

defined as:

Lrank (Y1,Y2,Y; l)

= −log
e−‖g(Y2;l)−g(Y;l)‖

1

e−‖g(Y2;l)−g(Y;l)‖
1 + e−‖g(Y2;l)−g(Y1;l)‖1

.
(5)

We extract the features from multiple convolutional lay-

ers of the discriminator D2 for the input Y1, output Y2 and

ground-truth video Y, and calculate their Gram matrices,

respectively. The final adversarial ranking loss is:

Lrank (Y1,Y2,Y) =
∑

l

Lrank (Y1,Y2,Y; l) . (6)

Similar to the objective in Stage I, we also incorporate

the pixel-wise L1 distance to capture low-level details. The

overall objective for the Refine-Net is:

Lstage2 = Ladv + λ · Lrank + Lcon . (7)

As shown in Algorithm 1, the generator and discrimina-

tor are trained alternatively. When training generator G2

with discriminator D2 fixed, we try to minimize the adver-

sarial ranking loss Lrank (Y1,Y2,Y), such that the distance

between the generated Y2 and the ground-truth Y is encour-

aged to be smaller, while the distance between Y2 and Y1

is encouraged to be larger. By doing so, the distribution of

videos generated by the Refine-Net is forced to be similar

to that of the real ones, and the visual quality of videos from

Stage I can be improved.

When training discriminator D2 with generator G2 fixed,

on the contrary, we maximize the adversarial ranking loss

Lrank (Y1,Y2,Y). The insight behind is: if we update D2

by always expecting that the distance between Y2 and Y is

not small enough, then the generator G2 is encouraged to

produce Y2 that is closer to Y and further away from Y1 in

the next iteration. By optimizing the ranking loss in such an

adversarial manner, the Refine-Net is able to learn realistic

dynamic patterns and yield vivid videos.

4. Experiments

4.1. Dataset

We build a relatively large-scale dataset of time-lapse

videos from the Internet. We collect over 5,000 time-lapse

videos from Youtube and manually cut these videos into

short clips and select those containing dynamic sky scenes,

such as the cloudy sky with moving clouds, and the starry

sky with moving stars. Some of the clips may contain

scenes that are dark or contain effects of quick zoom-in and

zoom-out, thus are abandoned.

We split the set of selected video clips into a training set

and a testing set. Note that all the video clips belonging

to the same long video are in the same set to ensure that

the testing video clips are disjoint from those in the training

set. We then decompose the short video clips into frames,

and generate clips by sequentially combining continuous 32

frames as a clip. There are no overlap between two consecu-

tive clips. We collect 35,392 training video clips, and 2,815

testing video clips, each containing 32 frames. The original
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Algorithm 1 The training procedure of the Refine-Net.

Set learning rates ρd and ρg . Initialize the network parameters θd and θg .

for number of iterations do

Updating the discriminator D2:

Sample N real video clips (a batch) {Y(1), ... ,Y(N)} from the training set.

Obtain a batch of videos {Y
(1)
1 , ... ,Y

(N)
1 } generated by the Base-Net.

θd := θd + ρd∇θd

1

N

∑N

n=1

(

logD2(Y
(n)) + log

(

1−D2(G2(Y
(n)
1 ))

)

+ λ · Lrank

(

Y
(n)
1 , G2(Y

(n)
1 ),Y(n)

))

Updating the generator G2:

Sample N new real video clips {Y(1), ... ,Y(N)} from the training set.

Obtain a new batch of videos {Y
(1)
1 , ... ,Y

(N)
1 } generated by the Base-Net .

θg := θg − ρg∇θg

1

N

∑N

n=1

(

log
(

1−D2(G2(Y
(n)
1 ))

)

+ λ · Lrank

(

Y
(n)
1 , G2(Y

(n)
1 ),Y(n)

)

+ Lcon

)

end for

size of each frame is 3 × 640 × 360, and we resize it into

a square image of size 128 × 128. Before feeding the clips

to the model, we normalize the color values to [−1, 1]. No

other preprocessing is required.

Our dataset contains videos with both complex contents

and diverse motion patterns. There are various types of

scenes in the dataset, including daytime, nightfall, dawn,

starry night and aurora. They exhibit different kinds of

foregrounds (the sky), and colors. Unlike some previous

time-lapse video datasets, e.g. [37], which contain rela-

tively clean backgrounds, the backgrounds in our dataset

show high-level diversity across videos. The scenes may

contain trees, mountains, buildings and other static objects.

It is also challenging to learn the diverse dynamic patterns

within each type of scenes. The clouds in the blue sky may

be of any arbitrary shape and move in any direction. In the

starry night scene, the stars usually move fast along a curve

in the dark sky.

Our dataset can be used for various tasks on learning dy-

namic patterns, including unconditional video generation

[28], video prediction [27], video classification [11], and

dynamic texture synthesis [3]. In this paper, we use it for

video prediction.

4.2. Implementation Details

The Base-Net takes a 3 × 128 × 128 starting image and

generates 32 image frames of resolution 128×128, i.e., T =
32. The Refine-Net takes the output video of the Base-Net

as input, and generates a more realistic video with 128×128
resolution. The models in both stages are optimized with

stochastic gradient descent. We use Adam as the optimizer

with β = 0.5 and the momentum being 0.9. The learning

rate is 0.0002 and fixed throughout the training procedure.

We use Batch Normalization [8] followed by Leaky

ReLU [33] in all the 3D convolutional layers in both genera-

tors and discriminators, except for their first and last layers.

For the deconvolutional layers, we use ReLU [18] instead

of Leaky ReLU. We use Tanh as the activation function of

the output layer of the generators. The Gram matrices are

calculated using the features of the first and third convo-

lutional layers (after the ReLU layer) of discriminator D2.

The weight of the adversarial ranking loss is set to 1 in all

experiments, i.e., λ = 1. The detailed configurations of G1

are given in Table 1. In G2, we remove the skip connections

between “conv1” and “deconv6”, “conv2” and “deconv5”.

We use the identity mapping as the skip connection [6].

4.3. Comparison with Existing Methods

We perform quantitative comparison between our model

and the models presented in [28] and [37]. For notation con-

venience, we name these two models as VGAN [28] and

RNN-GAN [37], respectively. For a fair comparison, we

reproduce the results of their models exactly according to

their papers and reference codes, except some adaption to

match the same experimental setting as ours. The adaption

includes that, all the methods produce 32 frames as the out-

put. Note that, both VGAN and RNN-GAN generate videos

of resolution 64 × 64, so we resize the videos produced by

our model to resolution 64× 64 for fairness.

Fig. 1 shows exemplar results by each method. The

video frames generated by VGAN (the first row) and RNN-

GAN (the second row) tend to be blurry, while our Base-

Net (the third row) and Refine-Net (the fourth row) produce

samples that are much more realistic, indicating that skip

connections and the 3D U-net like architecture greatly ben-

efit the content generation.

In order to perform a more direct comparison for each

model on both content and motion generation, we compare

them in pairs. For each two models, we randomly select 100

clips from the testing set and take their first frames as the in-

put. Then we produce the future prediction as a video of 32

frames by the two models. We conduct 100 times of opinion

tests from professional workers based on the outputs. Each

time we show a worker two videos generated from the two

models given the same input frame. The worker is required

to give opinion about which one is more realistic. The two
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Table 1. The architecture of the generators in both stages. The size of the input video is 3× 32× 128× 128.

Layers conv1 conv2 conv3 conv4 conv5 conv6 deconv1 deconv2 deconv3 deconv4 deconv5 deconv6

# Filters 32 64 128 256 512 512 512 256 128 64 32 3

Filter Size (3, 4, 4) (4, 4, 4) (4, 4, 4) (4, 4, 4) (4, 4, 4) (2, 4, 4) (4, 4, 4) (4, 4, 4) (4, 4, 4) (4, 4, 4) (4, 4, 4) (3, 4, 4)

Stride (1, 2, 2) (2, 2, 2) (2, 2, 2) (2, 2, 2) (2, 2, 2) (1, 1, 1) (1, 1, 1) (2, 2, 2) (2, 2, 2) (2, 2, 2) (2, 2, 2) (1, 2, 2)

Padding (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (0, 0, 0) (0, 0, 0) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)

Table 2. Quantitative comparison results of different models. We

show pairs of videos to a few workers, and ask them “which is

more realistic”. We count their evaluation results, which are de-

noted as Preference Opinion Score (POS). The value range of POS

can be [0, 100]. If the value is greater than 50 then it means that

the former performs better than the latter.

“Which is more realistic?” POS

Random Selection 50

Prefer Ours over VGAN 92

Prefer Ours over RNN-GAN 97

Prefer VGAN over Real 5

Prefer RNN-GAN over Real 1

Prefer Ours over Real 16

videos are shown in a random order to avoid the potential

issue that the worker tends to always prefer a video on the

left (or right) due to laziness. Five groups of comparison

are conducted in total. Apart from the comparisons between

ours and VGAN and RNN-GAN, respectively, we also con-

duct comparisons of ours, VGAN and RNN-GAN against

real videos to evaluate the performance of these models.

Table 2 shows the quantitative comparison results. Our

model outperforms VGAN [28] with regard to the Prefer-

ence Opinion Score (POS). Qualitatively, videos generated

by VGAN are usually not as sharp as ours. The following

reasons are suspected to contribute to the superiority of our

model. First, we adopt the U-net like structure instead of

a vanilla encoder-decoder structure in VGAN. The connec-

tions between the encoder and the decoder bring more pow-

erful representations, thus producing more concrete con-

tents. Second, the Refine-Net makes further efforts to learn

more vivid dynamic patterns. Our model also performs bet-

ter than RNN-GAN [37]. One reason may be that RNN-

GAN uses an RNN to sequentially generate image frames,

so their results are prone to error accumulation. Our model

employs 3D convolutions instead of RNN so that the state

of the next frame does not heavily depend on the state of

previous frames.

When comparing ours, VGAN and RNN-GAN with real

videos, our model consistently achieves better POS than

both VGAN and RNN-GAN, showing the superiority of our

multi-stage model. Some results of our model are as decent

as the real ones, or even perceived as more realistic than

the real ones, suggesting that our model is able to generate

realistic future scenes.

Table 3. Quantitative comparison results of Stage I versus Stage II.

The evaluation metric is the same as that in Table 2.
“Which is more realistic?” POS

Random Selection 50

Prefer Stage II to Stage I 70

Prefer Stage II to Real 16

Prefer Stage I to Real 8

4.4. Comparison between Base­Net and Refine­Net

Although the Base-Net can generate videos of decent

details and plausible motion, it fails to generate vivid dy-

namics. For instance, some of the results in the scene of

cloudy daytime fail to exhibit apparent cloud movements.

The Refine-Net makes attempts to compensate for the mo-

tion based on the result of Base-Net, while preserving the

concrete content details. In this part, we evaluate the per-

formance of Stage II versus Stage I in terms of both quanti-

tative and qualitative results.

Quantitative Results. Given an identical starting frame as

input, we generate two videos by the Base-Net in Stage I

and the Refine-Net in Stage II separately. The comparison

is carried out over 100 pairs of generated videos in a simi-

lar way to that in the previous section. Showing each pair

of two videos, we ask the workers which one is more real-

istic. To check how effective our model is, we also com-

pare the results of the Base-Net and Refine-Net with the

ground-truth videos. The results shown in Table 3 reveal

that the Refine-Net contributes significantly to the reality

of the generated videos. When comparing the Refine-Net

with the Base-Net, the advantage is about 40 (70 versus 30)

in terms of the POS. Not surprisingly, the Refine-Net gains

better POS than the Base-Net when comparing videos of

these two models with the ground-truth videos.

Qualitative Results. As is shown in Fig. 1, although our

Refine-Net mainly focuses on improving the motion qual-

ity, it still preserves fine content details which are visually

almost as realistic as the frames produced by Base-Net. In

addition to content comparison, we further compare the mo-

tion dynamics of the generated video by the two stages. We

show four video clips generated by the Base-Net and the

Refine-Net individually on the basis of the same starting

frame in Fig. 3. Motions are indicated by red circles in the

frames. Please note the differences between the next and

previous frames. Results in Fig. 3 indicate that although

the Base-Net can generate concrete object details, the con-
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Figure 3. The generated video frames by Stage I (left) and Stage II (right) given the same starting frame. We show exemplar frames 1,

8, 16, 24, and 32. Red circles are used to indicate the locations and areas where obvious movements take place between adjacent frames.

Larger and more circles are observed in the frames of Stage II, indicating that there are more vivid motions generated by the Refine-Net.

tent of the next frames seems to have no significant differ-

ence from the previous frames. While it does captures the

motion patterns to some degree, like the color changes or

some inconspicuous object movements, the Base-Net fails

to generate vivid dynamic scene sequences. In contrast,

the Refine-Net takes the output of the Base-Net to produce

more realistic motion dynamics learned from the dataset.

As a result, the scene sequences show more evident move-

ments across adjacent frames.

4.5. Experiment on various video contexts

Although our model works on time-lapse video genera-

tion, it can be generalized to the prediction of other video

scenes. To evaluate the robustness and effectiveness of our

approach, we compare our model with both VGAN and

RNN-GAN on the Beach and Golf datasets released by

[28], which do not contain any time-lapse video. For each

dataset, we use only 10% of them as training data, and the

rest as testing data. For a fair comparison, all these mod-

els take a 64 × 64 starting frame as input. To this end,

we adjust our model to take 64 × 64 resolution image and

video by omitting the first convolutional layer of the gener-

ators and discriminators and preserving the rest parts. For

each approach, we calculate the Mean Square Error (MSE),

Peak Signal to Noise Ratio (PSNR) and Structural Similar-

ity Index (SSIM) between 1000 randomly sampled pairs of

generated video and the corresponding ground-truth video.

Results shown in Tables 4 and 5 demonstrate the superiority

of our MD-GAN model.

Table 4. Experiment results on the Beach dataset in terms of MSE,

PSNR and SSIM (arrows indicating direction of better perfor-

mance). The best performance values are shown in bold.

Model MSE↓ PSNR ↑ SSIM ↑
VGAN [28] 0.0958 11.5586 0.6035

RNN-GAN [37] 0.1849 7.7988 0.5143

MD-GAN Stage II (Ours) 0.0422 16.1951 0.8019

Table 5. Experiment results on the Golf dataset.

Model MSE↓ PSNR ↑ SSIM ↑
VGAN [28] 0.1188 9.9648 0.5133

RNN-GAN [37] 0.2333 7.7583 0.4306

MD-GAN Stage II (Ours) 0.0681 13.7870 0.7085

5. Conclusions

We propose the MD-GAN model which can generate re-

alistic time-lapse videos of resolution as high as 128× 128
in a coarse-to-fine manner. In the first stage, our model

generates sharp content details and rough motion dynamics

by Base-Net with a 3D U-net like network as the genera-

tor. In the second stage, Refine-Net improves the motion

quality with an adversarial ranking loss which incorporates

the Gram matrix to effectively model the motion patterns.

Experiments show that our model outperforms the state-of-

the-art models and can generate videos which are visually

as realistic as the real-world videos in many cases.
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