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Abstract

Person re-identification (ReID) is to identify pedestrians

observed from different camera views based on visual ap-

pearance. It is a challenging task due to large pose varia-

tions, complex background clutters and severe occlusions.

Recently, human pose estimation by predicting joint loca-

tions was largely improved in accuracy. It is reasonable to

use pose estimation results for handling pose variations and

background clutters, and such attempts have obtained great

improvement in ReID performance. However, we argue that

the pose information was not well utilized and hasn’t yet

been fully exploited for person ReID.

In this work, we introduce a novel framework called

Attention-Aware Compositional Network (AACN) for per-

son ReID. AACN consists of two main components: Pose-

guided Part Attention (PPA) and Attention-aware Feature

Composition (AFC). PPA is learned and applied to mask

out undesirable background features in pedestrian feature

maps. Furthermore, pose-guided visibility scores are esti-

mated for body parts to deal with part occlusion in the pro-

posed AFC module. Extensive experiments with ablation

analysis show the effectiveness of our method, and state-

of-the-art results are achieved on several public datasets,

including Market-1501, CUHK03, CUHK01, SenseReID,

CUHK03-NP and DukeMTMC-reID.

1. Introduction

Person re-identification (ReID) targets on identifying the

same individual across different camera views. Given an

image containing a target person (as query) and a large

set of images (gallery set), a ReID system is expected to

rank the images from gallery according to visual similarity

with the query image. It has many important applications

in video surveillance by saving large amount of human ef-

forts in exhaustively searching for a target person from large

amount of video sequences. For example, finding missing

∗Rui Zhao is the corresponding author.

Figure 1. Part alignment challenges in person ReID. (a-c): De-

scribing body parts by bounding boxes may introduce many irrele-

vant regions from background and other parts. Matching between

features extracted from loose boxes in (a) and tight boxes in (b)

would deteriorate the matching accuracy. A finer part region rep-

resentation in (c) would help alleviate this problem. (d-f): The

importance of different parts should be adaptively adjusted. Up-

per body is occluded by forearms in (d), the two forearms are all

occluded in (e). Features from occluded part should be eliminated

during matching, while salient visual cues like yellow backpack in

(f) need to be emphasized.

elderly and children, and suspect tracking, etc.

Many research works have been proposed to improve the

state-of-the-art performance of public ReID benchmarks.

However, identifying the same individual across different

camera views is still an unsolved task in intelligent video

surveillance. It is difficult in that pedestrian images often

suffer from complex background clutters, varying illumina-

tion conditions, uncontrollable camera settings, severe oc-

clusions and large pose variations.

Viewpoint changes and pose variations cause uncon-

trolled misalignment between pedestrian images. As the

improvement of human pose estimation [2, 6], recent works

[37, 49, 54] utilized pose estimation results to align body
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Figure 2. Our Pose-guided Part Attention precisely captures the

target parts, excludes background clutter and adjacent part fea-

tures, while pose-guided rectangular RoIs [49, 37, 54], patches

[51, 25], and stripes [34, 1] include extensive noise features.

parts for better matching. Although great improvement in

performance was obtained, there are still noticeable prob-

lems in these methods. These methods deal with misalign-

ment by extracting features from patches, stripes, or pose-

guided region of interest (RoI), where rectangular RoIs of-

ten introduce noise from adjacent parts or background in

feature and lead to inaccurate matching. For example in Fig.

1(a), features of the right leg is extracted from its bound-

ing box in orange, which includes extensive noise from left

leg and background, as shown in the second bar of the his-

togram. Features of the right arm and left leg also con-

sist of their adjacent parts and background. Furthermore,

some body parts have large variations in shape and pose,

and rectangular RoI would include inconsistent extent of

background clutter and adjacent noise. For example, the

right leg is loosely included in the Fig. 1(a) and tightly

contained in Fig. 1(b). Matching between part features

from loose box and tight box in two camera views would

definitely deteriorate the matching accuracy. To deal with

these problems, finer silhouettes contouring body parts like

in Fig. 1(c) are needed, so that part features can be extracted

more precisely, alleviating the influence from background

clutters and adjacent noises.

In this work, we propose to use Pose-guided Part Atten-

tion instead of rectangular RoI. Pose-guided Part Attention

is a confidence map that could precisely capture the target

part, and exclude background clutter and adjacent part fea-

tures, as shown in Fig. 2. Attention-aware part features can

be extracted by applying the part attention mask on feature

maps, and feature alignment by part is naturally achieved.

We will show in experiments that attention-aware part fea-

tures are more accurate and robust, and the aligned pedes-

trian features are more discriminative than those proposed

in conventional methods.

Occlusion is also a common and severe problem in prac-

tical ReID scenario. For example in Fig. 1(d-f), body part

may be occluded by other body parts, adjacent persons or

things like carrying baggage or trolley. Some observations

can be concluded: 1) rigid body parts like head-shoulder,

upper torso, lower torso are often partially occluded by ad-

jacent non-rigid parts like upper arms, lower legs, etc. 2)

non-rigid body parts suffer heavy self-occlusion and are of-

ten fully occluded. 3) occlusion by carrying things is not a

bad situation, which should be considered as a special part

to help re-identification. It would be ideal to weaken fea-

tures for partially occluded rigid part like the upper body

in Fig. 1(d), eliminate features for fully occluded non-rigid

part like the forearms in Fig. 1(e), and retain features for

carrying things like the backpack in Fig. 1(f). Based on

above observations on the occlusion problem, we propose

a pose-guided visibility score to measure the occlusion ex-

tent for each body part, and it provides image-specific part

importance score to decide feature importance in matching.

Experimental results show its usefulness in handling occlu-

sion cases.

Based on above motivations, a new Attention-Aware

Compositional Network for person re-identification is pro-

posed. The contributions of our work can be summarized in

several folds:

• A unified framework named Attention-Aware Com-

positional Network (AACN) is proposed to deal with

misalignment and occlusion problem in person re-

identification.

• Pose-guided Part Attention is introduced to estimate

finer part attention to exclude adjacent noise. It is de-

signed to capture both rigid and non-rigid body parts

simultaneously in a unified framework.

• Visibility score is introduced to measure the occlusion

extent for each body part. It provides image-specific

part importance scores for Attention-aware Feature

Composition.

• Extensive experiments demonstrate that our ap-

proach achieve superior performance on several pub-

lic datasets, including CUHK03 [25], CUHK01 [24],

Market-1501 [55], CUHK03-NP [60], DukeMTMC-

reID [59] and SenseReID [49].

2. Related Work

2.1. Person Re­identification

There are two categories of methods addressing the

problem of person re-identification, namely feature rep-

resentation and distance metric learning. The first cat-

egory mainly includes the traditional feature descriptors

[53, 52, 51, 27, 7, 31, 35] and deep learning features

[43, 41, 42, 12, 25, 40]. These approaches dedicate to de-

sign view-invariant representations for person images. The

second category [28, 12, 27, 45, 19, 9, 23, 14, 33] mainly

targets on learning a robust distance metric to measure the

similarity between images.

Pedestrian alignment, matching two person images with

their corresponding parts, is of non-trivial importance. Ex-

isting ReID methods mainly focus on extracting two types
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of features, namely global features extracted from the whole

image [11, 44] and region features generated from local

patches [51, 57, 22]. However, these approaches have not

taken the accurate alignment of body regions into consider-

ation. Recently, thanks to the great progress of pose estima-

tion methods [6, 13] and RPN [32], reliable body parts are

able to be acquired, which makes it possible to identify indi-

viduals via extracted region. For example, Zhao et al. [49]

proposed Spindle Net, that extracted and fused three level

part features. Parts were extracted by PRN. Su et al. [37]

proposed a Pose-driven Deep Convolutional model (PDC)

that utilized Spatial Transformer Network (STN) to localize

and crop body regions based on pre-defined centers. Zheng

et al. [54] introduced to extract Pose Invariant Embedding

(PIE) through aligning pedestrians to standard pose. Align-

ment was done by applying affine transformation to pose

estimation results. However, these methods are all based on

rigid body regions, which cannot accurately localize human

body regions. In our model, non-rigid parts are obtained

based on the connectivity between human joints. Thus our

model is capable of extracting more precise information for

each body part, and handling occlusion issues.

2.2. Human Parsing

Human parsing [17, 10, 47, 26, 15] is related to our

work in that parsing results can accurately localize body

part. For example, Gong et al. [17] imposed joint structure

loss to improve segmentation results. Dong et al. [15] ex-

plored pose information to guide human parsing. However,

we choose to generate non-rigid parts based on connectiv-

ity of human keypoints rather than human parsing because

of the following reason: Existing human parsing methods

mainly focus on particular scenarios, such as fashion pic-

tures, and the parsing models often show weak generaliza-

tion on surveillance data. Human pose is easier to label than

parsing, and it can be better generalized to surveillance sce-

nario owing to large variance of the datasets [2, 29].

2.3. Attention based Image Analysis

Since the attention mechanism is effective in understand-

ing images, it has been widely used in various tasks, in-

cluding machine translation [4], visual question answering

[46], object detection [3], semantic segmentation [8], pose

estimation [13] and person re-identification [30]. Bahdanau

[4] and Ba [3] adopted recurrent neural networks (RNN) to

generate the attention map for an image region at each step,

and combined information from different steps overtime to

make the final decision. Chen et al. [8] introduced an at-

tention mechanism that learned to softly weight multi-scale

features at each pixel location. Chu et al. [13] proposed a

multi-context attention model for pose estimation. Inspired

by the methods mentioned above, we propose to learn at-

tention map to capture human body part, and align features

across different person images by masking with part atten-

tions. Our attention map is learned guided by pose estima-

tion, and it can contour the shape of part more precisely than

rectangular RoI. Furthermore, the intensity of part attention

infers the visibility of each part, which helps to deal with

part occlusion issues.

3. Attention-Aware Compositional Network

The framework of our Attention-Aware Compositional

Network (AACN) is illustrated in Fig. 3. AACN consists

of two main components: 1) Pose-guided Part Attention

(PPA) and 2) Attention-aware Feature Composition (AFC).

Given one person image, the proposed PPA module aims

to estimate an attention map and a visibility score for each

pre-defined body part. Then, part feature alignment and

weighted fusion are performed in AFC module, given at-

tention maps and visibility scores from PPA. PPA and AFC

are tightly integrated in our framework during both training

and testing phases.

The PPA module considers two types of pre-defined

body parts, namely, non-rigid parts and rigid parts. Due to

the variations in appearance, attentions of these two types

of parts are estimated separately. The PPA module is con-

structed by a two-stage three-branch neural network, which

predicts confidence maps of keypoints, attention maps of

non-rigid parts, and attention maps of rigid parts in the

three branches, respectively. A visibility score is further

estimated for each part based on part attention maps.

The AFC module applies the estimated part attention

maps to mask the global feature map produced by a base

network (GoogleNet [39] is used in this work). The result-

ing attention-aware part features are then weightedly fused

with the guidance from part visibility scores. The final

1024-dimensional feature vector is adopted as the represen-

tation of the input person image.

3.1. Pose­guided Part Attention

Part attentions are denoted by normalized part confi-

dence maps, which highlight specific regions of human

body in the image. As shown in Fig. 4(a), there are two

types of human body parts: rigid parts and non-rigid parts.

Limb regions including upper arms, lower arms, upper legs,

and lower legs are called non-rigid parts because of drastic

pose variations they could occur, while trunk parts of hu-

man body including head-shoulder, upper torso, and lower

torso are considered to be rigid. Attention maps of the two

types of parts are simultaneously learned in a unified form

through our proposed Pose-guided Part Attention network.

Inspired by the multi-stage CNN [6] for human pose es-

timation, we utilize a two-stage network to learn part atten-

tions. The first stage individually predicts non-rigid part at-

tentions N, rigid part attentions R, and keypoint confidence

2121



Figure 3. (a) Attention-Aware Compositional Network (AACN). Our framework consists of two main components: Pose-guided Part

Attention (PPA) and Attention-aware Feature Composition (AFC). PPA aims to produce attention maps for locating non-rigid parts N and

rigid parts R. AFC is a 3-stage network that aims to extract robust features for pedestrian images. The first stage generates global context

feature maps through a base network. Then, the attention-aware feature maps Fa for body parts are extracted in stage 2 with the guidance

from part attentions learned in PPA. In stage 3, the part features are further re-weighted by jointly considering part visibility scores v and

feature salience, resulting in the final compositional weighted feature vector f̄a. Some visualization are shown in (b) attention maps, (c)

visibility scores, (d) global context feature maps, and (e) attention-aware feature maps Fa. (Best viewed in color.)

maps K by three independent prediction networks,

N
1 = ρ1(Fppa), R1 = φ1(Fppa), K1 = ψ1(Fppa), (1)

where Fppa is the feature map at the 10-th layer of VGG-19

[36]. Keypoint estimation is introduced as an auxiliary task

to improve part attention learning in a multi-task learning

manner. Then, the second stage refines the attention maps

by considering all previous predictions,

N
2 = ρ2(F | N1,R1,K1),

R
2 = φ2(F | N1,R1,K1),

K
2 = ψ2(F | N1,R1,K1).

(2)

For network training, supervision is imposed in both

stages. The overall objective is

Lppa(ρ, φ, ψ) =
∑

t=1,2

Lk(Kt) + µ1L
n(Nt) + µ2L

r(Rt ),

(3)

where Lk, Ln and Lr denote the loss function of keypoint

confidence map, non-rigid part attention, and rigid part at-

tention, respectively. µ1 and µ2 balance the importance of

different losses.

Loss for Keypoint Confidence Map Lk(K). Following

the definition in MPII dataset [2], 14 keypoints (as shown

in Fig. 4(a)) of human body are utilized to guide the learn-

ing of part attentions. The i-th channel Ki ∈ R
H×W of

keypoint confidence maps K ∈ R
H×W×Ck

predicts the co-

ordinates of the i-th keypoint by giving high confidence val-

ues to the true location. The difference between confidence

maps K and ground truth maps K∗

i are measured by Mean-

Square Error (MSE),

Lk(K) =
1

Ck

Ck

∑

i=1

||K∗

i −Ki||
2, (4)

where, K∗

i is generated by applying a Gaussian kernel cen-

tered at the true location of the i-th keypoint. Ck = 14 is

the number of keypoints.

Loss for Non-Rigid Part AttentionLn(N). Non-rigid part

attentions aim to highlight the corresponding limb parts. In-

spired by the Part Affinity Field (PAF) in [6], we define the

ground truth non-rigid parts as the connection area of two

keypoints to approximate the target limb part. As shown in

Fig. 4(b), the p-th non-rigid part is defined as a rectangle

area Rn
p connecting two keypoints with bandwidth σ, and

the ground truth non-rigid part attention is represented as

N
∗

p(x) =

{

1, if x ∈ Rn
p ,

0, otherwise,
(5)

where, x indicates the location on the attention map. The
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Figure 4. Illustration of Pose-guided Part Attention. (a) The 14

keypoints, 11 non-rigid parts, and 3 rigid parts defined in our work.

(b) The ideal non-rigid part attention R
n
p for right elbow. (c) The

ideal rigid part attention R
r
p for upper body.

errors of non-rigid part attention are measured by MSE

Ln(N) =
1

Cn

Cn

∑

p=1

||N∗

p −Np||
2, (6)

where, Cn = 11 is the number of non-rigid parts. Np ∈
R

H×W is the predicted attention map for the p-th part.

Loss for Rigid Part Attention Lr(R). Rigid part attention

is introduced to capture body parts that take rigid transfor-

mations during changes of view or pose. Three rigid parts

are defined in our work, namely head-shoulder, upper torso

and lower torso. As shown in Fig. 4(c), each rigid part

is defined by a neat rectangle Rr
p, which tightly contains

a set of specified keypoints. The set of keypoints for each

rigid part are selected as S1 = {0, 1, 3} for head shoulder,

S2 = {1, 3, 4, 7} for upper torso, and S3 = {4, 5, 7, 8} for

lower torso. Then the ground truth attention map of rigid

part p is defined as

R
∗

p(x) =

{

1, if x ∈ Rr
p ,

0, otherwise.
(7)

The loss for rigid part attention Lr(R) is computed by ac-

cumulating all part losses,

Lr(R,N) =
1

Cr

Cr

∑

p=1

||R∗

p − R̂p||
2, (8)

where Cr = 3 is the number of rigid parts.

Part Visibility Score. The intensities in an attention map

indicate the visibility of the part at each location. Motivated

by this observation, we can define a global visibility score

for each part as

vp =
∑

x,y

|Rp(x, y)|, or vp =
∑

x,y

|Np(x, y)|, (9)

where (x, y) indicates the location on the attention map.

Global visibility scores help to balance the importance be-

tween different body parts for person identification.

3.2. Attention­aware Feature Composition

Based on human part attentions introduced in Sec. 3.1, in

this section, we propose an Attention-aware Feature Com-

position (AFC) which learns to align and re-weight features

of body parts. AFC comprises of three main stages, namely

Global Context Network (GCN), Attention-Aware Feature

Alignment, and Weighted Feature Composition. At the first

stage, a pedestrian image is input in GCN to extract global

features, which are further fed into stage 2 together with

part attentions estimated from the same input image. Stage

2 generates part-attention-aware features and concatenates

them in the same order for all images. The aligned fea-

tures are then re-weighted by visibility scores in stage 3 to

generate the final compositional feature vector. The whole

flowchart of AFC is shown in Fig. 3.

Stage 1: Global Context Network (GCN). GCN serves

as a base network for global pedestrian feature extrac-

tion. Following [16], we build GCN based on the standard

GoogleNet [39]. To reduce the computation cost for fol-

lowing stages of AFC, we add one more 256-channel 3× 3
convolution layer after the layer “inception 5b/output” of

GoogleNet, and then feed the 256-channel feature maps to

the next stage. To better fit the aspect ratio of pedestrian

images, the input image size is changed from 224 × 224 to

448× 192, and the resulting feature maps at the last convo-

lution layer changes from 7× 7 to 14× 6 accordingly.

GCN is independently trained first, and then jointly fine-

tuned with following stages of AFC. In independent train-

ing, GCN is initialized with the GoogleNet model pre-

trained on ImageNet, and the newly added convolution layer

is randomly initialized. Subsequent to the global average

pooling layer at the end of GCN, identification loss and ver-

ification loss similar to [16] are applied to guide the global

context learning. In joint fine-tuning, these two losses are

retained to preserve high-quality global context features of

pedestrian images.

Stage 2: Attention-Aware Feature Alignment. Global

context features suffer from body part misalignment be-

tween pedestrian images. Based on human part attention

introduced in Section 3.1, we propose a simple and effec-

tive scheme to achieve attention-aware feature alignment.

Specifically, we extract attention-aware feature maps by ap-

plying Hadamard Product between global feature maps and

each human part attention map, and the resulting feature

maps are globally average pooled and concatenated to pro-

duce an aligned feature vector. Formally, we formulate the

attention-aware feature alignment scheme as:

f
a = Concat({fp}

P
p=1

), fp = σgap(F
a
p), (10)

F
a
p = F ◦ M̄p, M̄p =

Mp

max(Mp)
, (11)

where, Mp ∈ {Np,Rp} is the attention map for body parts,
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M̄p is the normalized attention map, max(Mp) indicates

the maximum value in Mp, F is the 256-channel global

feature map produced by GCN, ◦ denotes the Hadamard

Product operator which performs element-wise product on

two matrices or tensors, and F
a
p denotes the attention-aware

feature map for part p. σgap(·) is the global average pooling

function, andConcat(·) represents concatenation operation

on part feature vectors. Global feature maps F are masked

with attention maps for P times, in which manner P sets of

attention-aware feature maps are produced, i.e. {Fa
p}

P
p=1

.

Each set of attention-aware feature maps F
a
p possess the

feature information of the corresponding body part while

preserving global context information of the image.

The attention-aware feature maps Fa
p are passed through

a global average pooling σgap(·) to generate summarized

feature vector fp for part p. These summarized part features

are further concatenated to produce final attention-aware

aligned feature vector fa for the input pedestrian image.

Stage 3: Weighted Feature Composition. Since pedestri-

ans vary in pose, suffer from occlusions, and may contain

some relatively salient parts, the importance of each part

should be adaptively adjusted in matching. Motivated by

these observations, we introduce a weight vector w to mea-

sure the part importance. The weight vector is estimated by

jointly considering part visibility and feature salience. As

shown in Fig. 3, visibility scores and the attention-aware

aligned feature vector are concatenated, and fed into a fully

connected layer (implemented as 1×1 convolutions) to gen-

erate w. Then the compositional weighted feature vector is

generated as f̄
a = Conv(Concat({wp · fp}

P
p=1

)), where

Conv indicates a convolution layer.

Overall, our framework integrated the PPA and ACF to

extract feature for each input person image. In person ReID

applications, given a query image, its feature is matched

with that of each image in gallery set to generate distance

score. Gallery images are sorted according to ascending

order of the distance scores. Then the target person can be

found among top-ranked gallery images.

3.3. Implementation Details

In AFC, GoogleNet is utilized as base network for global

context feature extraction, and two additional “1x1” con-

volution layers are used for part weight estimation and fi-

nal feature fusion, respectively. AACN is trained progres-

sively. First, PPA and GCN are trained independently. PPA

is trained with losses for part attention and pose estimation.

GCN is trained with reid loss. Then, by fixing PPA and

GCN, the parameters for feature weighting and composi-

tion in AFC are trained with reid loss. Finally, all modules

are jointly fine-tuned.

Dataset #ID #train/test IDs det./lab.

CHUK03 [25] 1467 1160/100 det.&lab.

CUHK01 [24] 971 486/485 lab.

Market-1501 [55] 1501 751/750 det.

CUHK03-NP [60] 1467 767/700 det.&lab.

DukeMTMC-reID [59] 1812 702/702 lab.

SenseReID [49] 1717 0/1717 det.

Table 1. Details of the datasets evaluated in our experiments.

Bounding box labels of these datasets can be detected (det.) or

manually labeled (lab.).

CUHK03 (labeled) R-1 R-5 R-10 R-20

NFST [48] 62.55 90.05 94.80 98.10

JSTL [43] 75.30 - - -

Transfer [16] 85.40 - - -

SVDNet [38] 81.80 - - -

Quadruplet [9] 75.53 95.15 99.16 -

PAR [50] 85.40 97.60 99.40 99.90

Spindle [49] 88.50 97.80 98.60 99.20

PDC [37] 88.70 98.61 99.24 99.67

AACN (Ours) 91.39 98.89 99.48 99.75

Table 2. Comparison results on CUHK03 (labeled).

CUHK03 (detected) R-1 R-5 R-10 R-20

NFST [48] 54.70 84.75 94.80 95.20

Transfer [16] 84.10 - - -

DPFL [11] 82.00 - - -

PAR [50] 81.60 97.30 98.40 99.50

PIE [54] 67.10 92.20 96.60 98.10

PDC [37] 78.29 94.83 97.15 98.43

AACN (ours) 89.51 97.68 98.77 99.34

Table 3. Comparison results on CUHK03 (detected).

CUHK01 R-1 R-5 R-10 R-20

NFST [48] 69.09 86.90 91.77 95.39

JSTL [43] 66.60 - - -

Transfer [16] 77.00 - - -

Quadruplet [9] 62.55 83.44 89.71 -

PAR [50] 75.00 93.50 95.70 97.70

Spindle [49] 79.90 94.40 97.10 98.60

AACN (Ours) 88.07 96.67 98.16 99.10

Table 4. Comparison results on CUHK01.

4. Experiments

In this section, the performance of AACN is compared

with state-of-the-art methods on several public datasets.

And then detailed ablation analysis is conducted to validate

the effectiveness of AACN components.

4.1. Datasets and Protocols

Our proposed AACN framework is evaluated on sev-

eral public person ReID datasets, as listed in Table 1.

For fair comparison, we follow the official evaluation
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Market-1501
Single Query Multiple Query

R-1 mAP R-1 mAP

NFST [48] 61.02 35.68 71.56 46.03

PAN [58] 82.81 63.35 88.18 71.72

SVDNet [38] 82.30 62.10 - -

PAR [50] 81.00 63.40 - -

Spindle [49] 76.90 - - -

PIE [54] 78.65 53.87 - -

PDC [37] 84.14 63.41 - -

AACN (Ours) 85.90 66.87 89.78 75.10

AACN+R.E. (Ours) 88.69 82.96 92.16 87.32

Table 5. Comparison results on Market-1501. Rank-1 accuracy

(%) and mAP (%) are shown. R.E. : re-ranking method from [60].

CUHK03-NP
labeled detected

R-1 mAP R-1 mAP

PAN [58] 36.86 35.03 36.29 34.00

DPFL [11] 43.00 40.50 40.70 37.00

SVDNet [38] 40.93 37.83 41.50 37.30

AACN (Ours) 81.86 81.61 79.14 78.37

Table 6. Comparison results on CUHK03-NP.

DukeMTMC-reID R-1 mAP

OIM [44] 68.10 -

LSRO [59] 67.68 47.13

PAN [58] 71.59 51.51

SVDNet [38] 76.70 56.80

AACN (Ours) 76.84 59.25

Table 7. Comparison results on DukeMTMC-reID.

SenseReID R-1 R-5 R-10 R-20

JSTL [43] 23.00 34.80 40.60 46.30

Spindle [49] 34.60 52.70 59.90 66.70

AACN (Ours) 41.37 58.65 64.71 72.16

Table 8. Cross-dataset evaluation on SenseReID.

protocols of each dataset. For CUHK03, CUHK01 and

SenseReID, Cumulated Matching Characteristics (CMC) at

rank-1, rank-5, rank-10 and rank-20 are compared between

different approaches. For Market-1501, CUHK03-NP and

DukeMTMC-reID, rank-1 identification rate and mean Av-

erage Precision (mAP) are reported.

4.2. Comparisons with State­of­the­Arts

The proposed AACN is compared with recent ap-

proaches with state-of-the-art performance. These ap-

proaches are categorized into two sets according to whether

human pose information is utilized. One set is pose-

irrelevant, which includes the null space semi-supervised

learning method (NFST) [48], the domain guided dropout

method (JSTL) [43], the deep transfer learning method

(Transfer) [16], the Singular Vector Decomposition method

(SVDNet) [38], the Online Instance Matching (OIM)

method [44], the quadruplet loss method (Quadruplet) [9],

the multi-scale representation (DPFL) [11], the pedestrian

alignment network (PAN) [58], the Part-Aligned Represen-

tation (PAR) [50]. The other set introduces explicit pose es-

timation results into ReID, which includes the Spindle Net

(Spindle) [49], the Pose-driven Deep Convolutional model

(PDC) [37], and the Pose Invariant Embedding (PIE) [54].

The experimental results are presented in Table 2, 3, 4,

5, 6 and 7. It shows that our proposed AACN outperforms

state-of-the-art approaches on all datasets. Specifically,

when compared with the second best approach on each

dataset, our AACN achieves 2.69%, 5.41%, 8.17%, 4.55%

and 40.93% rank-1 accuracy improvement on CUHK03 (la-

beled), CUHK03 (detected), CUHK01, Market-1501 and

CUHK03-NP (labeled), respectively. Though our AACN

is very close to SVDNet [38] in rank-1 accuracy on

DukeMTMC-reID dataset, the improvement in mAP met-

ric (+2.45%) is still significant.

We also evaluate the generalization ability of our AACN

on SenseReID dataset [49]. Following Spindle [49], we

merge the training set of Market-1501 [55], CUHK01 [24],

CUHK02 [23], CUHK03 [25], PSDB [43], Shinpuhkan

[21], PRID [20], VIPeR [18], 3DPeS [5] and i-LIDS [56]

for training, and then test on SenseReID. As shown in Table

8, AACN achieves 41.37% accuracy at rank-1, significantly

outperforms Spindle which has an accuracy of 34.60%.

4.3. Ablation Analysis

Base Network. The performance of ReID approaches is

influenced by base network structures, and different ap-

proaches may choose different backbones. As listed in Ta-

ble 9, our approach is comparable to Spindle [49] and PDC

[37] in base network size, but much smaller in overall model

size. To better compare with previous works on exploiting

pose information, we also experiment by replacing base net-

work of our AACN with the one used by Spindle. It shows

that our AACN still outperforms Spindle under the same

base network structure.

Pose-guided Part Attention. The localization accuracy

of PPA is compared with rectangular RoI [49] method on

PASCAL-Person-Part dataset [10]. Since some body parts

are not available on this dataset, we choose head, left arm

(L.Arm), right arm (R.Arm), left leg (L.Leg), right leg

(R.Leg) for comparison. Localization accuracy is measured

as the Intersection-over-Union (IOU) between predictions

and ground truth parsing labels. Both methods are trained

on the same MPII dataset. As shown in Table 10, our pro-

posed PPA is more accurate than RoI in part localization.

Furthermore, we evaluate the performance of different

part localization methods on the person ReID task. Specif-

ically, RoI [49] and parsing results from Parsing [17] are

compared by replacing the PPA module in our AACN

framework. The results are shown in Table 11. On

2125



Method Base model
# ince-

ption

# param

(base)

# param

(overall)

CUHK03(labeled) CUHK03(detected) Market-1501(SQ)

base overall base overall base overall

PIE [54]
AlexNet - 57M 114M - - 58.80 62.60 55.49 65.68

ResNet-50 - 23M 46M - - 54.80 61.50 73.02 78.65

PDC [37] GoogleNet-PDC 10 10M 14M 79.83 88.70 71.89 78.29 76.22 84.14

Spindle [49] GoogleNet-Spindle 6 6M 44M - 88.50 - - 72.10 76.90

AACN (Ours)
GoogleNet-Spindle 6 6M 8M 84.01 89.16 81.70 86.65 71.41 81.95

GoogleNet 9 6M 8M 86.11 91.39 83.78 89.51 79.63 85.90

Table 9. Comparison with human pose based approaches. Rank-1 accuracy (%) is reported.

Part Head L.Arm R.Arm L.Leg R.Leg

RoI[49] 26.53 13.30 13.25 13.89 14.08

PPA 23.51 25.19 23.12 16.63 16.21

Table 10. Part localization accuracy. Part IoUs are given.

CUHK03
labeled detected

R-1 R-5 R-1 R-5

AFC+RoI[49] 89.88 97.97 86.44 97.33

AFC+Parsing[17] 85.49 97.38 82.92 95.66

AFC+PPA 90.58 98.65 87.98 97.64

Table 11. Comparison of part localization methods for ReID.

CUHK03
labeled detected

R-1 R-5 R-1 R-5

GCN 86.11 98.18 83.78 96.86

AFC rigid 87.35 97.98 84.88 96.70

AFC non-rigid 89.89 98.64 86.87 97.19

AFC PPA 90.58 98.65 87.98 97.64

Table 12. Effectiveness of Attention-aware Feature Composition.

“GCN” uses global features for person ReID. “AFC rigid” only

extracts features from rigid parts.

Rank-1

accuracy (%)

CUHK03 Market-1501

labeled detected SQ MQ

AACN-w/o-v 90.58 87.98 86.58 90.29

AACN-v 91.39 89.51 88.69 92.16

Table 13. Effectiveness of visibility score.

CUHK03 (detected) set, “AFC+RoI” is 1.54% lower than

“AFC+PPA” in rank-1 accuracy since it includes noise from

adjacent areas, and “AFC+Parsing” is 5.06% lower due to

domain difference.

Attention-aware Feature Composition. AFC is a key

module in our proposed AACN framework. As shown in

Table 12, “GCN” extracts features globally over the im-

age, and achieves 86.11% and 83.78% rank-1 accuracy on

CUHK03 (labeled) and CUHK03 (detected), respectively.

When using AFC, our proposed “AFC PPA” improves the

accuracies to 90.58% and 87.98%. Using rigid parts only

(“AFC rigid”) or non-rigid parts only (“AFC non-rigid”)

still outperforms “GCN”, and these two types of body parts

are complementary to each other. More qualitative results

Figure 5. Comparison between global features from GCN and

aligned part features from AFC. dg is the distance computed on

global features, and d
AFC is the distance computed on the com-

positional features produced by AFC on Pose-guided Part Atten-

tions. The query images are more similar with the imposters in

the global context feature space, but AFC effectively distinguishes

them by (a) hair color, (b) upper arm, (c) shorts.

are shown in Fig. 5. Even though a query image looks

similar to an imposter globally, body part alignment and lo-

cal feature aggregation in Attention-aware Feature Compo-

sition could effectively distinguish them.

Visibility Score. The effectiveness of visibility score is

evaluated on CUHK03 and Market-1501 dataset. As shown

in Table 13, weighting part features with visibility scores

significantly increase the rank-1 accuracy by 1.53% and

2.11% on CUHK03 (detected) and Market-1501 (SQ).

5. Conclusion

In this paper, we propose an Attention-Aware Compo-

sitional Network (AACN) to deal with the misalignment

and occlusion problem in person re-identification. AACN

is composed of two main components, namely, Pose-guided

Part Attention (PPA) and Attention-aware Feature Compo-

sition (AFC), where PPA is to estimate finer part attention

for preciser feature extraction. Also, visibility score is in-

troduced to measure the occlusion extent, and to guide AFC

to learn more robust feature for matching. Extensive exper-

iments with ablation analysis demonstrate that our AACN

achieves superior performance than state-of-the-art meth-

ods on several public datasets.
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