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Abstract

In this paper, we present an end-to-end multi-level fu-

sion based framework for 3D object detection from a sin-

gle monocular image. The whole network is composed of

two parts: one for 2D region proposal generation and an-

other for simultaneously predictions of objects’ 2D loca-

tions, orientations, dimensions, and 3D locations. With the

help of a stand-alone module to estimate the disparity and

compute the 3D point cloud, we introduce the multi-level

fusion scheme. First, we encode the disparity information

with a front view feature representation and fuse it with the

RGB image to enhance the input. Second, features extracted

from the original input and the point cloud are combined

to boost the object detection. For 3D localization, we in-

troduce an extra stream to predict the location information

from point cloud directly and add it to the aforementioned

location prediction. The proposed algorithm can directly

output both 2D and 3D object detection results in an end-

to-end fashion with only a single RGB image as the input.

The experimental results on the challenging KITTI bench-

mark demonstrate that our algorithm significantly outper-

forms monocular state-of-the-art methods.

1. Introduction

In recent years, with the development of technologies in

computer vision and deep learning, numerous impressive

methods are proposed for accurate 2D object detection. The

results of 2D detection indicate the accurate locations for

each object in image coordinate system and the object class

for it. However, in several scenarios like robotic application

and autonomous driving, it is not enough to describe objects

in the 3D real world scene with 2D detection results only.

The focus of this paper is on 3D object detection uti-

lizing only monocular images. We aim at extending exist-

ing 2D object detectors for accurate 3D object detection in

the context of self-driving cars, without any help of expen-

sive LIDAR systems, stereo information or hand-annotated
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maps of the environment. For 2D object detection, since

the success of region-based convolutional neural networks

(R-CNNs) [13], the advanced promising works like SPP-

Net [17], Fast R-CNN [12], Faster R-CNN [31], R-FCN [7]

and Mask R-CNN [16] mostly apply deep convolutional

neural networks (CNNs) to learn features from region can-

didates over the image for accurate 2D object recognition.

Here we would like to extend the existing image-based 2D

detection algorithms for 3D object detection. Usually, a 2D

object is described by its location in the image, which is

quite different from the representation of a 3D object. Typ-

ically, a 3D object like a car in the real world is represented

by its pose, 3D dimension and localization of its center in

the camera coordinate system. It is much more complicated

for 3D object detection with only monocular images. How-

ever, since the existence of imaging mechanism and geo-

metric constraints, all the descriptors of a 3D object still

have compact relations to the projected image content, it

is possible to handle the 3D detection problem with only

monocular images.

To deal with this, we propose a framework for 3D ob-

ject detection by estimating the object class, 2D location,

orientation, dimension, and 3D location based on a sin-

gle monocular image in an end-to-end fashion. A region

proposal network (RPN) is utilized to generate 2D propos-

als in the image, as RPN provides strong objectness con-

fidence regions of interest (RoIs) with CNN features and

it can share weights with the down-stream detection net-

work [31, 36, 37, 19]. With features learned from the pro-

posals, both object class confidence and 2D bounding box

offset to the proposal are predicted, just like most region-

based 2D object detectors. Two more branches are added

for jointly learning of orientation and dimension. In addi-

tion, another module is introduced to estimate the disparity

information and adopt multi-level fusion method for accu-

rate 3D localization, constituting our 3D object detection

procedure.

In this work, to get the pose of a 3D object, we follow

a similar idea as the MultiBin architecture described in [26]

by adopting discrete-continuous formulation for orientation

estimation. For 3D object dimension, typical sizes made
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Figure 1. The proposed framework for 3D object detection.

up of length, width and height are accessed by analyzing

the training labels for each class. The offset between ac-

tual dimension and typical dimension is estimated from the

network. It is much more complicated for estimating the

3D coordinates (X, Y, Z) of object center, since only im-

age appearance cannot decide the absolute physical loca-

tion. To solve this, global context information needs to be

considered as a prior for each region candidate. For the

input monocular image, the disparity information of each

pixel will be estimated through a fully convolutional net-

work (FCN), thus the approximate depth and point cloud

can be reached with the help of camera calibration files.

Then we superadd the estimated information in multiple

steps for 3D localization. A RoI mean pooling layer is intro-

duced to convert the point cloud inside the proposal into a

fixed-length feature vector through mean(average) pooling.

3D location of the object center will be estimated with fea-

tures from point cloud and the original convolutional fea-

tures. Besides, estimated depth is also encoded as front

view feature maps and be fused with the RGB image to im-

prove the performance. Thus all the 2D and 3D descriptors

can be simultaneously predicted.

As just described, our work focuses on 3D object detec-

tion from monocular images with existing 2D object detec-

tors. Our first contribution is an efficient multi-level fusion

based method for 3D object detection with a stand-alone

module for estimating the disparity information. Features

from disparity and the original RGB image are fused in dif-

ferent levels, proposing a possibly effective method for ac-

curate 3D localization. The second contribution is the in-

troduction of a general framework that can directly extend

existing region-based 2D object detectors for 3D object de-

tection. End-to-end learning is applied for estimating a 3D

object’s full pose, dimension and location without any other

additional annotations or 3D object models. The experi-

mental evaluation shows that our approach is able to per-

form really well on the very challenging KITTI dataset [11],

outperforming the state-of-the-art monocular methods and

even some methods with stereo information on particular

evaluation index.

The remainder of this paper is organized as follows: In

the next section, we review the related literature. Section 3

explains our framework and exhibits more details of the pro-

posed algorithm. After providing experimental results and

comparisons on the very challenging KITTI dataset in Sec-

tion 4, we conclude this paper.

2. Related Work

Our work is related to 2D object detection and monoc-

ular 3D object detection. The literature review will mainly

be focused on 2D object detection algorithms and 3D object

detection methods with only monocular images.

2D Object Detection. The majority of state-of-the-art 2D

object detectors belong to deep learning methods. Accord-

ing to the detection procedure and mechanism, they can be

categorized into two parts [23]. The first is one-stage de-

tectors, they are applied over a dense sampling of possi-

ble object locations, such as OverFeat [32], YOLO [29, 30]

and SSD [24, 10], that can provide promising results with

relatively fast speed. These methods trailed in accuracy

even with a larger compute budge [23, 18]. The other

is two-stage, proposal-driven detectors that apply classifi-

cation and regression over learned features within object
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proposals. In the first stage, several methods are adopted

for proposal generation. The widely-used ones include

BING [5], Selective Search [35], EdgeBoxes [39], Deep-

Mask [27, 28] and RPN [31]. The most famous two-stage

detector is the aforementioned Faster R-CNN, which can

generate proposals and apply object recognition in an end-

to-end fashion. Typically, two-stage detectors need fewer

data augmentation tricks and have more accurate results

in most public benchmarks. Through a sequence of ad-

vances [12, 31, 22, 16], this two-stage framework con-

sistently achieves top accuracy on the challenging COCO

benchmark [21, 23]. According to [23], recent work on one-

stage detectors demonstrates promising results, while the

accuracy is within 10-40% relative to state-of-the-art two-

stage methods.

Monocular 3D Object Detection. Both 2D object detec-

tion and monocular 3D object detection are adopted on a

single RGB image. Unlike 2D object detection, it can be

quite difficult for monocular 3D object detection, since the

lack of stereo information and accurate laser points from

other sensors. Like two-stage, region-based 2D detectors,

several works make use of high quality 3D region propos-

als for further classification and detection. In [2], the au-

thor makes use of a general assumption that all the objects

should lie close to the ground plane, which should be or-

thogonal to the image plane. The 3D object candidates

are then exhaustively scored in the image plane by utiliz-

ing class segmentation, instance level segmentation, shape,

contextual features and location priors. With the projected

2D proposals from 3D candidates, it uses Fast R-CNN to

jointly predict category labels, bounding box offsets, and

object orientation. It performs really well on KITTI and

outperforms all published monocular object detectors at that

time. Recently proposed works mainly focus on combining

deep neural networks and geometric properties, providing

more accurate results. Deep3DBox [26] introduces geomet-

ric constraints into 3D object detection scenario. It is based

on the fact that the 3D bounding box should fit tightly into

2D detection bounding box, thus it requires each side of the

2D bounding box to be touched the projection of at least

one of the 3D box corners. Deep3DBox combines visual

appearance and geometric properties to find the 3D loca-

tion. It also utilizes deep CNN features to estimate the pose

and dimension of a 3D object, constituting the complete de-

tection framework. Another recently introduced method for

monocular 3D object detection is called Deep MANTA [1].

It takes a monocular image as input and can output vehi-

cle part coordinates, 3D template similarity and part visi-

bility properties, in addition to 2D scored bounding boxes.

Deep MANTA encodes 3D vehicle information using char-

acteristic points of vehicles, since they are rigid objects with

well known geometry. Corresponding to this, deep MANTA

uses a 3D vehicle dataset composed of 3D meshes with real

dimensions and several vertices are annotated for each 3D

model. Then the vehicle part recognition in Deep MANTA

can be considered as extra key points detection, which will

be adopted for 2D / 3D matching with the most similar 3D

template, thus the 3D localization results can be achieved.

Although it only needs a single RGB image as input, addi-

tional annotations like part locations and visibility for 3D

objects and an extra dataset of 3D templates are necessary

for the training and inference stages.

3. 3D Object Detection Framework

The proposed framework is an end-to-end network that

takes a monocular image as input and output 2D/3D object

representations. The system has two main parts: 2D re-

gion proposal generation and simultaneous 2D/3D param-

eters estimation. In particular, we adopt multi-level fusion

methods for accurate 3D localization and system enhance-

ment, constructing the robust detection pipeline. The whole

framework is illustrated in Figure 1.

3.1. 2D Region Proposal Generation

In our implementations, we utilize region proposal net-

work (RPN) introduced in Faster R-CNN to extract RoIs for

further detection. In RPN, a set of rectangular object pro-

posals with objectness scores are generated through a slided

small network over the convolutional feature map and the

Anchors mechanism [31]. 2D Anchors are generated with

pre-defined scales and aspect ratios over a basic rectangle in

each location. Then the network can output region propos-

als through objectness scores prediction and 2D bounding

box regression.

3.2. 2D/3D Parameters Estimation

Based on the 2D region proposals, 2D/3D parameters for

object description are estimated. For the 2D part, it consists

of multi class classification and 2D box regression, our im-

plementation is just like Faster R-CNN. For the 3D part, it is

determined by orientation estimation, dimension estimation

and 3D localization. Next we will describe our approach for

estimating these different parameters.

With region proposals of different spatial sizes, the RoI

pooling layer is introduced in [12] to convert the features

inside any valid region of interest into a small feature map

with a fixed spatial extent of H × W via max pooling. This

layer is regarded as RoI max pooling to prevent confusion

in this paper. With fixed-sized input features, then the fully

connected layers can be added for estimating the corre-

sponding parameters. In Fast R-CNN, features for region

classifier and bounding box regressor are shared. Following

this principle, we add two additional branches on the top

of the shared features for object orientation and dimension

regression at first.

2347



Orientation Estimation. For the orientation branch, it is

not possible to estimate the global orientation in the camera

reference frame from only the contents of the region pro-

posal [26]. Thus the local orientation is regressed with the

state-of-the-art MultiBin architecture [26]. It discretizes an

angle and divides it into n overlapping bins. With the in-

put features, both confidence probabilities for each bin and

the residual part to the center of bin are estimated. The two

parts are regarded as angle confidence and angle localiza-

tion, respectively.

The loss function for angle confidence equals to cross

entropy (CE) with sigmoid function as probabilities, since

there are overlaps between adjacent bins and an angle could

belong to more than one bin. We adopt smooth L1 defined

in [12] for the regression loss of the residual angle. The

smooth L1 loss is a robust L1 loss that is less sensitive to

outliers than the L2 loss, which is defined as follows:

SL1(x) =







0.5x2 if |x| < 1

|x| − 0.5 otherwise
(1)

Besides, instead of predicting the residual angle directly, we

predict the sine and the cosine of it, just like [26]. Overall,

the loss function for angle confidence Lconf is then defined

as:

Lconf = CE(σ(Pconf ), D
∗

conf ) (2)

D∗

conf is the ground data for bin class. σ(·) indicates sig-

moid function. For the residual part, the loss Lloc is defined

as:

Lloc =
1

n
· SL1(Ploc −D∗

loc) (3)

D∗

loc are ground truth residual data, n is the number of bins

that cover ground truth and SL1(·) indicates smooth L1

function. The total loss for orientation is thus:

Lα = Lconf + w · Lloc (4)

It is made up of angle confidence loss and angle localization

loss. w is used to balance the relative importance for the two

parts.

Dimension Estimation. For dimension estimation, we do

not regress the absolute dimensions directly. Instead, we

compute the average length, height and width for each class

over the training dataset at first to get the typical dimension.

Then the offset to the typical size is estimated with the same

shared features, just like the part for the regression of 2D

bounding boxes. The loss function in this branch is defined

as follows:

Ld = SL1(log(
Pd

Dt

)− log(
D∗

d

Dt

)) (5)

wherePd, D∗

d means the prediction and ground truth, re-

spectively. Dt indicates typical dimension that is computed

from training labels.

3.3. Multi­Level Fusion and 3D Localization

It is much more complicated to estimate the 3D loca-

tion of a 3D object. In our previous branches, only fea-

tures inside region proposals are utilized for angle and di-

mension regression. However, estimating 3D location in the

same way is difficult since the existence of RoI max pool-

ing. Features generated from RoI max pooling have sev-

eral drawbacks. First, it converts the features inside RoIs

with different scales into fixed-sized feature tensors. Thus

it partly eliminates a fundamental photography constraint

that the RoI with bigger size should lie closer to the cam-

era. Besides, the image coordinates of each RoI are only

used to fetch the corresponding region on the feature map.

It means that different spatial locations of RoIs may have

similar output after RoI max pooling, while the actual 3D

location can differ a lot. In 2D bounding boxes regression,

the absolute coordinates are achieved by estimating the off-

set to the proposals. However, for 3D localization, the 2D

proposals do not contain 3D information of the coordinates.

Another fact is that we human can tell the approximate

3D location of any object in a monocular image if we have

seen the scene before. A rich understanding of the world

can be developed through our past visual experience [38].

The understanding can be used as the prior knowledge for

the whole image, which can be adopted to localize any ob-

ject, even any pixel in it. To help localize the 3D object in

our framework, the approximate layouts of objects or 3D

locations of pixels can be modeled.

Disparity Estimation. To help understanding the whole

scene in the image, a sub-net for disparity estimation from

a single image is proposed. Learning based methods for dis-

parity or depth estimation are mainly built with fully convo-

lutional networks (FCNs). However, disparity or depth es-

timation with only monocular information can be quite dif-

ficult. Thanks for the remarkable work called MonoDepth

in [14], which enforces left-right depth consistency for dis-

parity estimation in an unsupervised way, we directly use

the pre-trained weights provided by MonoDepth to initial-

ize our sub-net and the weights won’t be updated during

training. Thus the sub-net can be regarded as a stand-alone

off-line module to help understand the whole scene. With

camera intrinsic parameters and estimated disparity, 3D co-

ordinates of each pixel in camera coordinate system can

be accessed, thus constructing the point cloud in the whole

scene. Given a pixel I = (Ix, Iy) with disparity Id in the

2D image, the 3D coordinates (x, y, z) can be computed as:























z = f ∗ Cb/Id

x = (Ix − Cx) ∗ z/f

y = (Iy − Cy) ∗ z/f

(6)
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(a) Depth (b) Height (c) Distance

Figure 2. Front view feature maps.

where f is the focal length of the camera, (Cx, Cy) is the

principal point, Cb is the baseline distance. In this paper, we

always adopt the camera coordinate system in KITTI for 3D

locations1.

Estimation Fusion for 3D Localization. With the esti-

mated point cloud in the whole image as our prior knowl-

edge and the previously generated RoIs, here we introduce

a RoI mean pooling layer for 3D localization. The principle

is quite simple and very similar to RoI max pooling. RoI

max pooling is proposed mainly to deal with high-level vi-

sual recognition tasks. The max operation aggregates mul-

tiple activations and outputs the max value, which has been

demonstrated useful in numerous applications. Nowadays,

the mostly used pooling operation in deep neural networks

is also max pooling. In RoI mean pooling, we just replace

the max operation with mean operation. Since original point

cloud does not contain any high-level representations, the

max pooling will get the maximum value for each axis,

which is not reasonable. We simply adopt RoI mean pooling

over the point cloud to get a fixed-sized point cloud feature

map, which takes both global prior knowledge about loca-

tions and the region proposal into account. Here the point

cloud is encoded as a 3-channel XYZ map which has the

same size as the RGB image. With this representation, we

can use ROI Pooling operation on the XYZ map, similar

to the ROI Pooling on convolutional feature maps. Objects

with the same appearance in the image probably have differ-

ent point cloud features when they locate differently in 3D

space. Therefore, the point cloud feature is complementary

to the appearance feature and crucial to 3D localization.

Now we have two streams for 3D localization, one is

from CNN features with RoI max pooling and the other is

from point cloud with RoI mean pooling. The two parts

are regarded as Sconv and Spc for better description. For

the Sconv stream, we estimate the 3D location, just like the

orientation and dimension branches. For the Spc stream, we

only use one fully connected layer and then estimate the 3D

location. Finally, location estimations from the two streams

will be added, constructing the final 3D location estimation.

In the training stage, smooth L1 function is applied again,

1Details about the set up for camera coordinate system can be found in

http://www.cvlibs.net/datasets/kitti/setup.php

so the loss for 3D localization can be represented as follow:

Lloc = SL1((Ppc + Pconv)−D∗

loc) (7)

where Ppc indicates estimation from Spc and Pconv indi-

cates estimation from Sconv .

The joint estimation for 3D location can be seen as a late

fusion between estimations from Sconv and Spc. The convo-

lutional features are learned from image content and mostly

contain high-level semantic information. While the repre-

sentations from point cloud can be seen as low-level ma-

nipulation about pixel locations. Estimations from different

levels are fused for accurate 3D estimation. In another point

of view, the point cloud that depends on estimated depth in-

formation can be regarded as global prior knowledge. It

contains spatial information about the RoIs and can help

compensate the information reduction after RoI max pool-

ing. The late fusion ensures the accurate 3D localization in

the network, which is the most important part of the whole

3D object detection framework.

Input Fusion with Front View Feature Maps Encoding.

In addition to helping estimate the 3D locations, we also

encode the estimated depth information with three-channel

representations as the front view feature maps, which is

similar to [4, 15, 20]. Given a pixel I = (Ix, Iy) with depth

Idepth in the 2D image, the three front view feature maps

FV1, FV2, FV3 are encoded as:



























FV 1 = Idepth

FV 2 = (Iy − Cy) ∗ Idepth/f

FV 3 =
√

(FV 1)
2
+ (FV 2)

2
+ ((Ix − Cx) ∗ Idepth/f)

2

(8)

where f is the focal length of the camera, (Cx, Cy) is the

principal point. As we can see, FV 1 represents depth in-

formation, FV 2 denotes height information and FV 3 indi-

cates distance information in the camera coordinate system.

The encoded front view feature maps are visualized in Fig-

ure 2.

Since the sub-net for disparity estimation is an off-line

module and will not be updated in the training stage, the

three-channel front view feature maps and three-channel

RGB images are concatenated as the input for RPN. This
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can be regarded as an early fusion or a pre-processing step

for enhancing the input.

Feature Fusion for Accurate Estimation. In the esti-

mation of 3D location, another fusion for different feature

maps is proposed. Here we regard feature maps after RoI

max pooling as Fmax(blue cube in Figure 1) and feature

maps after RoI mean pooling as Fmean(orange cube in Fig-

ure 1). Then the two feature maps are concatenated to en-

hance the Sconv stream.

In total, there are three levels of fusion in the network.

The earliest fusion is the concatenation between front view

feature maps and the corresponding RGB image. The sec-

ond one is the mergence of feature maps from the original

input and the estimated point cloud inside each region pro-

posal, with different types of RoI pooling. The last fusion

is the joint estimation from two different types of data for

the final 3D localization. Generally, the last fusion is nec-

essary for the framework, while the other two can improve

the whole performance to a certain extent. Details for com-

parisons are illustrated in Section 4.

3.4. Multi­task Loss

The whole loss Lrcnn for the 3D regression and classifi-

cation network can be formulated as:

Lrcnn = w2DL2D + wαLα + wdLd + wlocLloc (9)

where all the loss for 2D detection is regarded as L2D in

this paper, including multiclass classification loss and 2D

bounding box loss, just like the description in [31]. For the

RPN part, we use the same loss as the original paper [31].

In order to optimize the whole framework, joint training is

adopted for the whole network, which is also introduced

from the original Faster R-CNN implementations. Then the

whole network is trained end-to-end.

4. Experimental Results

We evaluate our approach on the challenging KITTI

dataset. It provides 7,481 images for training and 7,518

images for testing, along with the camera calibration files.

Detection is evaluated in three regimes: easy, moderate and

hard, according to the occlusion and truncation levels of

objects. Since there are no ground truth for the testing

images, we conduct 3D box evaluation on the validation

set. We split the training set into train/val parts. For better

comparisons with other start-of-the-art algorithms, we use

two train/val splits: train1/val1 from [2, 3] and train2/val2

from [26].

Implementation Details. We choose Faster R-CNN with

16-layer VGG net [34] as our basic 2D object detectors. For

RoI max pooling, the recently introduced operator called

Deformable RoI Pooling described in [8] is adopted in our

implementation. The RoI mean pooling operator is mod-

ified from RoI align described in [16]. By default, we

use pre-trained weights learned on ImageNet [9] dataset for

the initialization of our network. In addition, the input of

models trained on ImageNet is a single three-channel RGB

image. To handle the six-channel input in our framework

(three-channel RGB image + three-channel front view fea-

ture maps), the weights in the first convolutional layer are

just duplicated for initialization. To handle particularly

small objects in KITTI images, the shorter side of the train-

ing images is upscaled to 512 pixels, which was found to

be crucial to achieve very good performance. We don’t

apply any data augmentation methods, even the flip oper-

ation, which is usually used in most 2D detectors. For

anchors used in RPN, 5 scales of 2, 4, 8, 16, 32 and 3

aspect ratios of 1:1, 1:2, 2:1 are used on the basic 16 ×
16 box, where 16 is just the stride size on the utilized

feature map according to the original implementation of

Faster R-CNN. Mostly used sampling heuristics like the

fixed foreground-to-background ratio and online hard ex-

ample mining (OHEM) [33] are adopted to maintain a bal-

ance between foreground and background for good perfor-

mance. Mini-batch stochastic gradient descent (SGD) is the

optimizer of the network. We use a batch size of N = 1 for

images and a batch size of R = 256 for proposals. Weights

of the sub-net for disparity prediction are from the model

which is trained on Cityscapes [6] and KITTI2. The net-

work is trained with a learning rate of 0.0005 for 30K itera-

tions. Then we reduce the learning rate to 0.00005 and train

another 10K iterations. In our implementation, the whole

network takes around 120ms per image on a single TITAN

X GPU in inference stage.

Evaluation Metrics. We evaluate 3D object detection re-

sults using the official evaluation metrics from KITTI. 3D

box evaluation is conducted on both two validation splits

(different models are trained with the corresponding train-

ing sets). We focus our experiments on the car category as

KITTI provides enough car instances for our method. Fol-

lowing the KITTI setting, we do evaluation on three diffi-

culty regimes: easy, moderate and hard. In our evaluation,

the 3D IoU threshold is set to 0.5 and 0.7 for better com-

parison. We compute Average Precision (APloc) for the

bird’s eye view boxes, which are obtained by projecting the

3D boxes to the ground plane. Average Precision (AP3D)

metric is also used to evaluate the full 3D bounding boxes.

Table 1 shows APloc on val1 and val2 and Table 2 is the

comparison results for AP3D. Table 3 shows results on the

KITTI testing set.

2https://github.com/mrharicot/monodepth
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Figure 3. Visualization for 2D detection boxes, the projected 3D detection boxes on inferred point cloud from estimated disparity.

Comparison with Other Methods. As this work aims

at monocular 3D object detection, our approach is mainly

compared to other methods with only monocular images

as input. Here three methods are chosen for comparisons:

Mono3D [2], 3DOP [3] and Deep3DBox [26]. APloc and

AP3D for Mono3D [2] and 3DOP [3] are provided in [4].

For the state-of-the-art Deep3DBox method, we use the 3D

detection results provided by [26] on val23. The evalua-

tion codes are from the official KITTI website4. As we can

see the quantized results from Tables 1 and 2, our method

outperforms the Mono3D and Deep3DBox methods. Com-

pared to 3DOP, which uses stereo information, the proposed

method provides better results in some circumstances. In

addition, given an input image, the network directly out-

put the 2D and 3D detection results without any extra com-

putation. We also measure the effect of fusion methods

in our framework. As we can see, both input fusion(FV)

and feature fusion(FF) can improve the detection results.

All experiments are done with estimation fusion for 3D

localization, which is also the core part for the 3D detec-

tion pipeline. Typically, more fusion requires more param-

eters. However, the increased amount of parameters is a

very small part compared to the total parameters of the net-

3https://cs.gmu.edu/˜amousavi/results/

Output3DBoxes.zip
4http://kitti.is.tue.mpg.de/kitti/devkit_

object.zip

work. In particular, changing 3-channel RGB input to 6-

channel RGB+FV input only introduces 0.009% additional

weights, and adding fusion of XYZ map only increases

0.79% weights. With the significant performance gain (5%

- 8%), we think the increased parameters are negligible.

Disparity Effect. To show how the quality of the esti-

mated disparity map might change the 3D object detection

performance, we replace MonoDepth method with Disp-

Net [25], which takes stereo pairs as input to estimate more

accurate disparity. This stereo setting can be seen as a up-

per bound of the monocular input in our framework. As

shown in Table 4, 3D detection accuracy increases signifi-

cantly when using much more accurate disparity.

Qualitative Results. Apart from drawing the 2D detec-

tion boxes on images, we also project the 3D detection

boxes on inferred point cloud from estimated disparity for

better visualization. As shown in Figure 3, our approach can

obtain accurate 2D bounding box, 3D orientation, dimen-

sion, and 3D location in various scenes with only monocular

images.

5. Conclusion

We have proposed an approach for accurate 3D object

detection with monocular images in this paper. We directly
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Method Type
IoU=0.5 IoU=0.7

Easy Moderate Hard Easy Moderate Hard

Mono3D [2] Mono 30.50 / - 22.39 / - 19.16 / - 5.22 / - 5.19 / - 4.13 / -

3DOP [3] Stereo 55.04 / - 41.25 / - 34.55 / - 12.63 / - 9.49 / - 7.59 / -

Deep3DBox [26] Mono - / 30.02 - / 23.77 - / 18.83 - / 9.99 - / 7.71 - / 5.30

Ours Mono 46.69 / 50.99 28.69 / 30.52 26.18 / 24.44 11.14 / 12.69 6.59 / 8.03 5.43 / 5.99

Ours(+FF) Mono 49.05 / 53.93 30.20 / 37.50 28.35 / 30.99 13.47 / 17.40 9.46 / 10.95 8.35 / 9.50

Ours(+FF+FV) Mono 55.02 / 54.18 36.73 / 38.06 31.27 / 31.46 22.03 / 19.20 13.63 / 12.17 11.60 / 10.89

Table 1. 3D localization performance: Average Precision (APloc) (in %) of bird’s eye view boxes on KITTI val sets. Results on the two

validation sets: val1 / val2. FV indicates the fusion between the front view feature maps and the RGB image. FF indicates the fusion

between Fmax and Fmean.

Method Type
IoU=0.5 IoU=0.7

Easy Moderate Hard Easy Moderate Hard

Mono3D [2] Mono 25.19 / - 18.20 / - 15.52 / - 2.53 / - 2.31 / - 2.31 / -

3DOP [3] Stereo 46.04 / - 34.63 / - 30.09 / - 6.55 / - 5.07 / - 4.10 / -

Deep3DBox [26] Mono - / 27.04 - / 20.55 - / 15.88 - / 5.85 - / 4.10 - / 3.84

Ours Mono 39.73 / 42.59 24.69 / 26.37 20.79 / 21.14 4.63 / 5.38 2.88 / 3.44 2.40 / 2.58

Ours(+FF) Mono 41.47 / 43.91 26.77 / 29.29 22.45 / 23.58 6.26 / 7.60 4.57 / 4.84 4.13 / 4.42

Ours(+FF+FV) Mono 47.88 / 44.57 29.48 / 30.03 26.44 / 23.95 10.53 / 7.85 5.69 / 5.39 5.39 / 4.73

Table 2. 3D detection performance: Average Precision (AP3D) (in %) of 3D boxes on KITTI val sets. Results on the two validation sets:

val1 / val2. FV indicates the fusion between the front view feature maps and the RGB image. FF means the fusion between Fmax and

Fmean.

Metric
IoU=0.7

Easy Moderate Hard

2D AP 90.43 87.33 76.78

Orientation AP 90.35 87.03 76.37

Birdview’s AP 13.73 9.62 8.22

3D AP 7.08 5.18 4.68

Table 3. Results for 2D, orientation, Bird’s eye view and 3D

AP(%) on the KITTI testing set.

Metric Disparity Data IoU=0.5 IoU=0.7

Birdview’s AP
MonoDepth Mono 36.73 13.63

DispNet Stereo 53.65 19.54

3D AP
MonoDepth Mono 29.48 5.69

DispNet Stereo 47.42 9.80

Table 4. Bird’s eye view and 3D AP(%) on KITTI val1

sets(moderate).

extend the existing proposal-driven 2D detectors with the

help of deep CNN features. With a single RGB image as

input, the network can output all the descriptors for 2D

and 3D objects in an end-to-end fashion. We have shown

that our detection approach significantly outperforms state-

of-the-art monocular approaches and even detectors with

stereo information on particular evaluation index.

The main innovation in the framework is the multi-level

fusion scheme. It utilizes a stand-alone module to estimate

the disparity information, which ensures the accurate 3D

localization and improve the detection performance. Al-

though we only adopt region-based 2D detectors for exten-

sion in this paper, one-stage detector like SSD [24] utiliz-

ing the mechanism of default box also has a potential to be

extended for 3D object detection, which deserves better re-

search in the future.
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