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Abstract

Depth estimation and scene parsing are two particularly

important tasks in visual scene understanding. In this pa-

per we tackle the problem of simultaneous depth estimation

and scene parsing in a joint CNN. The task can be typically

treated as a deep multi-task learning problem [42]. Dif-

ferent from previous methods directly optimizing multiple

tasks given the input training data, this paper proposes a

novel multi-task guided prediction-and-distillation network

(PAD-Net), which first predicts a set of intermediate aux-

iliary tasks ranging from low level to high level, and then

the predictions from these intermediate auxiliary tasks are

utilized as multi-modal input via our proposed multi-modal

distillation modules for the final tasks. During the joint

learning, the intermediate tasks not only act as supervision

for learning more robust deep representations but also pro-

vide rich multi-modal information for improving the final

tasks. Extensive experiments are conducted on two chal-

lenging datasets (i.e. NYUD-v2 and Cityscapes) for both

the depth estimation and scene parsing tasks, demonstrat-

ing the effectiveness of the proposed approach.

1. Introduction

Depth estimation and scene parsing are both fundamen-

tal tasks for visual scene perception and understanding. Sig-

nificant efforts have been made by many researchers on the

two tasks in recent years. Due to the powerful deep learning

technologies, the performance of the two individual tasks

has been greatly improved [10, 54, 4]. Since these two tasks

are correlated, jointly learning a single network for the two

tasks is a promising research line.

Typical deep multi-task learning approaches mainly fo-

cused on the final prediction level via employing the cross-

modal interactions to mutually refining the tasks [18, 51] or

designing more effective joint-optimization objective func-

tions [40, 21]. These methods directly learn to predict the

two tasks given the same input training data. Under this set-

Depth Estimation Scene Parsing

INPUT RGB

SEMANTIC

SURFACE NORMAL

CONTOUR

DEPTH

Intermediate Auxiliary Multiple Tasks

Final Main Tasks

CNN

CNN

Figure 1. Motivation illustration. The proposed approach utilizes

multiple intermediate multi-modal output from multi-task predic-

tions as guidance to facilitate the final main-tasks. Different inter-

mediate tasks ranging from low level to high level are considered,

i.e. monocular depth prediction, surface normal estimation, con-

tour prediction and semantic parsing.

ting, they usually require the deep models to partially share

network parameters or hidden representations. However, si-

multaneously learning the different tasks using distinct loss

functions makes the network optimization complicated, and

it is generally not easy to obtain a good generalization abil-

ity for all the tasks, which therefore brings worse perfor-

mance on some of the tasks compared with the optimiza-

tion with only a single task, as found by UberNet [22]. In

this paper, we explore multi-task deep learning from a dif-

ferent direction, i.e. using intermediate multi-task outputs

as multi-modal input data. This is motivated by three ob-

servations. First, it is well-known that multi-modal data

improve the performance of deep predictions. Take the

task of scene parsing as an example, a CNN trained with
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RGB-D data should perform better than the CNN trained

with only the RGB data. If we do not have the depth data

available, we can use a CNN to predict the depth maps and

then use them as input. Second, instead of using the output

only from the target tasks, i.e. semantic and depth maps, as

the multi-modal input, the powerful CNN is able to predict

more information related, such as contour and surface nor-

mal. Third, how to effectively use the multi-modal data ob-

tained from intermediate auxiliary predictions to facilitates

the final tasks is particularly important. In other words, it is

a crucial point that how to design a good network architec-

ture so that the network communicates or shares informa-

tion based on the multi-modal data for different tasks, while

other deep multi-task learning models such as Cross-stitch

Net [38], Sluice Net [44], and Deep Relation Net [36], as-

sume only single-modal data and thus do not consider it.

Based on the observations above, a multi-tasks guided

prediction-and-distillation network (PAD-Net) is proposed.

Specifically, we first learn to use a front-end deep CNN and

the input RGB data to produce a set of intermediate aux-

iliary tasks (see Fig. 1). The auxiliary tasks range from

low level to high level involving two continuous regression

tasks (monocular depth prediction and surface normal esti-

mation) and two discrete classification tasks (scene parsing

and contour detection). The produced multiple predictions,

i.e. depth maps, surface normal, semantic maps and object

contours, are then utilized as the multi-modal input of the

next sub-deep-network for the final two main tasks. By in-

volving an intermediate multi-task prediction module, the

proposed PAD-Net not only adds deep supervision for op-

timizing the front-end network more effectively, but also is

able to incorporate more knowledge from relevant domains.

Since the predicted multi-modal results are highly comple-

mentary, we further propose multi-modal distillation strate-

gies to better using these data. When the optimization of

the whole PAD-Net is finished, the inference is only based

on the RGB input.

To summarize, the contribution of this paper is threefold:

(i) First, we propose a new multi-tasks guided prediction-

and-distillation network (PAD-Net) structure for simulta-

neous depth estimation and scene parsing. It produces a

set of intermediate auxiliary tasks providing rich multi-

modal data for learning the target tasks. Although PAD-

Net takes only RGB data as input, it is able to incorpo-

rate multi-modal information for improving the final tasks.

(ii) Second, we design and investigate three different multi-

modal distillation modules for deep multi-modal data fu-

sion, which we believe can be also applied in other sce-

narios such as multi-scale deep feature fusion. (iii) Third,

extensive experiments on the challenging NYUD-v2 and

Cityscapes datasets demonstrate the effectiveness of the

proposed approach. Our approach achieves state-of-the-

art results on NYUD-v2 on both the depth estimation and

the scene parsing tasks, and obtains very competitive per-

formance on the Cityscapes scene parsing task. More im-

portantly, the proposed approach remarkably outperforms

state-of-the-arts working on jointly optimizing both tasks.

2. Related Work

Depth estimation and scene parsing. The works on

monocular depth estimation can be mainly grouped into two

categories. The first group comprises the methods based on

the hand-crafted features and graphical models [7, 45, 33].

For instance, Saxena et al. [45] proposed a discriminatively-

trained Markov Random Field (MRF) model for multi-

scale estimation. Liu et al. [33] built a discrete and con-

tinuous Conditional Random Field (CRF) model for fus-

ing both local and global features. The second group of

the methods is based on the advanced deep learning mod-

els [9, 32, 51, 43, 28]. Eigen et al. [10] developed a

multi-scale CNN for fusing both coarse and fine predictions

from different semantic layers of the CNN. Recently, re-

searchers studied implementing the CRF models with CNN

enabling the end-to-end optimization of the whole deep net-

work [32, 54, 53].

Many efforts have been devoted to the scene parsing task

in recent years. The scene parsing task is usually treated

as a pixel-level prediction problem and the performance

is greatly boosted by the fully convolutional strategy [35]

which replaces the full connected layers with convolutional

layers and dilated convolution [4, 58]. The other works

mainly focused on multi-scale feature learning and ensem-

bling [5, 52, 16], end-to-end structure prediction with CRF

models [34, 1, 60, 55] and designing convolutional encoder-

decoder network structures [41, 2]. These works focused on

an individual task but not jointly optimizing the depth esti-

mation and scene parsing together.

Some works [40, 51, 18, 26] explored simultaneously

learning the depth estimation and the scene parsing tasks.

For instance, Wang et al. [51] introduced an approach to

model the two tasks within a hierarchical CRF, while the

CRF model is not jointly learned with the CNN. However,

these works directly learn the two tasks without treating

them as multi-modal input for the final tasks.

Deep multi-task learning for vision. Deep multi-task

learning[38, 44] has been widely used in various computer

vision problems, such as joint inference scene geometric

and semantic [21], face attribute estimation [14], simulta-

neous contour detection and semantic segmentation [12].

Yao and Urtasun et al. [57] proposed an approach for joint

learning three tasks i.e. object detection, scene classification

and semantic segmentation. Hariharan et al. [15] proposed

to simultaneously learn object detection and semantic seg-

mentation based on the R-CNN framework. However, none

of them considered introducing multi-task prediction and

multi-modal distillation steps at the intermediate level of a

CNN to improve the target tasks.
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Figure 2. Illustration of the proposed PAD-Net for simultaneous depth estimation and scene parsing. The symbols of L1 to L6 denote

different optimization losses for different tasks. ‘DECONV’ denotes the deconvolutional operation for upsampling and generating task-

specific feature maps. The cube ‘Multi-Modal Distillation’ represents the proposed multi-modal distillation module for fusing the multiple

predictions to improve the final main tasks.

3. PAD-Net: Multi-Tasks Guided Prediction-

and-Distillation Network

In this section, we describe the proposed PAD-Net for

simultaneous depth estimation and scene parsing. We first

present an overview of the proposed PAD-Net, and then in-

troduce the details of the PAD-Net. Finally, we illustrate the

optimization and inference schemes for the overall network.

3.1. Approach Overview

Figure 2 depicts the framework of the proposed multi-

tasks guided prediction and distillation network (PAD-

Net). PAD-Net consists of four main components. First,

a front-end fully convolutional encoder produces deep fea-

tures. Second, an intermediate multi-task prediction mod-

ule, which uses the deep features in the previous compo-

nent for generating intermediate predictions. Third, a multi-

modal distillation module which is used for incorporating

useful multi-modal information from the intermediate pre-

dictions to improve the final tasks. Fourth, the decoders

uses the distilled information for depth estimation and scene

parsing. The input of PAD-Net is RGB images during both

training and testing, and the final output is the depth and se-

mantic parsing maps. During training, ground-truth labels

for scene parsing, depth estimation and other two intermedi-

ate tasks, i.e. surface normal estimation and contour predic-

tion, are used. Although four different kinds of supervision

are used, we do not require extra annotation effort, since

the surface normal and the contours can be directly inferred

from depth and semantic labels, respectively.

3.2. Front­End Network Structure

The front-end backbone CNN could employ any net-

work structures, such as the commonly used AlexNet [25],

VGG [49] and ResNet [17]. To obtain better deep rep-

resentations for predicting multiple intermediate tasks, we

do not directly use the features from the last convolutional

layer of the backbone CNN. A multi-scale feature aggrega-

tion procedure is performed to enhance the last-scale feature

map via combining the previous scales feature maps derived

from different semantic layers of the backbone CNN, as

shown in Figure 2. The larger-resolution feature maps from

shallower layers are down-sampled via convolution and bi-

linear interpolation operations to the resolution of the last-

scale feature map. The convolution operations are also used

to control the number of feature channels to make the fea-

ture aggregation more memory efficient. And then all the

re-scaled feature maps are concatenated for the follow up

deconvolutional operations. Similar to [3, 58], we also ap-

ply the dilated convolution strategy in the front-end network

to produce feature maps with enlarged receptive field.

3.3. Deep Multi­Task Prediction

Using deep features from the front-end CNN, we per-

form deconvolutional operations to generate four sets of

task-specific feature maps. We obtain features with N chan-

nels for the main depth estimation and scene parsing tasks

while features with N/2 channels for the other two auxil-

iary tasks. The feature map resolution is made to be the

same for four tasks and to be 2× as that of the front-end

feature maps. Then separate convolutional operations are

performed to produce the score maps for the corresponding

four tasks. The score maps are made to be 1/4 as the resolu-

tion of the input RGB images via the bilinear interpolation.

Four different loss functions are added for learning the four

intermediate tasks with the re-scaled ground-truth maps. It

should be noted that the intermediate multi-task learning not

only provides deep supervision for optimizing the front-end

CNN, but also helps to provide valuable multi-modal pre-

dictions, which are further used as input for the final tasks.
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Figure 3. Illustration of the designed different multi-modal distillation modules. The symbols Y1

i , Y2

i , Y3

i , Y4

i represent the predictions

corresponding to multiple intermediate tasks. The distillation module A is a naive combination of the multiple predictions; the module

B proposes a mechanism of passing message between different predictions; the module C shows an attention-guided message passing

mechanism for distillation. The symbol G denotes a generated attention map which is used as guidance in the distillation.

3.4. Deep Multi­Modal Distillation

As mentioned before, the deep multi-modal distillation

module fuses information from the intermediate predictions

for each specific final task. It aims at effectively utilizing the

complementary information from the intermediate predic-

tions of relevant tasks. To achieve this target and under our

general framework, it is potentially flexible to use any dis-

tillation scheme. In this paper, we develop and investigate

three different module designs as shown in Figure 3 to show

how the multi-modal distillation helps improving the final

tasks. The distillation module A represents a naive con-

catenation of the features extracted from these predictions.

The distillation module B passes message between differ-

ent predictions. The distillation module C is an attention-

guided message passing mechanism for information fusion.

To generate richer information and bridge the gap between

these predictions, before the distillation procedure, all the

intermediate prediction maps associated with the i-th train-

ing sample, denoted by {Yt
i}

T
t=1, are first correspondingly

transformed to feature maps {Ft
i}

T
t=1 with more channels

via convolutional layers, where T is the number of interme-

diate tasks.

Multi-Modal Distillation module A. A common way in

deep networks for information fusion is to perform a naive

concatenation of the feature maps or the score maps from

different semantic layers of the network. We aslo consider

this simple scheme as our basic distillation module. The

module A outputs only one set of fused feature maps via

Fo
i ← CONCAT(F1

i , ...,F
T
i ), where CONCAT(·) denotes

the concatenation operation. And then Fo
i is fed into dif-

ferent decoders for predicting different final tasks, i.e. the

depth estimation and the scene parsing tasks.

Multi-Modal Distillation module B. The module A

outputs the same set of feature maps for the two final tasks.

Differently, the module B learns a separate set of feature

maps for each final task. For the k-th final task, let us de-

note Fk
i as the feature maps before message passing and

denote Fo,k
i as the feature maps after the distillation. We re-

fine Fk
i via passing message from the feature maps of other

tasks as follows:

Fo,k
i ← Fk

i +

T
∑

t=1( 6=k)

(Wt,k ⊗ Ft
i), (1)

where ⊗ denotes convolution operation, and Wt,k denotes

the parameters of the convolution kernel corresponding to

the t-th feature map and the k-th feature map. Then the

obtained feature map Fo,k
i is used by the decoded for the

corresponding k-th task. By using the task-specific distilla-

tion feature maps, the network can preserve more informa-

tion for each individual task and is able to facilitate smooth

convergence.

Multi-Modal Distillation module C. The module C in-

troduces an attention mechanism for the distillation task.

The attention mechanism [39] has been successfully applied

in various tasks such as image caption generation [56] and

machine translation [37] for selecting useful information.

Specifically, we utilize the attention mechanism for guid-

ing the message passing between the feature maps gener-

ated from different madalities for different tasks. Since the

passed information flow is not always useful, the attention

can act as a gate function to control the flow, in other words

to make the network automatically learn to focus or to ig-

nore information from other features. When we pass mes-

sage to the k-th task, an attention map Gk
i is first produced

from the corresponding set of feature maps Fk
i as follows:

Gk
i ← σ(Wk

g ⊗ Fk
i ), (2)

where Wk
g is the convolution parameter and σ is a sigmoid

function for normalizing the attention map. Then the mes-

sage is passed with the attention map controlled as follows:

Fo,k
i ← Fk

i +

T
∑

t=1( 6=k)

Gk
i ⊙ (Wt ⊗ Ft

i), (3)

where ⊙ denotes element-wise multiplication.
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3.5. Decoder Network Structure

For the task-specific decoders, we use two consecutive

deconvolutional layers to up-sample the distilled feature

maps for pixel-level prediction. Since the distilled feature

maps have a resolution of 1/4 to that of the input RGB im-

age, each deconvolutional layer 2 time up-scales in resolu-

tion and accordingly reduces the number of output channels

by half. Finally we use a convolution operation to generate

the score maps for each final task.

3.6. PAD­Net Optimization

End-to-end network optimization. We have four in-

termediate prediction tasks, i.e. two discrete classification

problems (scene parsing and contour prediction) and two

continuous regression problems (surface normal estimation

and depth estimation). However, we only require the anno-

tations of the semantic labels and the depth, since the con-

tour labels can be generated from the semantic labels and

the surface normal can be calculated from the depth map.

As our final target is to simultaneously perform the depth

estimation and scene parsing, the whole network needs

to optimize six losses with four different types. Specifi-

cally, we use a cross-entropy loss for the contour predic-

tion task, a softmax loss for the scene parsing task and an

Euclidean loss for both the depth and surface normal esti-

mation tasks. Since the groundtruth depth maps have in-

valid points, we mask these points during training. Simi-

lar to previous works [47, 50], we jointly learn the whole

network with a linearly combined optimization objective,

i.e. Lall =
∑6

i=1 wi ∗ Li, where Li is the loss for the i-th
task and wi is the corresponding loss weight.

Inference. During the inference, We obtain the predic-

tion results from the separate decoders. One important ad-

vantage of the PAD-Net is that it is able to incorporate rich

domain knowledge from different predictions, i.e. scene se-

mantic, depth, surface normal and object contours, while it

only requires a single RGB image for the inference.

4. Experiments
To demonstrate the effectiveness of the proposed ap-

proach for simultaneous depth recovery and scene parsing,

we conduct experiments on two publicly available bench-

mark datasets which provide both the depth and the se-

mantic labels, including an indoor dataset NYU depth V2

(NYUD-v2) [48] and an outdoor dataset Cityscapes [6]. In

the following we describe the details of our experimental

evaluation.

4.1. Experimental Setup

Datasets and Data Augmentation. The NYUD-v2

dataset [48] is a popular indoor RGBD dataset, which has

been widely used for depth estimation [10] and semantic

segmentation [13]. It contains 1449 pairs of RGB and depth

images captured from a Kinect sensor, in which 795 pairs

are used for training and the rest 654 for testing. Follow-

ing [13], The training images are cropped to have a resolu-

tion of 560 × 425. The training data are augmented on the

fly during the training phase. The RGB and depth images

are scaled with a randomly selected ratio in {1, 1.2, 1.5}
and the depth values are divided by the ratio. We also flip

the training samples with a possibility of 0.5.

The Cityscapes [6] is a large-scale dataset mainly used

for semantic urban scene understanding. The dataset is

collected over 50 different cities spanning several months,

and overall 19 semantic classes are annotated. The fine-

annotated part consists of training, validation and test sets

containing 2975, 500, and 1525 images, respectively. The

dataset also provides pre-computed disparity depth maps

associated with the rgb images. Similar to NYUD-v2, we

perform the data augmentation on the fly by scaling the im-

ages with a selected ratio in {0.5, 0.75, 1, 1.25, 1.75} and

randomly flipping them with a possibility of 0.5. As the im-

ages of the dataset have a high resolution (2048 × 1024),

we crop the image with size of 640 for training due to the

limitation of the GPU memory.

Evaluation Metrics. For evaluating the performance

of the depth estimation, we use several quantitative met-

rics following previous works [10, 32, 54], including (a)

mean relative error (rel): 1
N

∑

p

|dp−d∗

p
|

dp

; (b) root mean

squared error (rms):
√

1
N

∑

p(dp − d∗p)
2; (c) mean log10

error (log10): 1
N

∑

i ‖ log10(dp) − log10(d
∗
p)‖ and (d) ac-

curacy with threshold t: percentage (%) of d∗p subject to

max(
d∗

p

dp

,
dp

d∗

p

) = δ < t (t ∈ [1.25, 1.252, 1.253]), where dp

and d∗p are the prediction and the groundtruth depth at the

p-th pixel, respectively. For the evaluation of the seman-

tic segmentation, we adopt three commonly used metrics,

i.e. mean Intersection over Union (mIoU), mean accuracy

and pixel accuracy. The mean IoU is calculated via aver-

aging the Jaccard scores of all the predicted classes. The

mean accuracy is the accuracy among all classes and pixel

accuracy is the total accuracy of pixels regardless of the cat-

egory. On the Cityscapes, both the pixel-level mIoU and

instance-level mIoU are considered.

Implementation Details. The proposed network struc-

ture is implemented base on Caffe library [19] and on

Nvidia Titan X GPUs. The front-end convolutional en-

coder of PAD-Net naturally supports any network structure.

During the training, the front-end network is first initial-

ized with parameters pre-trained with ImageNet for train-

ing, and the rest of the network is randomly intialized. The

whole training process is performed with two phases. In the

first phase, we only optimize the front-end network with the

scene parsing task and use a learning rate 0.001. After that,

the whole network is jointly trained with multi-task losses

and a lower learning rate of 10e-5 is used for a smooth con-
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Figure 4. Quanlitative examples of depth prediction and 40-classes scene parsing results on the NYUD-v2 dataset. The second and the four

row are the estimated depth maps and the scene parsing results from the proposed PAD-Net, respectively.

Table 1. Diagnostic experiments for the depth estimation task on

NYUD-v2 dataset. Distillation A, B, C represents the proposed

three multi-modal distillation modules.

Method
Error (lower is better) Accuracy (higher is better)

rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Front-end + DE (baseline) 0.265 0.120 0.945 0.447 0.745 0.897

Front-end + DE + SP (baseline) 0.260 0.117 0.930 0.467 0.760 0.905

PAD-Net (Distillation A + DE) 0.248 0.112 0.892 0.513 0.798 0.921

PAD-Net (Distillation B + DE) 0.230 0.099 0.850 0.591 0.854 0.953

PAD-Net (Distillation C + DE) 0.221 0.094 0.813 0.619 0.882 0.965

PAD-Net (Distillation C + DE + SP) 0.214 0.091 0.792 0.643 0.902 0.977

Table 2. Diagnostic experiments for the scene parsing task on the

NYUD-v2 dataset.
Method Mean IoU Mean Accuracy Pixel Accuracy

Front-end + SP (baseline) 0.291 0.301 0.612

Front-end + SP + DE (baseline) 0.294 0.312 0.615

PAD-Net (Distillation A + SP) 0.308 0.365 0.628

PAD-Net (Distillation B + SP) 0.317 0.411 0.638

PAD-Net (Distillation C + SP) 0.325 0.432 0.645

PAD-Net (Distillation C + DE + SP) 0.331 0.448 0.647

vergence. As the final tasks are depth estimation and scene

parsing, we set the loss weight of the contour prediction and

surface normal estimation as 0.8. In the multi-task predic-

tion module, N is set to 512. Total 60 epochs are used for

NYUD-v2, and 40 epochs for Cityscapes. Due to the sparse

groundtruth depth maps of the Cityscapes dataset, the in-

valid points are masked out in the backpropagation. The

network is optimized using stachastic gradient descent with

the weight decay and the momentum set to 0.0005 and 0.99,

respectively.

4.2. Diagnostics Experiments

To deeply analyze the proposed approach and demon-

strate its effectiveness, we conduct diagnostics experiments

Table 3. Quantitative comparison with state-of-the-art methods

methods on the scene parsing task on the NYUD-v2 dataset. The

methods ‘Gupta et al.’ [13] and ‘Arsalan et al.’ [40] jointly learn

two tasks.
Method Input Data Type Mean IoU Mean Accuracy Pixel Accuracy

Deng et al. [8] RGB + Depth - 0.315 0.638

FCN [35] RGB 0.292 0.422 0.600

FCN-HHA [35] RGB + Depth 0.340 0.461 0.654

Eigen and Fergus [9] RGB 0.341 0.451 0.656

Context [31] RGB 0.406 0.536 0.700

Kong et al. [23] RGB 0.445 - 0.721

RefineNet-Res152 [30] RGB 0.465 0.589 0.736

Gupta et al. [13] RGB + Depth 0.286 - 0.603

Arsalan et al. [40] RGB 0.392 0.523 0.686

PAD-Net-ResNet50 (Ours) RGB 0.502 0.623 0.752

on both NYUD-v2 and Cityscapes datasets. For the front-

end network, according to the complexity of the dataset, we

choose AlexNet [25] and ResNet-50 [17] network structures

for NYUD-v2 and Cityscapes, respectively.

Baseline methods and different variants of PAD-Net.

To conduct the diagnostic experiments, we consider two

baseline methods and different variants of the proposed

PAD-Net. The baseline methods include: (i) Front-end +

DE: performing the depth estimation (DE) task with the

front-end CNN; (ii) Front-end + SP + DE: performing the

scene parsing (SP) and the depth estimation tasks simul-

taneously with the front-end CNN. The different variants

include: (i) PAD-Net (Distillation A + DE): PAD-Net per-

forming the DE task using the distillation module A; (ii)

PAD-Net (Distillation B + DE): similar to (i) while using

the distillation module B; (iii) PAD-Net (Distillation B +

DE): similar to (i) while using the distillation module C;

(iv) PAD-Net (Distillation C + DE + SP): performing DE

and SP tasks simultaneously with the distillation module C.
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Table 4. Quantitative comparison with state-of-the-art methods on

the depth estimation task on NYUD-v2 dataset. The methods

‘Joint HCRF’ [51] and ‘Jafari et al.’ [18] simultaneously learn the

two tasks.
Method # of Training

Error (lower is better) Accuracy (higher is better)

rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Saxena et al. [46] 795 0.349 - 1.214 0.447 0.745 0.897

Karsch et al. [20] 795 0.35 0.131 1.20 - - -

Liu et al. [33] 795 0.335 0.127 1.06 - - -

Ladicky et al. [27] 795 - - - 0.542 0.829 0.941

Zhuo et al. [61] 795 0.305 0.122 1.04 0.525 0.838 0.962

Liu et al. [32] 795 0.230 0.095 0.824 0.614 0.883 0.975

Eigen et al. [10] 120K 0.215 - 0.907 0.611 0.887 0.971

Roi et al. [43] 795 0.187 0.078 0.744 - - -

Eigen and Fergus [9] 795 0.158 - 0.641 0.769 0.950 0.988

Laina et al. [28] 96K 0.129 0.056 0.583 0.801 0.950 0.986

Li et al. [29] 96K 0.139 0.058 0.505 0.820 0.960 0.989

Xu et al. [54] 4.7K 0.139 0.063 0.609 0.793 0.948 0.984

Xu et al. [54] 95K 0.121 0.052 0.586 0.811 0.950 0.986

Joint HCRF [51] 795 0.220 0.094 0.745 0.605 0.890 0.970

Jafari et al. [18] 795 0.157 0.068 0.673 0.762 0.948 0.988

PAD-Net-ResNet50 (Ours) 795 0.120 0.055 0.582 0.817 0.954 0.987

Table 5. Quantitative comparison results with the state-of-the-art

methods on the Cityscapes test set. Our model is trained only on

the fine-annotation dataset.
Method IoU cla. iIoU cla. IoU cat. iIoU cat.

SegNet [2] 0.561 0.342 0.798 0.664

CRF-RNN [60] 0.625 0.344 0.827 0.660

SiCNN [24] 0.663 0.449 0.850 0.712

DPN [34] 0.668 0.391 0.860 0.691

Dilation10 [58] 0.671 0.420 0.865 0.711

LRR [11] 0.697 0.480 0.882 0.747

DeepLab [4] 0.704 0.426 0.864 0.677

Piecewise [31] 0.716 0.517 0.873 0.741

PSPNet [59] 0.784 0.567 0.906 0.786

PAD-Net-ResNet101 (Ours) 0.803 0.588 0.908 0.785

Table 6. Quantitative evaluation of the importance of intermediate

supervision and multiple tasks.

Method
Depth Metrics Parsing Metrics

rel log10 rms Mean IoU Mean Acc Pixel Acc

MTDN-mds 0.149 0.063 0.701 0.474 0.597 0.727

MTDN-inp0 0.153 0.069 0.721 0.465 0.588 0.713

MTDN-inp2 0.139 0.064 0.672 0.481 0.603 0.729

MTDN-inp3 0.128 0.059 0.617 0.490 0.612 0.739

MTDN-full 0.120 0.055 0.582 0.502 0.623 0.752

Effect of direct multi-task learning. To investigate the

effect of simultaneously optimizing two different task as

previous works [40, 51], i.e. predicting two different tasks

directly from the last scale feature map of the front-end

CNN. We carry out experiments on both the NYUD-v2 and

Cityscapes datasets, as shown in Table. 1, 2 and Figure 5,

respectively. It can be observed that on NYUD-v2, the

Front-end + DE + SP slightly outperforms the Front-end

+ DE, while on Cityscapes, the performance of Front-end +

DE + SP is even decreased, which means that using a direct

multi-task learning as traditional is probably not an effective

means to facilitate each other the performance of different

tasks.

Effect of multi-modal distillation. We further evaluate

the effect of the proposed three different distillation mod-

ules for incorporating information from different prediction

tasks. Table 1 shows the results on the depth prediction task

using PAD-Net embedded with the distillation module A, B

and C. It can be seen that these three variants of PAD-Net

are all obviously better than the two baseline methods, and
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Figure 5. Diagnostic experiments of the proposed approach for

the scene parsing on Cityscapes val dataset with ResNet-50 as the

front-end backbone CNN.

the best one of ours, PAD-Net (Distillation C + DE) is 4.4

and 2.3 points better than the baseline Front-end + DE + SP

on the rel and on the log10 metric respectively, and on the

segmentation task on the same dataset, it is 3.1 points higher

than the same baseline on the mIoU metric, which clearly

demonstrates the effectiveness of the proposed multi-modal

distillation strategy. Similar performance gaps can be also

observed on the segmentation task on Cityscapes in Fig-

ure 5. For comparing the different distillation modules, the

message passing between different tasks (the module B and

C) significantly boosts the the performance over the naive

combination method (the module C). By using the attention

guided scheme, the performance of the module C is further

improved over the module B.

Effect of multi-task guided simultaneous prediction.

We finally verify that the proposed multi-tasks guided pre-

diction and distillation approach facilitates boosting the per-

formance of both the depth estimation and scene parsing.

The results of PAD-Net (Distillation C + DE + SP) clearly

outperforms PAD-Net (Distillation C + DE) and PAD-Net

(Distillation C + SP) in both the depth estimation task (Ta-

ble 1) and the segmentation task (Tabel 2 and Figure 5).

This shows that our design of PAD-Net can use multiple

final tasks in learning more effective features. More im-

portantly, PAD-Net (Distillation C + DE + SP) obtains re-

markably better performance than the baseline Front-end +

DE + SP, further demonstrating the superiority of the pro-

posed PAD-Net compared with the methods directly using

two tasks to learn a deep network.

Importance of intermediate supervision and tasks. To

evaluate the importance of the intermediate tasks, we use

the multiple deep supervision, but consider different num-

ber of intermediate predictions for the distillation module,

including MTDN-inp2 (2 inputs, depth + semantic map),

MTDN-inp3 (3 inputs, depth + semantic map + surface

normal) and MTDN-full (4 inputs). As shown in Table 6,

MTDN-mds is obviously worse than MTDN-full, mean-

ing that the performance gain is not only because of the

model capacity. MTDN-inp0 is also worse than MTDN-

full, showing that the improvement is not just because of
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Figure 6. Quanlitative examples of depth prediction and 19-classes scene parsing results the Cityscapes dataset. The second and the fourth

row correspond to the sparse depth and the semantic groundtruth, respectively.

adding the intermediate supervision. To evaluate the impor-

tance of the intermediate tasks, we use the multiple deep

supervision, but consider different number of intermediate

predictions for the distillation module, including MTDN-

inp2 (2 inputs, depth + semantic map), MTDN-inp3 (3 in-

puts, depth + semantic map + surface normal) and MTDN-

full (4 inputs). The results on NYUD-v2 are shown in Ta-

ble 1. It is obvious that MTDN-mds is significantly worse

than MTDN-full on both tasks (2.9% worse on rel, 2.8%

worse on mIoU); Using more predictions as input gradually

boosts the final performance: MTDN-full is 3.3% (on rel)

and 3.7% (on mIoU) better than MTDN-inp0.

4.3. State­of­the­art Comparison

Depth estimation. On the depth estimation task, we

compare with several state-of-the-art methods, including:

methods adopting hand-crafted features and deep represen-

tations [46, 46, 20, 27, 10, 9, 29, 28], and methods consid-

ering graphical modeling with CNN [33, 32, 61, 51, 54]. As

shown in Table 4, PAD-Net using ResNet-50 network as the

front-end achieves the best performance in all the measure

metrics among all the comparison methods. It should be

noted that our approach is trained only on the official train-

ing set with 795 images without using extra training data.

More importantly, to compare with the methods working on

joint learning the two tasks (Joint HCRF [51] and Jafari et

al. [18]), our performance is remarkably higher than theirs,

further verifying the advantage of the proposed approach.

As the Cityscapes dataset only provides the disparity map,

we do not quantitatively evaluate the depth estimation per-

formance on this dataset. Figure 4 and 6 show qualitative

examples of the depth estimation on the two datasets.

Scene parsing. For the scene parsing task, we quanti-

tatively compare the performance with the state of the art

methods both on NYUD-v2 in Table 3 and on Cityscapes

in Table 5. On NYUD-v2, our PAD-Net-ResNet50 sig-

nificantly outperforms the runner up competitor RefineNet-

Res152 [30] with a 3.7 points gap on the mIoU metric. On

the cityscapes, we train ours only on the fine-annotation

training set, ours achieves a class-level mIoU of 0.803,

which is 1.9 points better than the best competitor PSPNet

trained on the same set. Qualitative scene parsing examples

are shown in Figure 4 and 6.

5. Conclusion

We have presented the proposed PAD-Net for simulta-

neous depth estimation and scene parsing. The PAD-Net

introduces a novel deep multi-task learning means, which

first predicts several intermediate auxiliary tasks and then

employs the multi-task predictions as guidance to facilitate

optimizing the final main tasks. Three different multi-modal

distillation modules are developed to utilize the multi-task

predictions more effectively. Our extensive experiments

on NYUD-v2 and Cityscapes datasets demonstrated its ef-

fectiveness. We also provided new state of the art results

on both the depth estimation and scene parsing tasks on

NYUD-v2, and top performance on Cityscapes scene pars-

ing task.

Acknowledgements

Wanli Ouyang is partially supported by SenseTime

Group Limited. The authors would like to thank NVIDIA

for GPU donation.

682



References

[1] A. Arnab, S. Jayasumana, S. Zheng, and P. H. Torr. Higher

order conditional random fields in deep neural networks. In

ECCV, 2016. 2

[2] V. Badrinarayanan, A. Handa, and R. Cipolla. Seg-

net: A deep convolutional encoder-decoder architecture

for robust semantic pixel-wise labelling. arXiv preprint

arXiv:1505.07293, 2015. 2, 7

[3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected crfs. In ICLR, 2015. 3

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. arXiv preprint arXiv:1606.00915, 2016. 1, 2,

7

[5] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. At-

tention to scale: Scale-aware semantic image segmentation.

In CVPR, 2016. 2

[6] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In CVPR, 2016. 5

[7] E. Delage, H. Lee, and A. Y. Ng. A dynamic bayesian net-

work model for autonomous 3d reconstruction from a single

indoor image. In CVPR, 2006. 2

[8] Z. Deng, S. Todorovic, and L. Jan Latecki. Semantic seg-

mentation of rgbd images with mutex constraints. In ICCV,

2015. 6

[9] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. In ICCV, 2015. 2, 6, 7, 8

[10] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction

from a single image using a multi-scale deep network. In

NIPS, 2014. 1, 2, 5, 7, 8

[11] G. Ghiasi and C. C. Fowlkes. Laplacian pyramid reconstruc-

tion and refinement for semantic segmentation. In ECCV,

2016. 7

[12] S. Gupta, P. Arbelaez, and J. Malik. Perceptual organiza-

tion and recognition of indoor scenes from rgb-d images. In

CVPR, 2013. 2

[13] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning
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