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Abstract

The two underlying requirements of face age progres-

sion, i.e. aging accuracy and identity permanence, are not

well studied in the literature. In this paper, we present a

novel generative adversarial network based approach. It

separately models the constraints for the intrinsic subject-

specific characteristics and the age-specific facial changes

with respect to the elapsed time, ensuring that the gener-

ated faces present desired aging effects while simultane-

ously keeping personalized properties stable. Further, to

generate more lifelike facial details, high-level age-specific

features conveyed by the synthesized face are estimated by

a pyramidal adversarial discriminator at multiple scales,

which simulates the aging effects in a finer manner. The

proposed method is applicable to diverse face samples in

the presence of variations in pose, expression, makeup, etc.,

and remarkably vivid aging effects are achieved. Both vi-

sual fidelity and quantitative evaluations show that the ap-

proach advances the state-of-the-art.

1. Introduction

Age progression is the process of aesthetically rendering

a given face image to present the effects of aging. It is often

used in entertainment industry and forensics, e.g., forecast-

ing facial appearances of young children when they grow up

or generating contemporary photos for missing individuals.

The intrinsic complexity of physical aging, the interfer-

ences caused by other factors (e.g., PIE variations), and

shortage of labeled aging data collectively make face age

progression a rather difficult problem. The last few years

have witnessed significant efforts tackling this issue, where

aging accuracy and identity permanence are commonly

regarded as the two underlying premises of its success

[29][36][26][14]. The early attempts were mainly based on

the skin’s anatomical structure and they mechanically sim-

ulated the profile growth and facial muscle changes w.r.t.

the elapsed time [31][35][23]. These methods provided the
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Figure 1. Demonstration of our aging simulation results (images

in the first column are input faces of two subjects).

first insight into face aging synthesis. However, they gen-

erally worked in a complex manner, making it difficult to

generalize. Data-driven approaches followed, where face

age progression was primarily carried out by applying the

prototype of aging details to test faces [13][29], or by mod-

eling the dependency between longitudinal facial changes

and corresponding ages [28][34][20]. Although obvious

signs of aging were synthesized well, their aging functions

usually could not formulate the complex aging mechanism

accurately enough, limiting the diversity of aging patterns.

The deep generative networks have exhibited a remark-

able capability in image generation [8][9][11][30] and have

also been investigated for age progression [33][37][18][19].

These approaches render faces with more appealing aging

effects and less ghosting artifacts compared to the previ-

ous conventional solutions. However, the problem has not

been essentially solved. Specifically, these approaches fo-

cus more on modeling face transformation between two age

groups, where the age factor plays a dominant role while the

identity information plays a subordinate role, with the re-

sult that aging accuracy and identity permanence can hardly

be simultaneously achieved, in particular for long-term age

progression [18][19]. Furthermore, they mostly require

multiple face images of different ages of the same individ-

ual at the training stage, involving another intractable issue,

i.e. intra-individual aging face sequence collection [33][15].

Both the aforementioned facts indicate that current deep

generative aging methods leave room for improvement.

In this study, we propose a novel approach to face age
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progression, which integrates the advantage of Generative

Adversarial Networks (GAN) in synthesizing visually plau-

sible images with prior domain knowledge in human ag-

ing. Compared with existing methods in literature, it is

more capable of handling the two critical requirements in

age progression, i.e. identity permanence and aging accu-

racy. To be specific, the proposed approach uses a Convolu-

tional Neural Networks (CNN) based generator to learn age

transformation, and it separately models different face at-

tributes depending upon their changes over time. The train-

ing critic thus incorporates the squared Euclidean loss in the

image space, the GAN loss that encourages generated faces

to be indistinguishable from the elderly faces in the training

set in terms of age, and the identity loss which minimizes

the input-output distance by a high-level feature representa-

tion embedding personalized characteristics. It ensures that

the resulting faces present desired effects of aging while the

identity properties remain stable. By estimating the data

density of each individual target age cluster, our method

does not demand matching face pairs of the same person

across two age domains as the majority of the counterpart

methods do. Additionally, in contrast to the previous tech-

niques that primarily operate on cropped facial areas (usu-

ally excluding foreheads), we emphasize that synthesis of

the entire face is important since the parts of forehead and

hair also significantly impact the perceived age. To achieve

this and further enhance the aging details, our method lever-

ages the intrinsic hierarchy of deep networks, and a discrim-

inator of the pyramid architecture is designed to estimate

high-level age-related clues in a fine-grained way. Our ap-

proach overcomes the limitations of single age-specific rep-

resentation and handles age transformation both locally and

globally. As a result, more photorealistic imageries are gen-

erated (see Fig. 1 for an illustration of aging results).

The main contributions of this study include:

(1) We propose a novel GAN based method for age pro-

gression, which incorporates face verification and age esti-

mation techniques, thereby addressing the issues of aging

effect generation and identity cue preservation in a coupled

manner; (2) We highlight the importance of the forehead

and hair components of a face that are closely related to

the perceived age but ignored in other studies; it indeed en-

hances the synthesized age accuracy; (3) We set up new val-

idating experiments in addition to existent ones, including

commercial face analysis tool based evaluation and insen-

sitivity assessment to the changes in expression, pose, and

makeup. Our method is not only shown to be effective but

also robust to age progression.

2. Related Work

In the initial explorations of face age progression, phys-

ical models were exploited to simulate the aging mecha-

nisms of cranium and facial muscles. Todd et al. [31] intro-

duced a revised cardioidal-strain transformation where head

growth was modeled in a computable geometric procedure.

Based on skin’s anatomical structure, Wu et al. [35] pro-

posed a 3-layered dynamic skin model to simulate wrinkles.

Mechanical aging methods were also incorporated by Ra-

manathan and Chellappa [23] and Suo et al. [28].

The majority of the subsequent approaches were data-

driven, which did not rely much on the biological prior

knowledge, and the aging patterns were learned from the

training faces. Wang et al. [34] built the mapping between

corresponding down-sampled and high-resolution faces in

a tensor space, and aging details were added on the latter.

Kemelmacher-Shlizerman et al. [13] presented a prototype

based method, and further took the illumination factor into

account. Yang et al. [36] first settled the multi-attribute

decomposition problem, and progression was achieved by

transforming only the age component to a target age group.

These methods did improve the results, however ghosting

artifacts frequently appeared in the synthesized faces.

More recently, the deep generative networks have been

attempted. In [33], Wang et al. transformed faces across

different ages smoothly by modeling the intermediate tran-

sition states in an RNN model. But multiple face images

of various ages of each subject were required at the train-

ing stage, and the exact age label of the probe face was

needed during test, thus greatly limiting its flexibility. Un-

der the framework of conditional adversarial autoencoder

[37], facial muscle sagging caused by aging was simu-

lated, whereas only rough wrinkles were rendered mainly

due to the insufficient representation ability of the training

discriminator. With the Temporal Non-Volume Preserving

(TNVP) aging approach [18], the short-term age progres-

sion was accomplished by mapping the data densities of two

consecutive age groups with ResNet blocks [10], and the

long-term aging synthesis was finally reached by a chaining

of short-term stages. Its major weakness, however, was that

it merely considered the probability distribution of a set of

faces without any individuality information. As a result, the

synthesized faces in a complete aging sequence varied a lot

in color, expression, and even identity.

Our study also makes use of the image generation abil-

ity of GAN, and presents a different but effective method,

where the age-related GAN loss is adopted for age transfor-

mation, the individual-dependent critic is used to keep the

identity cue stable, and a multi-pathway discriminator is ap-

plied to refine aging detail generation. This solution is more

powerful in dealing with the core issues of age progression,

i.e. age accuracy and identity preservation.

3. Method

3.1. Overview

A classic GAN contains a generator G and a discrimina-

tor D, which are iteratively trained via an adversarial pro-
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Figure 2. Framework of the proposed age progression method. A CNN based generator G learns the age transformation. The training critic

incorporates the squared Euclidean loss in the image space, the GAN loss that encourages generated faces to be indistinguishable from

the training elderly faces in terms of age, and the identity preservation loss minimizing the input-output distance in a high-level feature

representation which embeds the personalized characteristics.

cess. The generative function G tries to capture the under-

lying data density and confuse the discriminative function

D, while the optimization procedure of D aims to achieve

the distinguishability and distinguish the natural face im-

ages from the fake ones generated by G. Both G and D can

be approximated by neural networks, e.g., Multi-Layer Per-

ceptron (MLP). The risk function of optimizing this mini-

max two-player game can be written as:

V(D,G) = min
G

max
D

Ex∼Pdata(x)log[D(x)]+Ez∼Pz(z)log[1−D(G(z))]

(1)

where z is a noise sample from a prior probability distribu-

tion Pz , and x denotes a real face image following a certain

distribution Pdata. On convergence, the distribution of the

synthesized images Pg is equivalent to Pdata.

Recently, more emphasis has been given to the condi-

tional GANs (cGANs) where the generative model G ap-

proximates the dependency of the pre-images (or controlled

attributes) and their corresponding targets. cGANs have

shown promising results in video prediction [17], text to

image synthesis [24], image-to-image translation [11][38],

etc. In our case, the CNN based generator takes young

faces as inputs, and learns a mapping to a domain corre-

sponding to elderly faces. To achieve aging effects while

simultaneously maintaining person-specific information, a

compound critic is exploited, which incorporates the tradi-

tional squared Euclidean loss in the image space, the GAN

loss that encourages generated faces to be indistinguishable

from the training elderly faces in terms of age, and the iden-

tity loss minimizing the input-output distance in a high-level

feature representation which embeds the personalized char-

acteristics. See Fig. 2 for an overview.

3.2. Generator

Synthesizing age progressed faces only requires a for-

ward pass through G. The generative network is a combi-

nation of encoder and decoder. With the input young face, it

first exploits three strided convolutional layers to encode it

to a latent space, capturing the facial properties that tend to

be stable w.r.t. the elapsed time, followed by four residual

blocks [10] modeling the common structure shared by the

input and output faces, similar to the settings in [12]. Age

transformation to a target image space is finally achieved

by three fractionally-strided convolutional layers, yielding

the age progression result conditioned on the given young

face. Rather than using the max-pooling and upsampling

layers to calculate the feature maps, we employ the 3 × 3
convolution kernels with a stride of 2, ensuring that every

pixel contributes and the adjacent pixels transform in a syn-

ergistic manner. All the convolutional layers are followed

by Instance Normalization and ReLU non-linearity activa-

tion. Paddings are added to the layers to make the input and

output have exactly the same size. The architecture of G is

shown in the supplementary material.

3.3. Discriminator

The system critic incorporates the prior knowledge of the

data density of the faces from the target age cluster, and

a discriminative network D is thus introduced, which out-

puts a scalar D(x) representing the probability that x comes

from the data. The distribution of the generated faces Pg

(we denote the distribution of young faces as x ∼ Pyoung ,

then G(x) ∼ Pg) is supposed to be equivalent to the dis-

tribution Pold when optimality is reached. Supposing that

we follow the classic GAN [9], which uses a binary cross

entropy classification, the process of training D amounts to

minimizing the loss:

LGAN D = −Ex∈Pyoung(x)log[1 − D(G(x))] − Ex∈Pold(x)log[D(x)]

(2)

It is always desirable that G and D converge coherently;
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however, D frequently achieves the distinguishability faster

in practice, and feeds back vanishing gradients for G to

learn, since the JS divergence is locally saturated. Recent

studies, i.e. the Wasserstein GAN [5], the Least Squares

GAN [16], and the Loss-Sensitive GAN [22], reveal that

the most fundamental issue lies in how exactly the distance

between sequences of probability distributions is defined.

Here, we use the least squares loss substituting for the neg-

ative log likelihood objective, which penalizes the samples

depending on how close they are to the decision boundary

in a metric space, minimizing the Pearson X
2 divergence.

Further, to achieve more convincing and vivid age-specific

facial details, both the actual young faces and the generated

age-progressed faces are fed into D as negative samples

while the true elderly images as positive ones. Accordingly,

the training process alternately minimizes the following:

LGAN D =
1

2
Ex∼Pold(x)[(Dω(φage(x)) − 1)

2
]

+
1

2
Ex∼Pyoung(x)[Dω(φage(G(x)))

2
+ Dω(φage(x))

2
]

(3)

LGAN G = Ex∼Pyoung(x)[(Dω(φage(G(x))) − 1)
2
] (4)

Note, in (3) and (4), a function φage bridges G and D,

which is especially introduced to extract age-related fea-

tures conveyed by faces, as shown in Fig. 2. Consider-

ing that human faces at diverse age groups share a common

configuration and similar texture properties, a feature ex-

tractor φage is thus exploited independently of D, which

outputs high-level feature representations to make the gen-

erated faces more distinguishable from the true elderly faces

in terms of age. In particular, φage is pre-trained for a multi-

label classification task of age estimation with the VGG-

16 structure [27], and after convergence, we remove the

fully connected layers and integrate it into the framework.

Since natural images exhibit multi-scale characteristics and

along the hierarchical architecture, φage captures the prop-

erties gradually from exact pixel values to high-level age-

specific semantic information, this study leverages the in-

trinsic pyramid hierarchy. The pyramid facial feature rep-

resentations are jointly estimated by D at multiple scales,

handling aging effect generation in a fine-grained way.

The outputs of the 2nd, 4th, 7th and 10th convolutional

layers of φage are used. They pass through the pathways of

D and finally result in a concatenated 12 × 3 representation.

In D, all convolutional layers are followed by Batch Nor-

malization and LeakyReLU activation except the last one in

each pathway. The detailed architecture of D can be found

in the supplementary material, and the joint estimation on

the high-level features is illustrated in Fig. 3.

3.4. Identity Preservation

One core issue of face age progression is keeping the

person-dependent properties stable. Therefore, we incorpo-

Label

D(ɸage(x))

1/0

1/0

0.9

0.2

3 × 3

12 × 3

12 × 3

Pathway 1 Pathway 2 Pathway 3 Pathway 4

fage 1 fage 2 fage 3 fage 4

Figure 3. The scores of four pathways are finally concatenated and

jointly estimated by the discriminator D (D is an estimator rather

than a classifier; the Label does not need to be a single scalar).

rate the associated constraint by measuring the input-output

distance in a proper feature space, which is sensitive to the

identity change while relatively robust to other variations.

Specifically, the network of deep face descriptor [21] is

utilized, denoted as φid, to encode the personalized infor-

mation and further define the identity loss function. φid

is trained with a large face dataset containing millions of

face images from thousands of individuals∗. It is originally

bootstrapped by recognizing N = 2, 622 unique individ-

uals; and then the last classification layer is removed and

φid(x) is tuned to improve the capability of verification in

the Euclidean space using a triplet-loss training scheme. In

our case, φid is clipped to have 10 convolutional layers, and

the identity loss is then formulated as:

Lidentity = Ex∈Pyoung(x)d(φid(x), φid(G(x))) (5)

where d is the squared Euclidean distance between feature

representations. For more implementation details of deep

face descriptor, please refer to [21].

3.5. Objective

Besides the specially designed age-related GAN critic

and the identity permanence penalty, a pixel-wise L2 loss

in the image space is also adopted for further bridging the

input-output gap, e.g., the color aberration, which is formu-

lated as:

Lpixel =
1

W × H × C
‖G(x) − x‖

2
2 (6)

where x denotes the input face and W , H , and C corre-

spond to the image shape.

Finally, the system training loss can be written as:

LG = λaLGAN G + λpLpixel + λiLidentity (7)

LD = LGAN D (8)

We train G and D alternately until optimality, and finally

G learns the desired age transformation and D becomes a

reliable estimator.

∗The face images are collected via the Google Image Search using the

names of 5K celebrities, purified by automatic and manual filtering.
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4. Experimental Results

4.1. Data Collection

The sources of face images for training GANs are the

MORPH mugshot dataset [25] with standardized imaging

and the Cross-Age Celebrity Dataset (CACD) [7] involving

PIE variations.

An extension of the MORPH aging database [25] con-

tains 52,099 color images with near-frontal pose, neutral ex-

pression, and uniform illumination (some minor pose and

expression variations are indeed present). The subject age

ranges from 16 to 77 years old, with the average age be-

ing approximately 33. The longitudinal age span of a sub-

ject varies from 46 days to 33 years. CACD is a public

dataset [7] collected via the Google Image Search, con-

taining 163,446 face images of 2,000 celebrities across 10

years, with age ranging from 14 to 62. The dataset has the

largest number of images with age changes, showing varia-

tions in pose, illumination, expression, etc., with less con-

trolled acquisition than MORPH. We mainly use MORPH

and CACD for training and validation. FG-NET [4] is also

adopted for testing to make a fair comparison with prior

work, which is popular in aging analysis but only contains

1,002 images from 82 individuals. More properties of these

databases can be found in the supplementary material.

4.2. Implementation Details

Prior to feeding the images into the networks, the faces

are aligned using the eye locations provided by the dataset

itself (CACD) or detected by the online face recognition

API of Face++ [3] (MORPH). Excluding those images un-

detected in MORPH, 163,446 and 51,699 face images from

the two datasets are finally adopted, respectively, and they

are cropped to 224 × 224 pixels. Due to the fact that the

number of faces older than 60 years old is quite limited in

both databases and neither contains images of children, we

only consider adult aging. We follow the time span of 10

years for each age cluster as reported in many previous stud-

ies [36][29][37][33][18], and apply age progression on the

faces below 30 years old, synthesizing a sequence of age-

progressed renderings when they are in their 30s, 40s, and

50s. Therefore, there are three separate training sessions for

different target age groups.

The architectures of the networks G and D are shown in

the supplementary material. For MORPH, the trade-off

parameters λp, λa, and λi are empirically set to 0.10, 300.00

and 0.005, respectively; and they are set to 0.20, 750.00

and 0.005 for CACD. At the training stage, we use Adam

with the learning rate of 1 × 10−4 and the weight decay

factor of 0.5 for every 2, 000 iterations. We (i) update the

discriminator at every iteration, (ii) use the age-related and

identity-related critics at every generator iteration, and (iii)

employ the pixel-level critic for every 5 generator iterations.

The networks are trained with a batch size of 8 for 50, 000

iterations in total, which takes around 8 hours on a GTX

1080Ti GPU.

4.3. Performance Comparison

4.3.1 Experiment I: Age Progression

Five-fold cross validation is conducted. On CACD, each

fold contains 400 individuals with nearly 10,079, 8,635,

7,964, and 6,011 face images from the four age clusters of

[14-30], [31-40], [41-50], and [51-60], respectively; while

on MORPH, each fold consists of nearly 2,586 subjects

with 4,467, 3,030, 2,205, and 639 faces from the four age

groups. For each run, four folds are utilized for training,

and the remainder for evaluation. Examples of age progres-

sion results are depicted in Fig. 4. As we can see, although

the examples cover a wide range of population in terms of

race, gender, pose, makeup and expression, visually plausi-

ble and convincing aging effects are achieved.

4.3.2 Experiment II: Aging Model Evaluation

We acknowledge that face age progression is supposed to

aesthetically predict the future appearance of the individ-

ual, beyond the emerging wrinkles and identity preserva-

tion, therefore in this experiment a more comprehensive

evaluation of the age progression results is provided with

both the visual and quantitative analysis.

Experiment II-A: Visual Fidelity: Fig. 5 (a) displays

example face images with glasses, occlusions, and pose

variations. The age-progressed faces are still photorealistic

and true to the original inputs; whereas the previous pro-

totyping based methods [29][32] are inherently inadequate

for such circumstances, and the parametric aging models

[26][28] may also lead to ghosting artifacts. In Fig. 5 (b),

some examples of hair aging are demonstrated. As far as we

know, almost all aging approaches proposed in the litera-

ture [36][26][13][33][37][15] focus on cropped faces with-

out considering hair aging, mainly because hair is not as

structured as the face area. Further, hair is diverse in tex-

ture, shape, and color, thus difficult to model. Nevertheless,

the proposed method takes the whole face as input, and, as

expected, the hair grows wispy and thin in aging simulation.

Fig. 5 (c) confirms the capability of preserving the neces-

sary facial details during aging, and Fig. 5 (d) shows the

smoothness and consistency of the aging changes, where

the lips become thinner, the under-eye bags become more

and more obvious, and wrinkles are deeper.

Experiment II-B: Aging Accuracy: Along with face

aging, the estimated age is supposed to increase. Corre-

spondingly, objective age estimation is conducted to mea-

sure the aging accuracy. We apply the online face analy-

sis tool of Face++ [3] to every synthesized face. Exclud-

ing those undetected, the age-progressed faces of 22,318

test samples in the MORPH dataset are investigated (aver-

age of 4,464 test faces in each run under 5-fold cross val-
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Figure 4. Aging effects obtained on the CACD (the first two rows) and MORPH (the last two rows) databases for 12 different subjects. The

first image in each panel is the original face image and the subsequent 3 images are the age progressed visualizations for that subject in the

[31- 40], [41-50] and 50+ age clusters.

(a) Robustness to glasses, occlusion and pose variations.

(d) Aging consistency.

(b) Hair aging.
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Figure 5. Illustration of visual fidelity (zoom in for a better view).

idation). Table 1 shows the results. The mean values are

42.84, 50.78, and 59.91 years old for the 3 age clusters, re-

spectively. Ideally, they would be observed in the age range

of [31-40] [41-50], and [51-60]. Admittedly, the lifestyle

factors may accelerate or slow down the aging rates for

the individuals, leading to deviations in the estimated age

from the actual age, but the overall trends should be rela-

tively robust. Due to such intrinsic ambiguities, objective

age estimations are further conducted on all the faces in the

dataset as benchmark. In Table 1 and Fig. 6(a) and 6(c),

it can be seen that the estimated ages of the synthesized

faces are well matched with those of the real images, and

increase steadily with the elapsed time, clearly validating

our method.

On CACD, the aging synthesis results of 50, 222 young

faces are used in this evaluation (average of 10,044 test

faces in each run). Even though the age distributions of dif-

ferent clusters do not have a good separation as in MORPH,

it still suggests that the proposed age progression method

has indeed captured the data density of the given subset of

faces in terms of age. See Table 1 and Figs. 6(b) and 6(d)

for detailed results.

Experiment II-C: Identity Preservation: Objective

face verification with Face++ is carried out to check if the

original identity property is well preserved during age pro-

gression. For each test face, we perform comparisons be-

tween the input image and the corresponding aging simula-

tion results: [test face, aged face 1], [test face, aged face 2],

and [test face, aged face 3]; and statistical analyses among

the synthesized faces are conducted, i.e. [aged face 1, aged

face 2], [aged face 1, aged face 3], and [aged face 2, aged

face 3]. Similar to Experiment II-B, 22,318 young faces

in MORPH and their age-progressed renderings are used

in this evaluation, leading to a total of 22, 318 × 6 veri-

fications. As shown in Table 2, the obtained mean veri-

fication rates for the 3 age-progressed clusters are 100%,

98.91%, and 93.09%, respectively, and for CACD, there are

50, 222×6 verifications, and the mean verification rates are

99.99%, 99.91%, and 98.28%, respectively, which clearly

confirm the ability of identity preservation of the proposed

method. Additionally, in Table 2 and Fig. 7, face verifi-

cation performance decreases as the time elapsed between

two images increases, which conforms to the physical ef-

fect of face aging [6], and it may also explain the better

performance achieved on CACD compared to MORPH in

this evaluation.
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Table 1. Objective age estimation results (in years) on MORPH and CACD

MORPH CACD

Age Cluster 0 Age Cluster 1 Age Cluster 2 Age Cluster 3 Age Cluster 0 Age Cluster 1 Age Cluster 2 Age Cluster 3

Synthesized faces* Synthesized faces*

– 42.84 ± 8.03 50.78 ± 9.01 59.91 ± 8.95 – 44.29 ± 8.51 48.34 ± 8.32 52.02 ± 9.21

– 42.84 ± 0.40 50.78 ± 0.36 59.91 ± 0.47 – 44.29 ± 0.53 48.34 ± 0.35 52.02 ± 0.19

Natural faces Natural faces

32.57 ± 7.95 42.46 ± 8.23 51.30 ± 9.01 61.39 ± 8.56 38.68 ± 9.50 43.59 ± 9.41 48.12 ± 9.52 52.59 ± 10.48

* The standard deviation in the first row is calculated on all the synthesized faces; the standard deviation in the second row is calculated

on the mean values of the 5 folds.

Table 2. Objective face verification results on (a) MORPH and (b) CACD

Aged face 1 Aged face 2 Aged face 3 Aged face 1 Aged face 2 Aged face 3

verification confidencea verification confidencea

(a)

Test face 94.64 ± 0.03 91.46 ± 0.08 85.87 ± 0.25

(b)

94.13±0.04 91.96±0.12 88.60±0.15

Aged face 1 – 94.34 ± 0.06 89.92 ± 0.30 – 94.88±0.16 92.63±0.09

Aged face 2 – – 92.23 ± 0.24 – – 94.21±0.24

verification confidence b verification confidenceb

Test face 94.64 ± 1.06 91.46 ± 3.65 85.87 ± 5.53 94.13±1.19 91.96±2.26 88.60±4.19

Aged face 1 – 94.34 ± 1.64 89.92 ± 3.49 – 94.88±0.87 92.63±2.10

Aged face 2 – – 92.23 ± 2.09 – – 94.21±1.25

verification rate (threshold = 76.5, FAR = 1e - 5) verification rate (threshold = 76.5, FAR = 1e - 5)

Test face 100 ± 0 % 98.91 ± 0.40 % 93.09 ± 1.31 % 99.99 ± 0.01 % 99.91 ± 0.05 % 98.28 ± 0.33 %

a The standard deviation is calculated on the mean values of the 5 folds.
b The standard deviation is calculated on all the synthesized faces.
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Figure 6. Distributions of the estimated ages obtained by Face++.

(a) MORPH, synthesized faces; (b) CACD, synthesized faces; (c)

MORPH, actual faces; and (d) CACD, actual faces.
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Figure 7. Distributions of the face verification confidence on (a)

MORPH and (b) CACD.

Experiment II-D: Contribution of Pyramid Architec-

ture: One model assumption is that the pyramid structure

23 29

Test face

One-Pathway 

Discriminator

Proposed

30 24 

(b) CACD

26 27

(a) MORPH

Figure 8. Visual comparison to the one-pathway discriminator.

of the discriminator D advances the generation of the aging

effects, making the age-progressed faces more natural. Ac-

cordingly, we carry out comparison to the one-pathway dis-

criminator, under which the generated faces are directly fed

into the estimator rather than represented as feature pyramid

first. The discriminator architecture in the contrast experi-

ment is equivalent to a chaining of the network φage and the

first pathway in the proposed pyramid D.

Fig. 8 provides a demonstration. Visually, the synthe-

sized aging details of the counterpart are not so evident.

To make the comparison more specific and reliable, quan-

titative evaluations are further conducted with the similar

settings as in Experiments II-B and II-C, and the statisti-

cal results are shown in Table 3. In the table, the estimated

ages achieved on MORPH and CACD are generally higher

than the benchmark (shown in Table 1), and the mean ab-

solute errors over the three age clusters are 2.69 and 2.52

years for the two databases, respectively, exhibiting larger
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Table 3. Quantitative evaluation results using one-pathway discriminator on (a) MORPH and (b) CACD

Aged face 1 Aged face 2 Aged face 3 Aged face 1 Aged face 2 Aged face 3

(a)
Estimated age (yrs old) 46.14 ± 7.79 54.99 ± 7.08 62.10 ± 6.74

(b)
45.89 ± 9.85 51.44 ± 9.78 54.52 ± 10.22

Verification confidence 93.66 ± 1.15 89.94 ± 2.59 84.51 ± 4.36 92.98 ± 1.76 87.55 ± 4.62 84.61 ± 5.83

Test face

Our results

Face of Future online tool [2]  

& 

AgingBooth App [1]

(50 years old +)

Prior work

21 28 2618 22 42 35 45 35

61-70  [36]51-60  [36]52 [28]48  [28] 51-60 [36] 51-60  [33]41-50  [33] 51-60  [37] 51-60  [37]

MORPH FGNET

41-50  [26]

30 29 25

41-50  [15] 60+ [15]

Figure 9. Performance comparison with prior work (zoom in for a better view of the aging details).

deviation than 0.79 and 0.50 years obtained by using the

pyramid architecture. It is perhaps because the synthesized

wrinkles in this contrast experiment are less clear and the

faces look relatively messy. It may also explain the de-

creased face verification confidence observed in Table 3 in

the identity preservation evaluation. Based on both the vi-

sual fidelity and the quantitative estimations, we can draw

an inference that compared with the pyramid architecture,

the one-pathway discriminator, as widely utilized in previ-

ous GAN-based frameworks, is lagging behind in regard to

modeling the sophisticated aging changes.

Experiment II-E: Comparison to Prior Work:

To compare with prior work, we conduct test-

ing on the FG-NET and MORPH databases with

CACD as the training set. These prior studies are

[26][28][33][36][19][37][18][20][15], which signify the

state-of-the-art. In addition, one of the most popular mobile

aging applications, i.e. Agingbooth [1], and the online

aging tool Face of the future [2] are also compared. Fig.

9 displays some example faces. As can be seen, Face of

the future and Agingbooth follow the prototyping-based

method, where the identical aging mask is directly applied

to all the given faces as most of the aging Apps do.

While the concept of such methods is straightforward, the

age-progressed faces are not photorealistic. Regarding the

published works in the literature, ghosting artifacts are un-

avoidable for the parametric method [28] and the dictionary

reconstruction based solutions [36][26]. Technological ad-

vancements can be observed in the deep generative models

[33][37][15], whereas they only focus on the cropped facial

area, and the age-progressed faces lack necessary aging de-

tails. In a further experiment, we collect 138 paired images

of 54 individuals from the published papers, and invite 10

human observers to evaluate which age-progressed face is

better in the pairwise comparison. Among the 1,380 votes,

69.78% favor the proposed method, 20.80% favor the prior

work, and 9.42% indicate that they are about the same.

Besides, the proposed method does not require burdensome

preprocessing as previous works do, and it only needs 2

landmarks for pupil alignment. To sum up, we can say that

the proposed method outperforms the counterparts.

5. Conclusions

Compared with the previous approaches to face age pro-

gression, this study shows a different but more effective so-

lution to its key issues, i.e. age transformation accuracy

and identity preservation, and proposes a novel GAN based

method. This method involves the techniques on face veri-

fication and age estimation, and exploits a compound train-

ing critic that integrates the simple pixel-level penalty, the

age-related GAN loss achieving age transformation, and the

individual-dependent critic keeping the identity information

stable. For generating detailed signs of aging, a pyramidal

discriminator is designed to estimate high-level face rep-

resentations in a finer way. Extensive experiments are con-

ducted, and both the achieved aging imageries and the quan-

titative evaluations clearly confirm the effectiveness and ro-

bustness of the proposed method.
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