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Abstract

In this paper, we study the mixture proportion estima-

tion (MPE) problem in a new setting: given samples from

the mixture and the component distributions, we identify

the proportions of the components in the mixture distribu-

tion. To address this problem, we make use of a linear in-

dependence assumption, i.e., the component distributions

are independent from each other, which is much weaker

than assumptions exploited in the previous MPE methods.

Based on this assumption, we propose a method (1) that

uniquely identifies the mixture proportions, (2) whose out-

put provably converges to the optimal solution, and (3) that

is computationally efficient. We show the superiority of

the proposed method over the state-of-the-art methods in

two applications including learning with label noise and

semi-supervised learning on both synthetic and real-world

datasets.

1. Introduction

The estimation of the proportions of component distri-

butions in a mixture, namely, mixture proportion estimation

(MPE), has been an important prerequisite for many prac-

tical problems. For example, in the label noise problem

where training data are randomly mislabelled with some

small flip probabilities [9], each class-conditional distribu-

tion of noisy data is a mixture of the true class-conditional

distributions. The mixture proportions, which are closely

related to the flip rates, are essential for designing noise-

robust loss functions [31, 22, 24], and can be estimated by

MPE methods. MPE also arises in the scenario of semi-

supervised learning. The proportions of positive and nega-

tive examples in the unlabelled sample are often required to

design cost-sensitive loss functions [23, 29].

If we are only given data from the mixture distribu-

tion, we can possibly estimate the mixture proportions and
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Figure 1. An illustration of the setting in this study. We are pro-

vided with unlabeled or noisy data sampled from the mixture dis-

tribution (images inside the ellipse with black dashed line) and

also a small set of correctly labeled data sampled from each com-

ponent distribution (images outside the ellipse). Here, images with

different color boundaries come from different classes. We aim to

estimate the weights of components based on these information.

component distributions by unsupervised learning [27, 3].

But these unsupervised learning methods typically rely on

strong restrictions on the distribution class, for example,

mixture of Gaussians (MoG), and the solution is gener-

ally not unique. Thus, existing MPE methods focus on

the weakly-supervised setting, e.g., in a mixture distribu-

tion containing two component distributions, samples from

the mixture and one component are available. This setting

has found applications in PU learning (learning from posi-

tive and unlabeled examples) [8] and multi-instance learn-

ing [26]. Still, a unique solution cannot be guaranteed in

this setting without making further assumptions.

Two popular assumptions, including irreducibility and

anchor set conditions, have been introduced to make the

problem tractable. Here, we say a component is the tar-

get component if we want to estimate its proportion in the

mixture. The irreducibility condition assumes that the tar-
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get component cannot be represented by a convex combi-

nation of the remaining components and a new distribution

[2, 32]. Under this condition, the proportion of the target

component can be provably identifiable. However, uniform

convergence of the estimator in [2] is not guaranteed, and

can be arbitrarily slow in practice. The anchor set condi-

tion [31, 26] is another stronger assumption. It assumes that

each component has a compact support set not shared with

others, and this compact support set is called the anchor set.

This assumption leads to estimation methods that can prov-

ably converge to the true proportion with a guaranteed rate.

However, all of the aforementioned methods suffer from

one or more of the following weaknesses. First, although

the irreducibility and anchor set assumptions are necessary

for proving identifiability or convergence rates, they can

easily be violated in practical problems. Second, the estima-

tion error is usually large in practice. For example, methods

like [31, 8, 19] rely on accurate estimation of the conditional

probability, which is often unachievable because it is diffi-

cult to choose an appropriate model for the conditional dis-

tributions. Third, the estimation algorithms are inefficient.

For example, methods proposed in [26] need to solve sev-

eral quadratic programming problems, which is relatively

time-consuming. Finally, the extension of these methods to

more than two mixture components is not straightforward.

In some problems such as semi-supervised learning, we

have access to a few examples from every component dis-

tribution and sufficient examples from the mixture distri-

bution, as shown in Figure 1. To target this kind of prob-

lems, we study the MPE problem in a new setting: we es-

timate the proportions of the component distributions in a

mixture given the samples from the mixture and all com-

ponents. We find that a much weaker assumption, i.e.,

the independence of component distribution, is sufficient to

guarantee the identifiability of mixture proportions. Under

this assumption, we propose an estimation method by em-

bedding the distributions into a reproducing kernel Hilbert

space (RKHS). Our method only requires solving a simple

quadratic programming problem, which is much more ef-

ficient than previous methods. Furthermore, under such a

weaker assumption, the proposed method also gives a con-

sistent estimator which provably converges to the true pro-

portion with a guaranteed convergence rate.

We demonstrate the effectiveness of our MPE method

in two applications including flip rate estimation in learn-

ing with label noise and class prior estimation in semi-

supervised learning. We validate our approach with com-

prehensive experiments. Unlike many previous flip rate es-

timation methods, our method can be easily applied to the

multi-class setting, and enjoy the efficiency and high per-

formances on both synthetic and real-world datasets.

2. Related Work

2.1. Mixture proportion estimation

Most of the recent MPE methods are based on the anchor

set condition. For instance, [30, 31] proposed the ROC (re-

ceiver operating characteristic) curve-based methods, which

can provably converge to the true proportion with a guar-

anteed rate. [19, 24] proposed to estimate the proportions

based on the examples in the anchor set. [26] proposed a

kernel mean based gradient thresholding algorithm to iden-

tify the proportion of a component distribution from a mix-

ture. The distributions are first embedded into a RKHS, and

then the optimal proportion is greedily searched in an inter-

val by solving a series of quadratic programming problems.

Under the anchor set condition, this method can provably

converge to the true proportion.

Since [26] is the closest work to ours, we summarize the

main differences from two aspects. First, we explore the

use of the independence assumption rather than the anchor

set one in mixture proportion estimation. The different as-

sumptions of component distributions result in distinct anal-

ysis of the convergence rate. [26] provided a convergence

rate with the order of O(1/
√

min(n, n0)), where n and n0

are the sample sizes of the data from the mixture and the

target component, respectively. However, the estimate con-

verges to within an additive factor of the true proportion,

which heavily depends on the choice of the kernel function

and the property of the anchor set. This factor may lead to a

slow convergence in practice. However, in this paper, even

though the proved upper bound has a relatively slower con-

vergence rate, the estimates are guaranteed to converge to

the optimal solutions.

Second, [26] considered only a mixture of two com-

ponents given the samples from the mixture and the tar-

get component. In this paper, we study a more general

case, that is, a mixture of multiple components, where the

samples from the mixture and all components are given.

Even though our model requires a sample for each com-

ponent, having a small number of examples for each com-

ponent is empirically sufficient, which are easily obtainable

in many problems. This setting has applications in many

problems, such as learning with label noise [37, 18] and

semi-supervised learning [29].

2.2. Class ratio estimation

Class ratio estimation [7, 14, 6] studies a similar prob-

lem that estimates the class ratios of unlabeled data given

a small set of labeled training data. Iyer et al. [14] ex-

ploited the maximum mean discrepancy (MMD) framework

to solve the class ratio estimation problem, which shares

a similar formulation with the proposed method. But to

the best of our knowledge, we are the first to comprehen-

sively study the relationships between several assumptions
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of MPE and propose to solve MPE by using the weakest

linear independence assumption. Furthermore, we prove a

novel convergence bound which is data-independent; that is

to say, the proposed method can uniformly converge to the

optimal solution. On the other hand, the error bound pro-

vided by Iyer et al. [14] is proportional to the reciprocal of

the minimum eigenvalue of a data-dependent matrix. If the

training data are similar, the minimum eigenvalue can be as

small as 1

n
, which leads to the fact that their convergence

rate can be arbitrary slow. Furthermore, we have explicitly

studied the relationship between the independence of distri-

butions and the independence of kernel mean embeddings.

Finally, we have studied a wide range of applications of our

MPE method and have contributed to learning with multi-

class label noise and semi-supervised learning.

3. MPE with Linear Independence Assumption

Suppose that Pi, i ∈ {1, · · · , c}, are c ≥ 2 different

component distributions over a compact metric space X ,

and that P is their mixture, which satisfies

P =

c
∑

i=1

λiPi, (1)

where λi ≥ 0, ∀i ∈ {1, · · · , c} and
∑c

i=1
λi = 1.

We consider the setting that samples from all components

{xi
1
, xi

2
, · · · , xini

}, i = 1, · · · , c, and the sample from the

mixture distribution {x1, x2, · · · , xn} are given. Mixture

proportion estimation (MPE) aims to estimate {λi}1≤i≤c

from the data. Here n, n1, · · · , nc are the sample sizes of

the mixture and the c components, respectively.

3.1. Linear independence assumption

Without any assumption on the component distributions,

it is not possible to identify the proportions. Previous meth-

ods assume the irreducibility and anchor set conditions,

which are formally defined in the following two definitions.

Without loss of generality, we consider the case of two com-

ponent distributions, that is, the mixture P = λ1P1+λ2P2,

where λ1 ≥ 0, λ2 ≥ 0 and λ1 + λ2 = 1.

Definition 1 (Mutual Irreducibility). Distribution P1 is ir-

reducible to P2 if there exist no such γ ∈ (0, 1] and any new

distribution Q that

P1 = γP2 + (1− γ)Q.

If P2 is also irreducible to P1, then they are mutual irre-

ducible.

Definition 2 (Anchor Set). Denote supp(·) as the support

set of a distribution, distributions P1 and P2 satisfy the an-

chor set condition if there exist a compact set S, which

is non-empty, such that S ⊆ (supp(P1) ∪ supp(P2) −
supp(P1) ∩ supp(P2)).

In this paper, with the minor requirement of some exam-

ples from each component, our method only needs a much

weaker independence assumption to ensure efficient and ef-

fective solutions.

Assumption 1. The component distributions Pi are inde-

pendent from each other, that is,

c
∑

i=1

viPi = 0, vi ∈ R if and only if vi = 0, ∀i = {1, · · · , c}.

Considering probability densities as functions in an infi-

nite dimension space, our definition is closely related to the

independence assumption in a linear algebraic sense. The

linear independence assumption can be easily satisfied in

practice because the number of component distributions is

finite. Moreover, the following proposition states that the

independence assumption is weaker than the irreducibility

and anchor set conditions.

Proposition 1. (i) The irreducibility condition implies the

independence assumption while the independence assump-

tion does not imply the irreducibility condition.

(ii) The anchor set condition implies the independence

assumption while the independence assumption does not

imply the anchor set condition.

The proof of Proposition 1 can be found in the supple-

mentary material. In the following theorem, we will show

that the proportions are identifiable under the independence

assumption.

Theorem 1. If Assumption 1 holds, the mixture proportions

λi are identifiable given the mixture distribution and all the

component distributions.

The proof of Theorem 1 is straightforward. Suppose

there exist another mixture proportions {λ′i}1≤i≤c that ad-

mit Eq. (1), which means P =
∑c

i=1
λ′iPi, then we have

∑c

i=1
(λi − λ′i)Pi = 0. If Assumption 1 holds true, then

λi − λ′i = 0, ∀i = {1, · · · , c}. This means the two propor-

tions are identical. Thus, the solution to mixture proportions

in Eq. (1) is unique.

3.2. MPE model

In order to estimate {λi}1≤i≤c without estimating the

conditional probability as in [31, 19], we propose a non-

parametric method which is based on the embedding of the

distributions into a reproducing kernel Hilbert space H [33,

21]. Let PX be the distribution of the variable X ∈ X ,

k : X × X → R be the kernel function associated with H,

and k(X, ·) = ψ(X) ∈ H be the feature map. The kernel

mean embedding is defined as

µPX
= EX∼PX

[k(X, ·)],
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where µPX
is known as the kernel mean embedding of PX .

The mean map is injective given the kernel is characteristic

[34]. We can thus estimate {λi}1≤i≤c by exploiting these

kernel means. Using linearity of the expectation, one can

re-write the mixture form the corresponding kernel mean

µP =
c

∑

i=1

λiµPi
. (2)

As demonstrated in Theorem 1, if these kernel means in

Eq. (2) are independent, then the uniqueness of {λi}1≤i≤c

is also ensured. In the following theorem, we will show that

the kernel means are independent given that the component

distributions are independent.

Theorem 2. Suppose that the kernel is characteristic, and

that distributions Pi, i = 1, · · · , c satisfy Assumption 1,

then we have

c
∑

i=1

viµPi
= 0, vi ∈ R if and only if vi = 0, ∀i = {1, · · · , c}.

Proof. A necessary condition for a kernel to be

characteristic is
∫

k(x, ·)dPX = 0 ⇒ PX = 0
[10]. Then

∑c

i=1
viµPi

=
∑c

i=1
vi
∫

k(x, ·)dPi =
∫

k(x, ·)d(∑c

i=1
viPi) = 0 ⇒ ∑c

i=1
viPi = 0. Since

Pi, i ∈ {1, · · · , c} are independent, we have
∑c

i=1
viPi =

0 ⇒ vi = 0, ∀i ∈ {1, · · · , c}, which means µPi
, i ∈

{1, · · · , c} are also independent.

According to Theorem 2, the independence assumption

can finally ensure the uniqueness of the proportions. Un-

der such a theoretical guarantee, we propose a method to

estimate {λi}1≤i≤c from Eq. (2). We try to minimize the

squared maximum mean discrepancy (MMD):

D(λ) = ‖µP −
c

∑

i=1

λiµPi
‖2,

which indicates µP =
∑c

i=1
λiµPi

if D(λ) is zero. With

the guarantee of uniqueness, the proportions can thus be

identifiable.

However, only the samples of these distributions are ob-

servable in practice. Therefore, we approximate the mean

values by their empirical ones: µ̂P = 1

n

∑n

j=1
ψ(xj), and

µ̂Pi
= 1

ni

∑ni

j=1
ψ(xij), i = 1, · · · , c. Then the problem

becomes

min
λ1,··· ,λc

D̂(λ) = ‖ 1
n

n
∑

j=1

ψ(xj)−
c

∑

i=1

λi
ni

ni
∑

j=1

ψ(xij)‖2,

s.t. λi ≥ 0, ∀i ∈ {1, · · · , c} and

c
∑

i=1

λi = 1. (3)

Let m =
∑c

i=1
ni be the total number of examples

from all component distributions and d denotes the dimen-

sionality of the data. Then the data matrix composed of

data points from the mixture distribution can be denoted

as x
M ∈ R

n×d, and the data matrix containing samples

from all the component distributions is denoted as x
C ∈

R
m×d. We can write the kernel mean embeddings in ma-

trix forms. 1

n

∑n

j=1
ψ(xj) = 1

n
ψ(xM )⊤1, where 1 is an

all-ones vector.
∑c

i=1

λi

ni

∑ni

j=1
ψ(xij) = ψ(xC)Rλ, where

λ = [λ1, · · · , λc]⊤ andR ∈ R
m×c. Rij =

1

nj
if the i-th ex-

ample is sampled from distribution Pj ; otherwise, Rij = 0.

Then the objective function can be rewritten as

D̂(λ) = ‖ 1
n
ψ(xM )⊤1n − ψ(xC)Rλ‖2

= λ
⊤R⊤

K
CRλ− 2

n
1
⊤
K

M,CRλ+
1

n2
1
⊤
K

M
1,

where K
M and K

C are the kernel matrix of xM and x
C ,

respectively; KM,C is the cross-kernel matrix. In this paper,

the Gaussian kernel, i.e. k(xi, xj) = exp(−‖xi−xj‖
2

2γ2 ) is

applied, where γ is the kernel bandwidth. Then our final

model becomes

min
λ1,··· ,λc

λ
⊤R⊤

K
CRλ− 2

n
1
⊤
K

M,CRλ+
1

n2
1
⊤
K

M
1,

s.t. λi ≥ 0, ∀i ∈ {1, · · · , c} and

c
∑

i=1

λi = 1.

This is a convex quadratic programming problem, which

can be easily solved using standard procedures. We can

see that, compared to the traditional MPE methods, our

method avoids the estimation of the conditional probability

and saves computations as well.

3.3. Theoretical analysis

Given samples {xi
1
, xi

2
, · · · , xini

}, i = 1, · · · , c, drawn

from the components, and the sample {x1, x2, · · · , xn}
from the mixture distribution, we can obtain an estimate λ̂

by solving model (3). An important issue we are concerned

about is how quickly λ̂ can converge to the optimal one

λ
∗, where λ

∗ = argminλ1,··· ,λc
D(λ). In this section, un-

der the independence assumption, we deliver a convergence

analysis of the proposed algorithm.

We abuse the samples {xi
1
, xi

2
, · · · , xini

}, i = 1, · · · , c
and {x1, x2, · · · , xn} as being i.i.d. variables, then D(λ)
can be rewritten as

D(λ) =

∥

∥

∥

∥

∥

∥

E





1

n

n
∑

j=1

ψ(xj)−
c

∑

i=1

λi
ni

ni
∑

j=1

ψ(xij)





∥

∥

∥

∥

∥

∥

2

.

Due to the fact that when λ̂ approaches to λ
∗, D(λ̂) also

converges to D(λ∗). We can thus analyze the convergence

rate of λ by upper bounding the error D(λ̂)−D(λ∗). Here

comes to our main result,
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Theorem 3. Suppose the kernel is characteristic and upper

bounded by ‖ψ(x)‖2 ≤ r for all x ∈ X . Then for any

δ > 0, with the probability 1− δ, we have

D(λ̂)−D(λ∗)

≤ 8
√
2r2

√

√

√

√

√(
1√
n
+

1√
n0

) +

√

√

√

√

1

2
(
1

n
+

c
∑

i=1

1

ni

) log
1

δ
,

where n0 = min (n1, · · · , nc).

Please see the detailed proof of Theorem 3 in the supple-

mentary material.

Remark 1. According to Theorem 3, our pro-

posed algorithm converges to the optimal λ∗ with rate of

O(1/min (n
1

4 , n
1

4

0
)). That is to say, to obtain an accept-

able estimate, we only require a small number of examples

drawn from the mixture and components.

Remark 2. [31] showed the ROC curve-based based

estimator converges to the true proportion at the rate of

O(1/min (
√
n,

√
n0)). However, as claimed in [26], this

estimator cannot be applied to datasets with moderately

large number of features. Thus, [26] proposed an estimator

based on the kernel mean embedding, and proved a conver-

gence rate with the order of O(1/min (
√
n,

√
n0)). How-

ever, it converges to the true proportion with an additive

term, whose convergence rate is strongly dependent on the

choice of the kernel function and the probability of the an-

chor set Pi(S), and can be slow.

In this paper, under the independence assumption, even

though with a slightly slower rate, the proposed method can

be easily applied to datasets with large sample size and high

dimensional features, and can be optimized efficiently by

solving a simple quadratic programming problem.

4. Applications

Mixture proportion estimation has been an important in-

gredient for learning with label noise [31, 19, 36, 5, 39, 13,

12], learning with complementary labels [38], domain adap-

tation [11, 41], semi-supervised learning [29], anomaly re-

jection [2, 30], PU learning [8, 23], and multiple instance

learning [1], etc. Here, we give a brief summary of the for-

mer two applications, and show how the proposed method

efficiently solves these problems.

4.1. Learning with label noise

Learning with label noise is a kind of weakly supervised

learning where the labels randomly flip from one class to

another with some small probabilities. It is often assumed

that the flip rates only depend on the class. In this sce-

nario, many works seek ways to design label noise-robust

loss functions. For example, [19] viewed the “noisy” and

“clean” data as being sampled from two different domains,

and then exploited an importance reweighting strategy. [22]

and [31] designed cost-sensitive loss functions to mitigate

the effects of label noise. The design of noise-robust loss

function in these methods often requires the flip rates to be

given, which is not true in practice.

The estimation of flip rates remains an open problem.

Existing works [31, 19] focused on the anchor set condi-

tion. However, both [31] and [19] relied on the conditional

probability estimation, which is error-prone when inappro-

priate training models are chosen. For example, neural net-

works with too many parameters usually remember all the

training examples [40], which leads to incorrect estimation

of the proportions. Another problem is that many previous

works focus on the binary classification problem and cannot

be directly extended into multi-class setting. The proposed

non-parametric method exploits kernel mean embedding of

distributions to avoid these problem. Even though collect-

ing correct labels for a large-scale dataset is often expen-

sive, it is often assumed that it is easy to obtain labels for

some instances [37, 20, 35]. Our proposed method is well

suitable for this problem setting.

Here we denote Pρ as the distribution related to the noisy

labels. We observe that the class-conditional distribution

PρX|Ŷ can be a mixture of PX|Y , that is,

Pρ(X|Ŷ = i) =

c
∑

j=1

P (Y = j|Ŷ = i)P (X|Y = j),

where Y and Ŷ denote the variables of “clean” and “noisy”

labels, respectively; c is the class number; P (Y = j|Ŷ = i)
is the inversed flip rate. The equation holds due to X being

conditional independent from Ŷ given the correct label Y .

According to Theorem 3, to estimate the flip rates, we do

not require too many observed examples from the correct

distribution. As such, we should be able to estimate the flip

rate without having to obtain too much labelled data [37].

4.2. Semi­supervised learning

Labeling a large set of training data is laborious and ex-

pensive. In practical applications, we only have access to a

small set of labelled examples and a vast quantity of unla-

belled examples. Semi-supervised learning aims to extract

information from the unlabelled data to guide the learning.

In the traditional semi-supervised learning, many as-

sumptions on the data structure or distribution have been

proposed. For example, data from different classes are of-

ten assumed to reside in separate manifolds; the class-prior

probabilities for the unlabeled data are assumed to be bal-

anced, i.e. P (Y = i) = 1/c, or to be similar to those

in the labeled examples [42]. However, if these assump-

tions are violated, the learning process can be biased. [29]
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proposed an approach for semi-supervised learning by com-

bining PU learning and NU learning (learning from negative

and unlabelled examples). They developed a cost-sensitive

loss function without any assumption on the structure or dis-

tribution of training data. However, the cost-sensitive loss

function relies on the class-prior probabilities on the unla-

belled data. To estimate the class prior, we view the distri-

bution of unlabeled data as a mixture as in many other class

ratio estimation problems [30, 28], that is,

P (X) = θPP (X|Y = +1) + θNP (X|Y = −1),

where θP + θN = 1. If the distributions P (X|Y = +1)
and P (X|Y = −1) are independent, θP and θN are unique,

which can be efficiently obtained by the proposed mixture

proportion estimation method.

5. Experiments

In this section, we validate our method by applying it

to the aforementioned two applications including learning

with label noise and semi-supervised learning. The pro-

posed MPE method under the Linear Independence As-

sumption is abbreviated as “MPEIA”.

5.1. Learning with label noise

In the label noise setting, we estimate the flip rates using

MPE methods. The proposed method is evaluated on both

the synthetic and real-world data. The convergence prop-

erties and the effects of various flip rates on the proportion

estimation are analyzed. Here [31] (“ROC”), [26] (“KM”)

and [19, 24] (“MCP”: Minimum Conditional Probability)1

are used as the baselines. For fair comparasion, rather than

giving only the data from one component as in traditional

MPE, KM method is provided with the same number of

clean data from each component to estimate each weight.

MCP uses the clean data as the data in the anchor set. But

the baseline ROC still focuses on the setting that no clean

data are provided. The inferior performances do not imply

the ineffectiveness of this method.

The MPE methods are tested on both the binary and

multi-class settings, and are applied to problems involv-

ing both symmetric and asymmetric label noise. Here, we

denote Q as the transition matrix, where Qij = P (Ŷ =
j|Y = i) is the flip rate from label i to label j. If Qij , ∀i 6=
j, is set to the same probability, the label noise is symmetric;

otherwise, asymmetric. Even though the proposed method

estimates the inversed flip rate P (Y = j|Ŷ = i), methods

like MCP estimate flip rates. For comparisons, we convert

the inversed ones to the flip rates using Bayes’ Theorem2.

1The code for KM can be found at http://web.eecs.umich.

edu/˜cscott/code/kernel_MPE.zip. The code for ROC

is from http://web.eecs.umich.edu/˜cscott/code/mpe_

v2.zip. In this paper, we re-implement the code for MCP.
2In the experiments, the class prior of clean data is balanced.
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Figure 2. The convergence analysis of the proposed method. (a)

The convergence property w.r.t. the number of examples from all

components with the fixed sample size of the mixture. (b) The

convergence property w.r.t. the sample sizes of the mixture and

components with the fixed ratio r = 100 : 1.

Then the estimation error ‖Q∗ − Q̂‖ is reported, where Q∗

is the true transition matrix and Q̂ is the estimated transition

matrix. In all experiments, the average error of 20 trials is

reported for each result.

For MMD, the Gaussian kernel is applied with the band-

width σ being set to the mean value of the pairwise dis-

tances of all examples from the mixture and components.

Synthetic data. Here, we use the mixture of

two Gaussians to generate the synthetic data: x ∼
∑

2

i=1
πiN (θi,Σi), where θi are sampled from the uniform

distribution U(−0.25, 0.25), and Σi are sampled from the

Wishart distribution 0.01 ∗ W(2 × I2, 7). Here data drawn

from each Gaussian distribution are in the same class. To

generate the label noise data, we symmetrically flip the la-

bels from one class to another with the probability ρ.

In the first experiment, the convergence property of the

proposed method is analyzed. The flip rate ρ is set to 0.3.

The sample size of the mixture (noisy data) is fixed to 1000,

and the number of examples from components varies from

10 to 100. Here the sample size of each component is equal.

The result is shown in Figure 2(a). ROC is used as a base-

line. We can see that only a relatively small set of clean data

is required to estimate the flip rates.

In the rest of this paper, we denote r as the ratio be-

tween the sample size of the mixture distribution and the

total number of examples from all components. In the next

experiment, we fix r = 100 : 1. The number of examples

from all components ranges from 10 to 100. The exper-

imental results in Figure 2(b) are also in accordance with

the theoretical analysis, that is, the proposed estimator can

converge to the true flip rate very quickly.

In the second experiment, we evaluate the performances

of the proposed method under different flip rates. r is fixed

to 100:1. The flip rate ρ varies from 0.05 to 0.45. Then our

method is compared with the state-of-the-art methods. For

MCP, the raw data is first mapped to the random Fourier fea-

ture space [25] with the dimension of 500. Then we use the

support vector machine (SVM) with the linear kernel [4] to

estimate the conditional probability Pρ(Y |X). The hyper-

parameters are chosen by a 5-fold cross-validation. Figure
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Figure 3. The estimation errors w.r.t. various flip rates. (a) The

number of examples from all components is 10. (b) The number

of examples from all components is 100.
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Figure 4. The convergence analysis of MPE methods. (a) and (b)

show the results on the waveform and spambase datasets, repec-

tively.

3 shows superiority of the proposed method under most flip

rates. Compared to other methods, the proposed method

shows more consistent performances for various flip rates.

UCI. We first run our algorithm on binary classification

datasets. Two datasets, the “waveform” and “spambase”,

are taken from the UCI Machine Learning Repository. Here

we evaluate the convergence properties of MPEIA, ROC,

MCP, and KM. r is fixed to 20 : 1. Then we vary the sample

size of the mixture from 400 to 3200. The flip rate is fixed to

0.3. Other settings are the same with those in experiments

on the synthetic data. The results in Figure 4 show that our

method shares the similar convergence properties with KM,

and gives the smallest estimation errors.

MNIST. MNIST3 is a popular handwritten digit

database, which consists of 60,000 training examples and

10,000 test examples. The digits range from 0 to 9. For

each digit, there are around 6,000 training examples. In this

paper, we randomly select a small set of examples from the

training set as the clean data, and then randomly flip the

labels of the rest training data to generate the mixture.

We evaluate the performances of the proposed method

w.r.t. both the symmetric and asymmetric flip rates. Due to

the fact that most existing MPE methods, such as ROC and

KM, can only be applied to the binary case, the proposed

method is compared with MCP. For MPEIA, before esti-

mating the flip rates, we first apply the Principle Component

Analysis (PCA) to reduce the feature dimension to 20. For

MCP, we follow the method in [24] to estimate the condi-

tional probability. The results for the symmetric label noise

3MNIST database is available at http://yann.lecun.com/

exdb/mnist/
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Figure 5. The estimation errors w.r.t. various flip rates (MNIST).

(a) The ratio between the sample size of noise data and that of

clean data is 20 : 1. (b) The ratio is 10 : 1.

Table 1. The estimation errors of the asymmetric label noise with

randomly generated transition matrices (MNIST). The ratio be-

tween the sample size of noise data and that of clean data is 20 : 1.

MPEIA

(ours)
0.0422 0.0448 0.0373 0.0317 0.0477

MCP 0.1147 0.1519 0.1379 0.1126 0.1442

are shown in Figure 5. We can see that, with such a simple

preprocessing, the proposed method can achieve compara-

ble or better performances compared to MCP which needs

to train a neural network with two hidden layers. More im-

portantly, Figure 5 shows that the proposed method gives

more accurate results than MCP when the flip rates get

larger. This is because larger flip rates can adversely affect

the conditional probability estimation.
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We also give several examples of the asymmetric label

noise. First, we construct an example transition matrix with

asymmetric flip rates as in [24]. In Eq. (4), the matrix on

the left is the ground-truth transition matrix, and the right

is the one estimated by the proposed method (ǫ ≤ 0.005).

Here r = 20 : 1.

Next, we construct the transition matrix with arbitrarily

asymmetric flip rates. To get such a transition matrix, a ran-

dom matrix is first generated, and then each row is normal-

ized to 1. To show the superiority of the proposed method,

we repeatedly generate 5 different asymmetric transition

matrices, and report the estimation errors in Table 1. We

found that, in the case of asymmetric label noise, many ex-

amples used to estimate the flip rates are not in the anchor

set, which leads to the incorrect estimation. On the con-

trary, the proposed method performs much better without

estimating the conditional probability.

CIFAR10. CIFAR10 is another tiny image dataset [17]

with 50,000 training examples and 10,000 test examples. It
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Table 2. The estimation errors of the asymmetric label noise with

randomly generated transition matrices (CIFAR10). The ratio be-

tween the sample size of noise data and that of clean data is 20 : 1.

MPEIA

(ours)
0.1298 0.1015 0.0799 0.1378 0.1005

MCP 0.3260 0.2634 0.3287 0.2970 0.3025

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Noise Rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
s
ti
m

a
ti
o
n
 E

rr
o
r

MPEIA

MCP

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Noise Rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
s
ti
m

a
ti
o
n
 E

rr
o
r

MPEIA

MCP

(b)

Figure 6. The estimation errors w.r.t. various flip rates (CIFAR10).

(a) The ratio between the sample size of noise data and that of

clean data is 20 : 1. (b) The ratio is 10 : 1.

also contains 10 classes of objects. The raw feature of CI-

FAR10 is far from a good representation. Then in this ex-

periment, we first extract the features of the examples from

the pre-trained AlexNet (Caffe Model Zoo [15]) after resiz-

ing the images to 227 × 227. The features of “fc7” layer

are used. For MCP, the conditional probability is also es-

timated by using a neural network with two hidden layers.

All other settings are the same with those in the experiments

of MNIST. The experimental results in Figure 6 and Table

2 show similar phenomenon with those of MNIST. MCP

gives better estimates when the flip rates are very small and

symmetric, but much worse estimates when the flip rates get

larger or asymmetric. On the contrary, the proposed method

provides consistently good estimates in these conditions.

5.2. Semi­supervised learning

In semi-supervised learning, we estimate the class pri-

ors using MPE methods. To evaluate the performances, we

report the estimates and the corresponding classification er-

rors using PNU (SL) method [29]. The proposed method is

compared to PE [6], ED [16] and KM.

The proposed method is also evaluated on the datasets

taken from the UCI Machine Learning Repository. Denote

all the training examples as {xi}ni=1
= XP ∪ XN ∪ XU ,

where P,N,U refer to the positive, negative, and unla-

belled, respectively. Let n = nP + nN + nU , and θP =
P (y = +1). To begin with, we re-sample the datasets such

that the θP of labelled data is set to 0.5, and the θP of un-

labelled data is 0.2. Then we use MPE methods to esti-

mate the class prior, and apply PNU (SL) method to conduct

semi-supervised classification. Other experimental setups,

such as the pre-processing of datasets and the kernel used

in classification model, follow those in [29].

The results are shown in Table 3. For each dataset, the

first row presents the estimate of θP for each method, and

Table 3. The estimates of θP = 0.2 of unlabelled data and the mis-

classification rates of PNU(SL) method. Here nP +nN = 50, and

nU = 300. The average and standard deviation of classification

errors over 50 trials for the datasets are reported.

MPEIA

(ours)
ED KM PE

Magic 0.2049 0.2388 0.2062 0.2676

d = 10 16.4 (1.0) 17.7 (1.8) 16.9 (1.9) 19.1 (3.9)

SUSY 0.2040 0.3992 0.1307 0.1262

d = 18 24.4 (2.4) 30.2 (1.2) 20.2 (0.3) 20.6 (0.7)

Waveform 0.1892 0.3407 0.2977 0.3180

d = 21 9.2 (1.4) 15.2 (0.9) 14.8 (0.6) 14.9 (1.5)

ijcnn1 0.4509 0.4846 0.1096 0.4151

d = 22 36.4 (5.4) 36.9 (5.8) 18.9 (1.1) 28.7 (5.7)

Spambase 0.2909 0.3178 0.4108 0.3830

d = 57 14.8 (0.9) 15.1 (1.0) 15.1 (1.9) 13.3 (2.6)

a9a 0.1990 0.2737 0.2062 0.4488

d = 83 18.1 (0.9) 18.6 (1.6) 18.1 (1.1) 25.5 (3.2)

w8a 0.2833 0.4056 0.3109 0.3666

d = 300 18.9 (2.4) 21.7 (3.8) 24.8 (1.2) 20.9 (1.9)

the second row presents the misclassification rates and stan-

dard deviations. For most datasets, MPEIA gives the best

estimates of the class prior and best classification results,

which verify the effectiveness of the proposed method.

6. Conclusion

The MPE problem is addressed in a new setting where

the samples from the mixture and all components are given.

By exploiting the independence assumption and the kernel

mean embedding of distributions, the proposed estimator

is ensured to converge to the unique solution at the rate

of O(1/min (n
1

4 , n
1

4

0
)). The proposed method requires to

solve only a simple convex quadratic programming and can

be easily applied to some popular applications. The experi-

ments demonstrate that, with only a small number of exam-

ples from components, our method is effective to deal with

complex label noise and to estimate class priors.
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