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Abstract

Visual recognition requires rich representations that span

levels from low to high, scales from small to large, and

resolutions from fine to coarse. Even with the depth of fea-

tures in a convolutional network, a layer in isolation is not

enough: compounding and aggregating these representa-

tions improves inference of what and where. Architectural

efforts are exploring many dimensions for network back-

bones, designing deeper or wider architectures, but how to

best aggregate layers and blocks across a network deserves

further attention. Although skip connections have been in-

corporated to combine layers, these connections have been

“shallow” themselves, and only fuse by simple, one-step op-

erations. We augment standard architectures with deeper

aggregation to better fuse information across layers. Our

deep layer aggregation structures iteratively and hierarchi-

cally merge the feature hierarchy to make networks with

better accuracy and fewer parameters. Experiments across

architectures and tasks show that deep layer aggregation

improves recognition and resolution compared to existing

branching and merging schemes.

1. Introduction

Representation learning and transfer learning now per-

meate computer vision as engines of recognition. The sim-

ple fundamentals of compositionality and differentiability

give rise to an astonishing variety of deep architectures

[23, 39, 37, 16, 47]. The rise of convolutional networks

as the backbone of many visual tasks, ready for different

purposes with the right task extensions and data [14, 35, 42],

has made architecture search a central driver in sustaining

progress. The ever-increasing size and scope of networks

now directs effort into devising design patterns of modules

and connectivity patterns that can be assembled systemati-

cally. This has yielded networks that are deeper and wider,

but what about more closely connected?

More nonlinearity, greater capacity, and larger receptive

fields generally improve accuracy but can be problematic

for optimization and computation. To overcome these bar-

+

Dense Connections Feature Pyramids

Deep Layer Aggregation

Figure 1: Deep layer aggregation unifies semantic and spa-

tial fusion to better capture what and where. Our aggregation

architectures encompass and extend densely connected net-

works and feature pyramid networks with hierarchical and

iterative skip connections that deepen the representation and

refine resolution.

riers, different blocks or modules have been incorporated

to balance and temper these quantities, such as bottlenecks

for dimensionality reduction [29, 39, 17] or residual, gated,

and concatenative connections for feature and gradient prop-

agation [17, 38, 19]. Networks designed according to these

schemes have 100+ and even 1000+ layers.

Nevertheless, further exploration is needed on how to

connect these layers and modules. Layered networks from

LeNet [26] through AlexNet [23] to ResNet [17] stack lay-

ers and modules in sequence. Layerwise accuracy compar-

isons [11, 48, 35], transferability analysis [44], and represen-

tation visualization [48, 46] show that deeper layers extract

more semantic and more global features, but these signs do

not prove that the last layer is the ultimate representation

for any task. In fact, skip connections have proven effective

for classification and regression [19, 4] and more structured

tasks [15, 35, 30]. Aggregation, like depth and width, is a

critical dimension of architecture.

In this work, we investigate how to aggregate layers to

better fuse semantic and spatial information for recognition

and localization. Extending the “shallow” skip connections

of current approaches, our aggregation architectures incor-
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porate more depth and sharing. We introduce two structures

for deep layer aggregation (DLA): iterative deep aggrega-

tion (IDA) and hierarchical deep aggregation (HDA). These

structures are expressed through an architectural framework,

independent of the choice of backbone, for compatibility

with current and future networks. IDA focuses on fusing

resolutions and scales while HDA focuses on merging fea-

tures from all modules and channels. IDA follows the base

hierarchy to refine resolution and aggregate scale stage-by-

stage. HDA assembles its own hierarchy of tree-structured

connections that cross and merge stages to aggregate differ-

ent levels of representation. Our schemes can be combined

to compound improvements.

Our experiments evaluate deep layer aggregation across

standard architectures and tasks to extend ResNet [16]

and ResNeXt [41] for large-scale image classification, fine-

grained recognition, semantic segmentation, and boundary

detection. Our results show improvements in performance,

parameter count, and memory usage over baseline ResNet,

ResNeXT, and DenseNet architectures. DLA achieve state-

of-the-art results among compact models for classification.

Without further architecting, the same networks obtain state-

of-the-art results on several fine-grained recognition bench-

marks. Recast for structured output by standard techniques,

DLA achieves best-in-class accuracy on semantic segmenta-

tion of Cityscapes [8] and state-of-the-art boundary detection

on PASCAL Boundaries [32]. Deep layer aggregation is a

general and effective extension to deep visual architectures.

2. Related Work

We review architectures for visual recognition, highlight

key architectures for the aggregation of hierarchical features

and pyramidal scales, and connect these to our focus on deep

aggregation across depths, scales, and resolutions.

The accuracy of AlexNet [23] for image classification

on ILSVRC [34] signalled the importance of architecture

for visual recognition. Deep learning diffused across vi-

sion by establishing that networks could serve as backbones,

which broadcast improvements not once but with every bet-

ter architecture, through transfer learning [11, 48] and meta-

algorithms for object detection [14] and semantic segmenta-

tion [35] that take the base architecture as an argument. In

this way GoogLeNet [39] and VGG [39] improved accuracy

on a variety of visual problems. Their patterned components

prefigured a more systematic approach to architecture.

Systematic design has delivered deeper and wider net-

works such as residual networks (ResNets) [16] and high-

way networks [38] for depth and ResNeXT [41] and Fractal-

Net [25] for width. While these architectures all contribute

their own structural ideas, they incorporated bottlenecks and

shortened paths inspired by earlier techniques. Network-in-

network [29] demonstrated channel mixing as a technique

to fuse features, control dimensionality, and go deeper. The

companion and auxiliary losses of deeply-supervised net-

works [27] and GoogLeNet [39] showed that it helps to keep

learned layers and losses close. For the most part these archi-

tectures derive from innovations in connectivity: skipping,

gating, branching, and aggregating.

Our aggregation architectures are most closely related to

leading approaches for fusing feature hierarchies. The key

axes of fusion are semantic and spatial. Semantic fusion, or

aggregating across channels and depths, improves inference

of what. Spatial fusion, or aggregating across resolutions and

scales, improves inference of where. Deep layer aggregation

can be seen as the union of both forms of fusion.

Densely connected networks (DenseNets) [19] are the

dominant family of architectures for semantic fusion, de-

signed to better propagate features and losses through skip

connections that concatenate all the layers in stages. Our

hierarchical deep aggregation shares the same insight on the

importance of short paths and re-use, and extends skip con-

nections with trees that cross stages and deeper fusion than

concatenation. Densely connected and deeply aggregated

networks achieve more accuracy as well as better parameter

and memory efficiency.

Feature pyramid networks (FPNs) [30] are the dominant

family of architectures for spatial fusion, designed to equal-

ize resolution and standardize semantics across the levels of

a pyramidal feature hierarchy through top-down and lateral

connections. Our iterative deep aggregation likewise raises

resolution, but further deepens the representation by non-

linear and progressive fusion. FPN connections are linear

and earlier levels are not aggregated more to counter their

relative semantic weakness. Pyramidal and deeply aggre-

gated networks are better able to resolve what and where for

structured output tasks.

3. Deep Layer Aggregation

We define aggregation as the combination of different

layers throughout a network. In this work we focus on a

family of architectures for the effective aggregation of depths,

resolutions, and scales. We call a group of aggregations deep

if it is compositional, nonlinear, and the earliest aggregated

layer passes through multiple aggregations.

As networks can contain many layers and connections,

modular design helps counter complexity by grouping and

repetition. Layers are grouped into blocks, which are then

grouped into stages by their feature resolution. We are con-

cerned with aggregating the blocks and stages.

3.1. Iterative Deep Aggregation

Iterative deep aggregation follows the iterated stacking

of the backbone architecture. We divide the stacked blocks

of the network into stages according to feature resolution.

Deeper stages are more semantic but spatially coarser. Skip

connections from shallower to deeper stages merge scales
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Figure 2: Different approaches to aggregation. (a) composes blocks without aggregation as is the default for classification

and regression networks. (b) combines parts of the network with skip connections, as is commonly used for tasks like

segmentation and detection, but does so only shallowly by merging earlier parts in a single step each. We propose two deep

aggregation architectures: (c) aggregates iteratively by reordering the skip connections of (b) such that the shallowest parts

are aggregated the most for further processing and (d) aggregates hierarchically through a tree structure of blocks to better

span the feature hierarchy of the network across different depths. (e) and (f) are refinements of (d) that deepen aggregation by

routing intermediate aggregations back into the network and improve efficiency by merging successive aggregations at the

same depth. Our experiments show the advantages of (c) and (f) for recognition and resolution.

and resolutions. However, the skips in existing work, e.g.

FCN [35], U-Net [33], and FPN [30], are linear and aggre-

gate the shallowest layers the least, as shown in Figure 2(b).

We propose to instead progressively aggregate and deepen

the representation with IDA. Aggregation begins at the shal-

lowest, smallest scale and then iteratively merges deeper,

larger scales. In this way shallow features are refined as

they are propagated through different stages of aggregation.

Figure 2(c) shows the structure of IDA.

The iterative deep aggregation function I for a series

of layers x1, ...,xn with increasingly deeper and semantic

information is formulated as

I(x1, ...,xn) =

{

x1 if n = 1

I(N(x1,x2), ...,xn) otherwise,
(1)

where N is the aggregation node.

3.2. Hierarchical Deep Aggregation

Hierarchical deep aggregation merges blocks and stages

in a tree to preserve and combine feature channels. With

HDA shallower and deeper layers are combined to learn

richer combinations that span more of the feature hierarchy.

While IDA effectively combines stages, it is insufficient

for fusing the many blocks of a network, as it is still only

sequential. The deep, branching structure of hierarchical

aggregation is shown in Figure 2(d).

Having established the general structure of HDA we can

improve its depth and efficiency. Rather than only routing

intermediate aggregations further up the tree, we instead feed

the output of an aggregation node back into the backbone as

the input to the next sub-tree, as shown in Figure 2(e). This

propagates the aggregation of all previous blocks instead of

the preceding block alone to better preserve features. For

efficiency, we merge aggregation nodes of the same depth

(combining the parent and left child), as shown in Figure 2(f).

The hierarchical deep aggregation function Tn, with depth

n, is formulated as

Tn(x) = N(Rn

n−1(x), R
n

n−2(x), ...,

Rn

1 (x), L
n

1 (x), L
n

2 (x)),
(2)

where N is the aggregation node. R and L are defined as

Ln

2 (x) = B(Ln

1 (x)), Ln

1 (x) = B(Rn

1 (x)),

Rn

m
(x) =

{

Tm(x) if m = n− 1

Tm(Rn

m+1(x)) otherwise,

where B represents a convolutional block.

3.3. Architectural Elements

Aggregation Nodes The main function of an aggregation

node is to combine and compress their inputs. The nodes

learn to select and project important information to maintain

the same dimension at their output as a single input. In

our architectures IDA nodes are always binary, while HDA

nodes have a variable number of arguments depending on

the depth of the tree.
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Figure 3: Deep layer aggregation learns to better extract the full spectrum of semantic and spatial information from a network.

Iterative connections join neighboring stages to progressively deepen and spatially refine the representation. Hierarchical

connections cross stages with trees that span the spectrum of layers to better propagate features and gradients.

Although an aggregation node can be based on any block

or layer, for simplicity and efficiency we choose a single con-

volution followed by batch normalization and a nonlinearity.

This avoids overhead for aggregation structures. In image

classification networks, all the nodes use 1×1 convolution.

In semantic segmentation, we add a further level of iterative

deep aggregation to interpolate features, and in this case use

3×3 convolution.

As residual connections are important for assembling very

deep networks, we can also include residual connections in

our aggregation nodes. However, it is not immediately clear

that they are necessary for aggregation. With HDA, the

shortest path from any block to the root is at most the depth

of the hierarchy, so diminishing or exploding gradients may

not appear along the aggregation paths. In our experiments,

we find that residual connection in node can help HDA when

the deepest hierarchy has 4 levels or more, while it may hurt

for networks with smaller hierarchy. Our base aggregation,

i.e. N in Equation 1 and 2, is defined by:

N(x1, ...,xn) = σ(BatchNorm(
∑

i

Wixi + b)), (3)

where σ is the non-linear activation, and wi and b are the

weights in the convolution. If residual connections are added,

the equation becomes

N(x1, ...,xn) = σ(BatchNorm(
∑

i

Wixi + b) + xn). (4)

Note that the order of arguments for N does matter and

should follow Equation 2.

Blocks and Stages Deep layer aggregation is a general

architecture family in the sense that it is compatible with

different backbones. Our architectures make no requirements

of the internal structure of the blocks and stages.

The networks we instantiate in our experiments make

use of three types of residual blocks [17, 41]. Basic blocks

combine stacked convolutions with an identity skip connec-

tion. Bottleneck blocks regularize the convolutional stack by

reducing dimensionality through a 1×1 convolution. Split

blocks diversify features by grouping channels into a number

of separate paths (called the cardinality of the split). In this

work, we reduce the ratio between the number of output and

intermediate channels by half for both bottleneck and split

blocks, and the cardinality of our split blocks is 32. Refer to

the cited papers for the exact details of these blocks.

4. Applications

We now design networks with deep layer aggregation

for visual recognition tasks. To study the contribution of

the aggregated representation, we focus on linear prediction

without further machinery. Our results do without ensem-

bles for recognition and context modeling or dilation for

resolution. Aggregation of semantic and spatial information

matters for classification and dense prediction alike.

4.1. Classification Networks

Our classification networks augment ResNet and

ResNeXT with IDA and HDA. These are staged networks,

which group blocks by spatial resolution, with residual con-

nections within each block. The end of every stage halves

resolution, giving six stages in total, with the first stage

maintaining the input resolution while the last stage is 32×

downsampled. The final feature maps are collapsed by global

average pooling then linearly scored. The classification is

predicted as the softmax over the scores.

We connect across stages with IDA and within and across

stages by HDA. These types of aggregation are easily com-

bined by sharing aggregation nodes. In this case, we only

need to change the root node at each hierarchy by combin-

ing Equation 1 and 2. Our stages are downsampled by max

pooling with size 2 and stride 2.

The earliest stages have their own structure. As in

DRN [46], we replace max pooling in stages 1–2 with strided
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Figure 4: Interpolation by iterative deep aggregation. Stages

are fused from shallow to deep to make a progressively

deeper and higher resolution decoder.

convolution. The stage 1 is composed of a 7×7 convolution

followed by a basic block. The stage 2 is only a basic block.

For all other stages, we make use of combined IDA and HDA

on the backbone blocks and stages.

For a direct comparison of layers and parameters in differ-

ent networks, we build networks with a comparable number

of layers as ResNet-34, ResNet-50 and ResNet-101. (The

exact depth varies as to keep our novel hierarchical structure

intact.) To further illustrate the efficiency of DLA for con-

densing the representation, we make compact networks with

fewer parameters. Table 1 lists our networks and Figure 3

shows a DLA architecture with HDA and IDA.

4.2. Dense Prediction Networks

Semantic segmentation, contour detection, and other

image-to-image tasks can exploit the aggregation to fuse

local and global information. The conversion from classi-

fication DLA to fully convolutional DLA is simple and no

different than for other architectures. We make use of inter-

polation and a further augmentation with IDA to reach the

necessary output resolution for a task.

IDA for interpolation increases both depth and resolution

by projection and upsampling as in Figure 4. All the projec-

tion and upsampling parameters are learned jointly during

the optimization of the network. The upsampling steps are

initialized to bilinear interpolation and can then be learned as

in [35]. We first project the outputs of stages 3–6 to 32 chan-

nels and then interpolate the stages to the same resolution as

stage 2. Finally, we iteratively aggregate these stages to learn

a deep fusion of low and high level features. While having

the same purpose as FCN skip connections [35], hypercol-

umn features [15], and FPN top-down connections [30], our

aggregation differs in approach by going from shallow-to-

deep to further refine features. Note that we use IDA twice

in this case: once to connect stages in the backbone network

and again to recover resolution.

5. Results

We evaluate our deep layer aggregation networks on a va-

riety of tasks: image classification on ILSVRC, several kinds

of fine-grained recognition, and dense prediction for seman-

tic segmentation and contour detection. After establishing

our classification architecture, we transfer these networks to

the other tasks with little to no modification. DLA improves

on or rivals the results of special-purpose networks.

5.1. ImageNet Classification

We first train our networks on the ImageNet 2012 train-

ing set [34]. Similar to ResNet [16], training is performed

by SGD for 120 epochs with momentum 0.9, weight de-

cay 10−4 and batch size 256. We start the training with

learning rate 0.1, which is reduced by 10 every 30 epochs.

We use scale and aspect ratio augmentation [41] with color

perturbation. For fair comparison, we also train the ResNet

models with the same training procedure. This leads to slight

improvements over the original results.

We evaluate the performance of trained models on the

ImageNet 2012 validation set. The images are resized so

that the shorter side has 256 pixels. Then central 224×224

crops are extracted from the images and fed into networks to

measure prediction accuracy.

DLA vs. ResNet compares DLA networks to ResNets

with similar numbers of layers and the same convolutional

blocks as shown in Figure 5. We find that DLA networks can

achieve better performance with fewer parameters. DLA-34

and ResNet-34 both use basic blocks, but DLA-34 has about

30% fewer parameters and ∼ 1 point of improvement in

top-1 error rate. We usually expect diminishing returns of

performance of deeper networks. However, our results show

that compared to ResNet-50 and ResNet-101, DLA networks

can still outperform the baselines significantly with fewer

parameters.

DLA vs. ResNeXt shows that DLA is flexible enough to

use different convolutional blocks and still have advantage in

accuracy and parameter efficiency as shown in Figure 5. Our

models based on the split blocks have much fewer parameters

but they still have similar performance with ResNeXt models.

For example, DLA-X-102 has nearly the half number of

parameters compared to ResNeXt-101, but the error rate

difference is only 0.2%.

DLA vs. DenseNet compares DLA with the dominant ar-

chitecture for semantic fusion and feature re-use. DenseNets

are composed of dense blocks that aggregate all of their

layers by concatenation and transition blocks that reduce

dimensionality for tractability. While these networks can

aggressively reduce depth and parameter count by feature re-

use, concatenation is a memory-intensive fusion operation.

DLA achieves higher accuracy with lower memory usage

because the aggregation node fan-in size is log of the total

number of convolutional blocks in HDA.
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Name Block Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

DLA-34 Basic 16 32 1-64 2-128 2-256 1-512

DLA-46-C Bottleneck 16 32 1-64 2-64 2-128 1-256

DLA-60 Bottleneck 16 32 1-128 2-256 3-512 1-1024

DLA-102 Bottleneck 16 32 1-128 3-256 4-512 1-1024

DLA-169 Bottleneck 16 32 2-128 3-256 5-512 1-1024

DLA-X-46-C Split 16 32 1-64 2-64 2-128 1-256

DLA-X-60-C Split 16 32 1-64 2-64 3-128 1-256

DLA-X-60 Split 16 32 1-128 2-256 3-512 1-1024

DLA-X-102 Split 16 32 1-128 3-256 4-512 1-1024

Table 1: Deep layer aggregation networks for classification. Stages 1 and 2 show the number of channels n while further stages

show d-n where d is the aggregation depth. Models marked with “-C” are compact and only have ∼1 million parameters.

Compact models have received a lot of attention due to

the limited capabilities of consumer hardware for running

convolutional networks. We design parameter constrained

DLA networks to study how efficiently DLA can aggregate

and re-use features. We remove color perturbation and set

the minimum cropping area to be 0.25 because small models

do not have enough capacity for the aggressive data aug-

mentation. We compare to SqueezeNet [20], which shares a

block design similar to our own. Table 2 shows that DLA is

more accurate with the same number of parameters. Further-

more DLA is more computationally efficient by operation

count.

Top-1 Top-5 Params FMAs

SqueezNet-A 42.5 19.7 1.2M 1.70B

SqueezNet-B 39.6 17.5 1.2M 0.72B

DLA-46-C 35.1 13.3 1.3M 0.58B

DLA-X-46-C 34.0 13.0 1.1M 0.53B

DLA-X-60-C 32.0 11.6 1.3M 0.59B

Table 2: Comparison with compact models. DLA is more

accurate at the same number of parameters while inference

takes fewer operations (counted by fused multiply-adds).

5.2. Fine­grained Recognition

We use the same training procedure for all of fine-grained

experiments. The training is performed by SGD with a mini-

batch size of 64, while the learning rate starts from 0.01 and

is then divided by 10 every 50 epochs, for 110 epochs in

total. The other hyperparameters are fixed to their settings for

ImageNet classification. In order to mitigate over-fitting, we

carry out the following data augmentation: Inception-style

scale and aspect ratio variation [39], AlexNet-style PCA

color noise[23], and the photometric distortions of [18].

We evaluate our models on various fine-grained recog-

nition datasets: Bird (CUB) [40], Car [22], Plane [31], and

Food [5]. The statistics of these datasets can be found in

Table 3, while results are shown in Figure 6. For fair compar-

ison, we follow the experimental setup of [9]: we randomly

crop 448×448 in resized 512×512 for all the datasets, while

keeping 224×224 input size for original VGGNet.

Our results improve or rival the state-of-the-art with-

out further annotations or specific modules for fine-grained

recognition. In particular, we establish new state-of-the-arts

results on Car, Plane, and Food datasets. Furthermore, our

models are competitive while having only several million

parameters. However, our results are not better than state-

of-the-art on Birds, although note that this dataset has fewer

instances per class so further regularization might help.

#Class #Train (per class) #Test (per class)

Bird 200 5994 (30) 5794 (29)

Car 196 8144 (42) 8041 (41)

Plane 102 6667 (67) 3333 (33)

Food 101 75750 (750) 25250 (250)

ILSVRC 1000 1,281,167 (1281) 100,000 (100)

Table 3: Statistics for fine-grained recognition datasets. Com-

pared to generic, large-scale classification, these tasks con-

tain more specific classes with fewer training instances.

5.3. Semantic Segmentation

We report experiments for urban scene understanding

on CamVid [6] and Cityscapes [8]. Cityscapes is a larger-

scale, more challenging dataset for comparison with other

methods while CamVid is more convenient for examining

ablations. We use the standard mean intersection-over-union

(IoU) score [12] as the evaluation metric for both datasets.

Our networks are trained only on the training set without the

usage of validation or other further data.

CamVid has 367 training images, 100 validation images,

and 233 test images with 11 semantic categories. We start

the training with learning rate 0.01 and divide it by 10 after

800 epochs. The results are shown in Table 5. We find that

models with downsampling rate 2 consistenly outperforms

those downsampling by 8. We also try to augment the data
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Figure 5: Evaluation of DLA on ILSVRC. DLA/DLA-X have ResNet/ResNeXt backbones respectively. DLA achieves the

highest accuracies with fewer parameters and fewer computation.
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Figure 6: Comparison with state-of-the-art methods on fine-grained datasets. Image classification accuracy on Bird [40],

Car [22], Plane [31], and Food [5]. Higher is better. P is the number of parameters in each model. For fair comparison,

we calculate the number of parameters for 1000-way classification. V- and R- indicate the base model as VGGNet-16 and

ResNet-50, respectively. The numbers of Baseline, Compact [13] and Kernel [9] are directly cited from [9].

by randomly rotating the images between [-10, 10] degrees

and randomly scaling the images between 0.5 and 2. The

final results are significantly better than prior methods.

Cityscapes has 2, 975 training images, 500 validation im-

ages, and 1, 525 test images with 19 semantic categories.

Following previous works [49], we adopt the poly learn-

ing rate (1− epoch−1

total epoch
)0.9 with momentum 0.9 and train the

model for 500 epochs with batch size 16. The starting learn-

ing rate is 0.01 and the crop size is chosen to be 864. We also

augment the data by randomly rotating within 10 degrees

and scaling between 0.5 and 2. The validation results are

shown in 4. Surprisingly, DLA-34 performs very well on

this dataset and it is as accurate as DLA-102. It should be

noted that fine spatial details do not contribute much for this

choice of metric. RefineNet [28] is the strongest network in

the same class of methods without the computational costs

of additional data, dilation, and graphical models. To make a

fair comparison, we evaluate in the same multi-scale fashion

as that approach with image scales of [0.5, 0.75, 1, 1.25, 1.5]

and sum the predictions. DLA improves by 2+ points.

5.4. Boundary Detection

Boundary detection is an exacting task of localization.

Although as a classification problem it is only a binary task

of whether or not a boundary exists, the metrics require

precise spatial accuracy. We evaluate on classic BSDS [1]

with multiple human boundary annotations and PASCAL

boundaries [32] with boundaries defined by instances masks

of select semantic classes. The metrics are accuracies at

different thresholds, the optimal dataset scale (ODS) and

more lenient optimal image scale (OIS), as well as average

precision (AP). Results are shown in for BSDS in Table 6

and the precision-recall plot of Figure 7 and for PASCAL

boundaries in Table 7.

To address this task we follow the training procedure of

HED [42]. In line with other deep learning methods, we

take the consensus of human annotations on BSDS and only

supervise our network with boundaries that three or more
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Method Split mIoU

DLA-34 8s

Val

73.5

DLA-34 2s 75.1

DLA-102 2s 74.4

FCN-8s [35]

Test

65.3

RefineNet-101 [28] 73.6

DLA-102 75.3

DLA-169 75.9

Table 4: Evaluation on Cityscapes to compare strides on

validation and to compare against existing methods on test.

DLA is the best-in-class among methods in the same setting.

Method mIoU

SegNet [2] 46.4

DeepLab-LFOV [7] 61.6

Dilation8 [45] 65.3

FSO [24] 66.1

DLA-34 8s 66.7

DLA-34 2s 68.6

DLA-102 2s 71.0

Table 5: Evaluation on CamVid. Higher depth and resolution

help. DLA is state-of-the-art.

Method ODS OIS AP

SE [10] 0.746 0.767 0.803

DeepEdge [3] 0.753 0.772 0.807

DeepContour [36] 0.756 0.773 0.797

HED [42] 0.788 0.808 0.840

CEDN [43]† 0.788 0.804 0.821

UberNet [21] (1-Task)† 0.791 0.809 0.849

DLA-34 8s 0.760 0.772 0.739

DLA-34 4s 0.767 0.778 0.751

DLA-34 2s 0.794 0.808 0.787

DLA-102 2s 0.803 0.813 0.781

Table 6: Evaluation on BSDS († indicates outside data). ODS

and OIS are state-of-the-art, but AP suffers due to recall.

Method Train ODS OIS AP

SE [10]

BSDS

0.541 0.570 0.486

HED [43] 0.553 0.585 0.518

DLA-34 2s 0.642 0.668 0.624

DLA-102 2s 0.648 0.674 0.623

DSBD [32]

PASCAL

0.643 0.663 0.650

M-DSBD [32] 0.652 0.678 0.674

DLA-34 2s 0.743 0.757 0.763

DLA-102 2s 0.754 0.766 0.752

Table 7: Evaluation on PASCAL Boundaries. DLA is state-

of-the-art.

annotators agree on. Following [43], we give the boundary

labels 10 times weight of the others. For inference we simply

run the net forward, and do not make use of ensembles

or multi-scale testing. Assessing the role of resolution by

comparing strides of 8, 4, and 2 we find that high output

resolution is critical for accurate boundary detection. We

also find that deeper networks does not continue improving

the prediction performance on BSDS.

On both BSDS and PASCAL boundaries we achieve
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[F=.76] DLA-34 8s

Figure 7: Precision-recall evaluation on BSDS. DLA is the

closest to human performance.

state-of-the-art ODS and OIS scores. In contrast the AP

on BSDS is surprisingly low, so to understand why we plot

the precision-recall curve in Figure 7. Our approach has

lower recall, but this is explained by the consensus ground

truth not covering all of the individual, noisy boundaries. At

the same time it is the closest to human performance. On

the other hand we achieve state-of-the-art AP on PASCAL

boundaries since it has a single, consistent notion of bound-

aries. When training on BSDS and transferring to PASCAL

boundaries the improvement is minor, but training on PAS-

CAL boundaries itself with ∼ 10× the data delivers more

than 10% relative improvement over competing methods.

6. Conclusion

Aggregation is a decisive aspect of architecture, and as

the number of modules multiply their connectivity is made

all the more important. By relating architectures for aggre-

gating channels, scales, and resolutions we identified the

need for deeper aggregation, and addressed it by iterative

deep aggregation and hierarchical deep aggregation. Our

models are more accurate and make more efficient use of

parameters and computation than baseline networks. Our

aggregation extensions improve on dominant architectures

like residual and densely connected networks. Bridging the

gaps of architecture makes better use of layers in aggregate.
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