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Abstract

Despite learning based methods showing promising re-

sults in single view depth estimation and visual odometry,

most existing approaches treat the tasks in a supervised

manner. Recent approaches to single view depth estima-

tion explore the possibility of learning without full super-

vision via minimizing photometric error. In this paper, we

explore the use of stereo sequences for learning depth and

visual odometry. The use of stereo sequences enables the

use of both spatial (between left-right pairs) and temporal

(forward backward) photometric warp error, and constrains

the scene depth and camera motion to be in a common, real-

world scale. At test time our framework is able to estimate

single view depth and two-view odometry from a monocu-

lar sequence. We also show how we can improve on a stan-

dard photometric warp loss by considering a warp of deep

features. We show through extensive experiments that: (i)

jointly training for single view depth and visual odometry

improves depth prediction because of the additional con-

straint imposed on depths and achieves competitive results

for visual odometry; (ii) deep feature-based warping loss

improves upon simple photometric warp loss for both sin-

gle view depth estimation and visual odometry. Our method

outperforms existing learning based methods on the KITTI

driving dataset in both tasks. The source code is avail-

able at https://github.com/Huangying-Zhan/

Depth-VO-Feat.

1. Introduction

Understanding the 3D structure of a scene from a sin-

gle image is a fundamental question in machine percep-

tion. The related problem of inferring ego-motion from a

sequence of images is likewise a fundamental problem in

robotics, known as visual odometry estimation. These two

Figure 1. Training instance example. The known camera motion

between stereo cameras TL→R constrains the Depth CNN and

Odometry CNN to predict depth and relative camera pose with

actual scale.

problems are crucial in robotic vision research since accu-

rate estimation of depth and odometry based on images has

many important applications, most notably for autonomous

vehicles.

While both problems have been the subject of research

in robotic vision since the origins of the discipline, with

numerous geometric solutions proposed, in recent times

a number of works have cast depth estimation and visual

odometry as supervised learning problems [1][5][21][22].

These methods attempt to predict depth or odometry us-

ing models that have been trained from a large dataset with

ground truth data. However, these annotations are expen-

sive to obtain, e.g. expensive laser or depth camera to col-

lect depths. In a recent work Garg et al.[6] recognised

that these tasks are amenable to an unsupervised framework

where the authors propose to use photometric warp error as

a self-supervised signal to train a convolutional neural net-

work (ConvNet / CNN) for the single view depth estima-

tion. Following [6] methods like [9][19][41] use the pho-

tometric error based supervision to learn depth estimators
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comparable to that of fully supervised methods. Specifi-

cally, [6] and [9] use the photometric warp error between

left-right images in a stereo pair to learn depth. Recog-

nising the generality of the idea, [44] uses monocular se-

quences to jointly train two neural networks for depth and

odometry estimation. However, relying on the two frame

visual odometry estimation framework, [44] suffers from

the per frame scale-ambiguity issue, in that an actual metric

scaling of the camera translations is missing and only di-

rection is known. Having a good estimate of the translation

scale per-frame is crucial for the success of any Simultane-

ous Localization and Mapping (SLAM) system. Accurate

camera tracking in most monocular SLAM frameworks re-

lies on keeping the scale consistency of the map across mul-

tiple images which is enforced using a single scale map. In

absence of a global map for tracking, an expensive bundle

adjustment over the per-frame scale parameter or additional

assumptions like constant camera height from the already

detected ground plane becomes essential for accurate track-

ing [34].

In this work, we propose a framework which jointly

learns a single view depth estimator and monocular odome-

try estimator using stereo video sequences (as shown in Fig-

ure 1) for training. Our method can be understood as unsu-

pervised learning for depth estimation and semi-supervised

for pose which is known between stereo pairs. The use of

stereo sequences enables the use of both spatial (between

left-right pairs) and temporal (forward-backward) photo-

metric warp error, and constrains the scene depth and cam-

era motion to be in a common, real-world scale (set by the

stereo baseline). Inference (i.e. depth and odometry esti-

mation) without any scale ambiguity is then possible using

a single camera for pure frame to frame VO estimation with-

out any need for mapping.

Moreover, while the previous works have shown the

efficacy of using the photometric warp error as a self-

supervision signal, a simple warp of image intensities or

colors carries its own assumptions about brightness/color

consistency, and must also be accompanied by a regular-

ization to generate “sensible” warps when the photometric

information is ambiguous, such as in uniformly colored re-

gions (see Sec.3.3). We propose an additional deep feature

reconstruction loss which takes contextual information into

consideration rather than per pixel color matching alone.

In summary, we make the following contributions: (i) an

unsupervised framework for jointly learning a depth estima-

tor and visual odometry estimator that does not suffer from

the scale ambiguity; (ii) takes advantage of the full set of

constraints available from spatial and temporal image pairs

to improve upon prior art on single view depth estimations;

(iii) produces the state-of-the-art frame-to-frame odometry

results that significantly improve on [44] and are on par with

geometric methods; (iv) uses a novel feature reconstruction

loss in addition to the color intensity based image recon-

struction loss which improves the depth and odometry esti-

mation accuracy significantly.

2. Related Work

Humans are capable of reasoning the relative depth of

pixels in an image and perceive ego-motion given two im-

ages, but both single view depth estimation and two frame

visual odometry are challenging problems. Avoiding vi-

sual learning, localization and 3D reconstruction in com-

puter vision was considered a purely geometric problem

for decades. While prior to deep learning graphical mod-

els based learning methods [32][33] were prevalent exam-

ples for single view reconstructions, methods based on the

epipolar geometry were to the fore for two view odometry.

While it is possible to estimate the relative pose between

two frames based only on the data within those two frames

up-to a scale (see e.g., [24], the “gold-standard” for geomet-

ric ego-motion estimation to date is based on a batch bundle

adjustment of pose and scene structure [35], or on online

Visual SLAM technqiues [4]). After the surge of convo-

lutional neural networks, both depth and visual odometry

estimation problem have been attempted with deep learning

methods.

Supervised methods Deep learning based depth estima-

tion starts with Eigen et al. [5] which is the first work

estimating depth with ConvNets. They used a multi-scale

deep network and scale-invariant loss for depth estimation.

Liu et al.[21] [22] formulated depth estimation as a continu-

ous conditional random field learning problem. Laina et al.

[20] proposed a residual network using fully convolutional

architecture to model the mapping between monocular im-

age and depth map. They also introduced reverse Huber

loss and newly designed up-sampling modules. Kendell et

al.[17] proposed an end-to-end learning framework to pre-

dict disparity from a stereo pair. In particular, they propose

to use an explicit feature matching step as a layer in the net-

work to create the cost-volume matching two images, which

is then regularized to predict the state-of-the-art disparities

for outdoor stereo sequences on KITTI dataset.

For odometry, Agrawal et al. [1] proposed a visual fea-

ture learning algorithm which aims at learning good visual

features. Instead of learning features from a classification

task (e.g. ImageNet[31]), [1] learns features from an ego-

motion estimation task. The model is capable to estimate

relative camera poses. Wang et al.[38] presented a recur-

rent ConvNet architecture for learning monocular odometry

from video sequences.

Ummenhofer et al. [36] proposed an end-to-end vi-

sual odometry and depth estimation network by formulat-

ing structure from motion as a supervised learning problem.
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However, the work is highly supervised: not only does it re-

quire depth and camera motion ground truths, in addition

the surface normals and optical flow between images are

also required.

Unsupervised or semi-supervised methods Recent

works suggest that unsupervised pipeline for learning depth

is possible from stereo image pairs using a photometric

warp loss to replace a loss based on ground truth depth.

Garg et al. [6] used binocular stereo pairs (for which

the inter-camera transformation is known) and trained a

network to predict the depth that minimises the photometric

difference between the true right image and one synthesized

by warping the left image into the right’s viewpoint, using

the predicted depth. Godard et al. [9] made improvements

to the depth estimation by introducing a symmetric left-

right consistency criterion and better stereo loss function.

[19] proposed a semi-supervised learning framework by

using both sparse depth maps for supervised learning and

dense photometric error for unsupervised learning.

An obvious extension to the above framework is to

use structure-from-motion techniques to estimate the inter-

frame motion (optic flow) [15] instead of depth using the

known stereo geometry. But in fact it is possible to go

further and to use deep networks also to estimate the cam-

era ego-motion, as shown very recently by [44] and [37],

both of which use a photometric error for supervising a

monocular depth and ego-motion estimation system. Sim-

ilar to other monocular frameworks, [44] and [37] suffer

from scaling ambiguity issue.

Like [6][9], in our work we use stereo pairs for training,

since this avoids issues with the depth-speed ambiguity that

exist in monocular 3D reconstruction. In addition we jointly

train a network to also estimate ego-motion from a pair of

images. This allows us to enforce both the temporal and

stereo constraints to improve our depth estimation in a joint

framework.

All of the unsupervised depth estimation methods rely

on photo-consistency assumption which gets violated often

in practice. To cope with that [6][44] use robust norms like

L1 norm of the warp error. [9] uses hand crafted features

like SSIM [39]. Other handcrafted features like SIFT [25],

HOG [3], ORB [30] are all usable and can be explored in

unsupervised learning framework for robust warping loss.

More interestingly, one can learn good features specifically

for the task of matching. LIFT [42] and MC-CNN [43]

learn a similarity measure on small image patches while

[40][2] learns fully convolutional features good for match-

ing. In our work, we compare the following features for

their potential for robust warp error minimization: standard

RGB photo-consistency; ImageNet features (conv1); fea-

tures from [40]; features from a “self-supervised” version

of [40]; and features derived from our depth network.

3. Method

This section describes our framework (shown in Fig-

ure 2) for jointly learning a single view depth ConvNet

(CNND) and a visual odometry ConvNet (CNNV O) from

stereo sequences. The stereo sequences learning framework

overcomes the scaling ambiguity issue with monocular se-

quences, and enables the system to take advantage of both

left-right (spatial) and forward-backward (temporal) consis-

tency checks.

3.1. Image reconstruction as supervision

The fundamental supervision signal in our framework

comes from the task of image reconstruction. For two

nearby views, we are able to reconstruct the reference view

from the live view, given that the depth of the reference view

and relative camera pose between two views are known.

Since the depth and relative camera pose can be estimated

by a ConvNet, the inconsistency between the real and the re-

constructed view allows the training of the ConvNet. How-

ever, a monocular framework without extra constraints [44]

suffers from the scaling ambiguity issue. Therefore, we pro-

pose a stereo framework which constrains the scene depth

and relative camera motion to be in a common, real-world

scale, given an extra constraint set by the known stereo

baseline.

In our proposed framework using stereo sequences, for

each training instance, we have a temporal pair (IL,t1 and

IL,t2) and a stereo pair (IL,t2 and IR,t2), where IL,t2 is the

reference view while IL,t1 and IR,t2 are the live views. We

can synthesize two reference views, I ′L,t1 and I ′R,t2, from

IL,t1 and IR,t2, respectively. The synthesis process can be

represented by,

I ′L,t1 = f(IL,t1,K, Tt2→t1, DL,t2) (1)

I ′R,t2 = f(IR,t2,K, TL→R, DL,t2). (2)

where f(.) is a synthesis function defined in Sec.3.2; DL,t2

denotes the depth map of the reference view; TL→R and

Tt2→t1 are the relative camera pose transformations be-

tween the reference view and the live views; and K de-

notes the known camera intrinsic matrix. Note that DL,t2

is mapped from IL,t2 via CNND while Tt2→t1 is mapped

from [IL,t1, IL,t2] via CNNV O.

The image reconstruction loss between the synthesized

views and the real views are computed as a supervision sig-

nal to train CNND and CNNV O. The image construction

loss is represented by,

Lir =
∑

p

(

|IL,t2(p)− I ′L,t1(p)|+ |IL,t2(p)− I ′R,t2(p)|
)

.

(3)

The effect of using stereo sequences instead of monocular

sequences is two-fold. The known relative pose TL→R be-
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Figure 2. Illustration of our proposed framework in training phase. CNNV O and CNND can be used independently in testing phase.

tween the stereo pair constrains CNND and CNNV O to es-

timate depths and relative pose between the temporal pair

in a real-world scale. As a result, our model is able to es-

timate single view depths and two-view odometry without

the scaling ambiguity issue at test time. Second, in addi-

tion to stereo pairs with only one live view, the temporal

pair provides a second live view for the reference view. The

multi-view scenario takes advantage of the full set of con-

straints available from the stereo and temporal image pairs.

In this section, we describe an unsupervised framework

that learns depth estimation and visual odometry without

scaling ambiguity issue using stereo video sequences.

3.2. Differentiable geometry modules

As indicated in Eqn.1 - 2, an important function in our

learning framework is the synthesis function, f(.). The

function consists two differentiable operations which allow

gradient propagation for the training of the ConvNet. The

two operations are epipolar geometry transformation and

warping. The former defines the correspondence between

pixels in two views while the latter synthesize an image by

warping a live view.

Let pL,t2 be the homogeneous coordinates of a pixel in

the reference view. We can obtain pL,t2’s projected coordi-

nates onto the live views using epipolar geometry, similar

to [10, 44]. The projected coordinates are obtained by

pR,t2 = KTL→RDL,t2(pL,t2)K
−1pL,t2 (4)

pL,t1 = KTt2→t1DL,t2(pL,t2)K
−1pL,t2, (5)

where pR,t2 and pL,t1 are the projected coordinates on IR,t2

and IL,t1 respectively. Note that DL,t2(pL,t2) is the depth

at position pL,t2; T ∈ SE3 is a 4x4 transformation matrix

defined by 6 parameters, in which a 3D vector u ∈ so3
is an axis-angle representation and a 3D vector v ∈ R

3

represents translations.

After getting the projected coordinates from Eqn.4 -

5, new reference frames can be synthesized from the live

frames using the differentiable bilinear interpolation mech-

anism (warping) proposed in [14].

3.3. Feature reconstruction as supervision

The stereo framework we proposed above implicitly as-

sumes that the scene is Lambertian, so that the brightness is

constant regardless the observer’s angle of view. This con-

dition implies that the image reconstruction loss is meaning-

ful for training the ConvNets. Any violation of the assump-

tion can potentially corrupt the training process by propa-

gating the wrong gradient back to the ConvNets. To im-

prove the robustness of our framework, we propose a fea-

ture reconstruction loss: instead of using 3-channel color

intensity information solely (image reconstruction loss), we

explore the use of dense features as an additional supervi-

sion signal.

Let FL,t2, FL,t1 and FR,t2 be the corresponding dense

feature representations of IL,t2, IL,t1 and IR,t2 respectively.

Similar to the image synthesis process, two reference views,

F ′
L,t1 and F ′

R,t2, can be synthesized from FL,t1 and FR,t2,

respectively. The synthesis process can be represented by,

F ′
L,t1 = f(FL,t1,K, Tt2→t1, DL,t2) (6)

F ′
R,t2 = f(FR,t2,K, TL→R, DL,t2). (7)

Then, the feature reconstruction loss can be formulated as,

Lfr =
∑

p

|FL,t2(p)− F ′
L,t1(p)|+

∑

p

|FL,t2(p)− F ′
R,t2(p)|

(8)

In this work, we explore four possible dense features, as

detailed in Section 4.3.

3.4. Training loss

As introduced in Sec.3.1 and Sec.3.3, the main supervi-

sion signal in our framework comes from the image recon-

struction loss while the feature reconstruction loss acts as

an auxiliary supervision. Furthermore, similar to [6][44][9],

we have a depth smoothness loss which encourages the pre-

dicted depth to be smooth.

To obtain a smooth depth prediction, following the ap-

proach adopted by [12][9], we encourage depth to be

smooth locally by introducing an edge-aware smoothness
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term. The depth discontinuity is penalized if image conti-

nuity is showed in the same region. Otherwise, the penalty

is small for discontinued depths. The edge-aware smooth-

ness loss is formulate as

Lds =

W,H
∑

m,n

|∂xDm,n|e
−|∂xIm,n| + |∂yDm,n|e

−|∂yIm,n|,

(9)

where ∂x(.) and ∂y(.) are gradients in horizontal and verti-

cal direction respectively. Note the Dm,n is inverse depth

in the above regularization.

The final loss function becomes

L = λirLir + λfrLfr + λdsLds, (10)

where λir, λfr and λds are the loss weightings for each loss

term.

3.5. Network architecture

Depth estimation Our depth ConvNet is composed of

two parts, encoder and decoder. For the encoder, we adopt

the convolutional network in a variant of ResNet50 [11]

with half filters (ResNet50-1by2) for the sake of compu-

tation cost. The ResNet50-1by2 contains less than 7 mil-

lion parameters which is around one fourth of the original

ResNet50. For the decoder network, the decoder firstly

converts the encoder output (1024-channel feature maps)

into a single channel feature map using a 1x1 kernel, fol-

lowed by conventional bilinear upsampling kernels with

skip-connections. Similar to [23][6][9], the decoder uses

skip-connections to fuse low-level features from different

stages of the encoder. We use ReLU activation after the

last prediction layer to ensure positive prediction comes

from the depth ConvNet. For the output of the depth Con-

vNet, we design our framework to predict inverse depth in-

stead of depth. However, the ReLU activation may cause

zero estimation which results in infinite depth. There-

fore, we convert the predicted inverse depth to depth by

D = 1/(Dinv + 10−4).

Visual odometry The visual odometry ConvNet is de-

signed to take two concatenated views along the color chan-

nels as input and output a 6D vector [u,v] ∈ se3, which is

then converted to a 4x4 transformation matrix. The network

is composed of 6 stride-2 convolutions followed by 3 fully-

connected layers. The last fully-connected layer gives the

6D vector, which defines the transformation from reference

view to live view Tref→live.

4. Experiments

In this section we show extensive experiments for evalu-

ating the performance of our proposed framework. We fa-

vorably compare our approach on KITTI dataset [8][7] with

prior art on both single view depth and visual odometry esti-

mation. Additionally, we perform a detailed ablation study

on our framework to show that using temporal consistency

while training and use of learned deep features along with

color consistency both improves the single view depth pre-

dictions. Finally, we show two variants of deep features and

the corresponding effect, which we show examples of using

deep features for dense matching.

We train all our CNNs with the Caffe [16] framework.

We use Adam optimizer with the proposed optimization set-

tings in [18] with [β1, β2, ǫ] = [0.9, 0.999, 10−8]. The ini-

tial learning rate is 0.001 for all the trained network, which

we decrease manually when the training loss converges. For

the loss weighting in our final loss function, we empirically

find that the combination [λir, λfr, λds] = [1, 0.1, 10] re-

sults in a stable training. No data augmentation is involved

in our work.

Our system is trained mainly in KITTI dataset [7][8].

The dataset contains 61 video sequences with 42,382 rec-

tified stereo pairs, with the original image size being

1242x375 pixels. However, we use image size of 608x160

in our training setup for the sake of computation cost. We

use two different splits of the KITTI dataset for evaluating

estimated ego-motion and depth. For single view depth es-

timation, we follow the Eigen split provided by [5] for fair

comparisons with [6, 9, 5, 22]. On the other hand, in or-

der to evaluate our visual odometry performance and com-

pare to prior approaches, we follow [44] by training both

the depth and pose network on the official KITTI Odometry

training set. Note that there are overlapping scenes between

two splits (i.e. some testing scenes of Eigen Split are in-

cluded in the training scenes of Odometry Split, and vice

versa). Therefore, finetuning/testing models trained in any

split to another split is not allowable/sensible. The detail

about both splits are:

Eigen Split Eigen et al. [5] select 697 images from 28 se-

quences as test set for single view depth evaluation. The

remaining 33 scenes contains 23,488 stereo pairs for train-

ing. We follow this setup and form 23,455 temporal stereo

pairs.

Odometry Split The KITTI Odometry Split [8] contains 11

driving sequences with publicly available ground truth cam-

era poses. We follow [44] to train our system on the Odome-

try Split (no finetuning from Eigen Split is performed). The

split in which sequences 00-08 (sequence 03 is not available

in KITTI Raw Data) are used for training while 09-10 are

used for evaluation. The training set contains 8 sequences

with 19,600 temporal stereo pairs.

For each dataset split, we form temporal pairs by choos-

ing frame It as the live frame while frame It+1 as the ref-

erence frame – to which the live frame is warped. The rea-

son for this choice is that as the mounted camera in KITTI

moves forward, most pixels in It+1 have correspondence in
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Method Seq. 09 Seq. 10

terr(%) rerr(
◦/100m) terr(%) rerr(

◦/100m)
ORB-SLAM (LC) [26] 16.23 1.36 / /

ORB-SLAM [26] 15.30 0.26 3.68 0.48

Zhou et al.[44] 17.84 6.78 37.91 17.78

Ours (Temporal) 11.93 3.91 12.45 3.46

Ours (Full-NYUv2) 11.92 3.60 12.62 3.43

Table 1. Visual odometry result evaluated on Sequence 09, 10 of

KITTI Odometry dataset. terr is average translational drift error.

rerr is average rotational drift error.

Seq. 09
Seq. 10

Figure 3. Qualitative result on visual odometry. Full trajectories

on the testing sequences (09, 10) are plotted.

It giving us a better warping error.

4.1. Visual odometry results

We use the Odometry Split mentioned above to evaluate

the performance of our frame to frame odometry estima-

tion network. The result is compared with the monocular

training based network [44] and a popular SLAM system –

ORB-SLAM [26] (with and without loop closure) as very

strong baselines. Both of the ORB-SLAM versions use lo-

cal bundle adjustment and more importantly a single scale

map to assist the tracking. We ignore the frames (First 9 and

30 respectively) from the sequences (09 and 10) for which

ORB-SLAM fails to bootstrap with reliable camera poses

due to lack of good features and large rotations. Following

the KITTI Visual Odometry dataset evaluation criterion we

use possible sub-sequences of length (100, 200, ... , 800)

meters and report the average translational and rotational

errors for the testing sequence 09 and 10 in Table 1.

As ORB-SLAM suffers from a single depth-translation

scale ambiguity for the whole sequence, we align the

ORB-SLAM trajectory with ground-truth by optimizing the

map scale following standard protocol. For our method,

we simply integrate the estimated frame-to-frame camera

poses over the entire sequence without any post processing.

Frame-to-frame pose estimation of [44] only avails small 5-

frame long tracklets, each of which is already aligned inde-

pendently with the ground-truth by fixing translation scales.

This translation normalization leaves [44]’s error to only in-

Figure 4. Comparison of VO error with different translation thresh-

old for sequence 09 of odometry dataset.

dicate the relative translation magnitudes error over small

sequences. As the KITTI sequences are recorded by camera

mounted on a car which mostly move forward, even aver-

age 6DOF motion as reported in [44] overperforms frame-

to-frame odometry methods (ORB-SLAM when used only

on 5 frames does not bootstrap mapping). Nonetheless we

simply integrate the aligned tracklets to estimate the full tra-

jectory for [44] and evaluate. It is important to note that this

evaluation protocol is highly disadvantageous to the pro-

posed method as no scope for correcting the drift or trans-

lation scale is permitted. A visual comparison of the esti-

mated trajectories for all the methods can be seen in Figure

3.

As can be seen in Table 1, our stereo based odometry

learning method outperforms monocular learning method

[44] by a large margin even without any further post-

processing to fix translation scales. Our method is able to

give comparable odometry results on sequence 09 to that of

the full ORB-SLAM and respectable trajectory for sequence

10 on which larger error in our frame to frame rotation esti-

mation leads to a much larger gradual drift which should be

fixed by bundle adjustment.

To further compare the effect of bundle adjustment, we

evaluate the average errors for different translation bins and

report the result for sequence 09 in Figure 4. It can be seen

clearly that both our method and [44] are better than ORB-

SLAM when the translation magnitude is small. As transla-

tion magnitude increases, the simple integration of frame to

frame VO starts drifting gradually, which suggests a clear

advantage of a map based tracking over frame to frame VO

without bundle adjustment.

4.2. Depth estimation results

We use the Eigen Split to evaluate our system and com-

pare the results with various state of the art depth estima-

tion methods. Following the evaluation protocol proposed

in [9] which uses the same crop as [6], we use both the 50m

and 80m threshold of maximum depth for evaluation and

report all standard error measures in Table 2 with some vi-
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Method Dataset Supervision Error metric Accuracy metric

Abs Rel SqRel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Depth: cap 80m

Train set mean K Depth 0.361 4.826 8.102 0.377 0.638 0.804 0.894

Eigen et al. [5] Fine K Depth 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [22] K Depth 0.201 1.584 6.471 0.273 0.680 0.898 0.967

Zhou et al. [44] K Mono. 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Garg et al. [6] K Stereo 0.152 1.226 5.849 0.246 0.784 0.921 0.967

Godard et al. [9] K Stereo 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Ours (Temporal) K Stereo 0.144 1.391 5.869 0.241 0.803 0.928 0.969

Ours (Full-NYUv2) K Stereo 0.135 1.132 5.585 0.229 0.820 0.933 0.971

Depth: cap 50m

Zhou et al. [44] K Mono. 0.201 1.391 5.181 0.264 0.696 0.900 0.966

Garg et al. [6] K Stereo 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Godard et al. [9] K Stereo 0.140 0.976 4.471 0.232 0.818 0.931 0.969

Ours (Temporal) K Stereo 0.135 0.905 4.366 0.225 0.818 0.937 0.973

Ours (Full-NYUv2) K Stereo 0.128 0.815 4.204 0.216 0.835 0.941 0.975

Table 2. Comparison of single view depth estimation performance with existing approaches. For training, K is KITTI dataset (Eigen Split).

For a fair comparison, all methods (except [5]) are evaluated on the cropped region from [9]. For the supervision, “Depth” means ground

truth depth is used in the method; “Mono.” means monocular sequences are used in the training; “Stereo” means stereo sequences with

known stereo camera poses in the training.

Input image Ours (Full-NYUv2)GT Liu et al. Godard et al.

From Godard et al.

Figure 5. Single view depth estimation examples in Eigen Split. The ground truth depth is interpolated for visualization purpose.

Figure 6. Stereo matching examples. Rows: (1) Left image; (2)

Right image; (3) Matching error using color intensity and deep

features. Photometric loss is not robust when compared with fea-

ture loss, especially in ambiguous regions.

sual examples in Figure 5. As shown in [6], photometric

stereo based training with AlexNet-FCN architecture and

Horn and Schunck [13] loss already gave more accurate re-

sults than the state of the art supervised methods [5][22] on

KITTI. For fair comparison of [6] with other methods we

evaluate the results reported by the authors publicly with

80m cap on maximum depth. All methods using stereo

for training are substantially better than [44] which is us-

ing only monocular training. Benefited by the feature based

reconstruction loss and additional warp error via odometry

network, our method outperforms both [6] and [9] with rea-

sonable margin. It is important to note that unlike [9] left-

right consistency, data augmentation, run-time shuffle, ro-

bust similarity measure like SSIM[39] are not used to train

our network and should lead to further improvement.

4.3. Ablation studies

Table 3 shows an ablation study on depth estimation

for our method showing importance of each component of

the loss function. Our first baseline is a simple architec-

ture (ResNet50-1by2 as encoder; Bilinear upsampler as de-
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Method Stereo Temporal Feature Error metric Accuracy metric

Abs Rel SqRel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Encoder: ResNet50-1by2; Decoder: Bilinear upsampler

Baseline ✓ ✗ ✗ 0.143 0.859 4.310 0.229 0.802 0.933 0.973

Temporal ✓ ✓ ✗ 0.135 0.905 4.366 0.225 0.818 0.937 0.973

ImageNet Feat. ✓ ✗ ✓ 0.136 0.880 4.390 0.230 0.823 0.935 0.970

KITTI Feat. ✓ ✗ ✓ 0.130 0.860 4.271 0.221 0.831 0.938 0.973

NYUv2 Feat. ✓ ✗ ✓ 0.132 0.906 4.279 0.220 0.831 0.939 0.974

Full-NYUv2 ✓ ✓ ✓ 0.128 0.815 4.204 0.216 0.835 0.941 0.975

Encoder: ResNet50-1by2; Decoder: Learnable upsampler

Baseline2 ✓ ✗ ✗ 0.155 1.307 4.560 0.242 0.805 0.928 0.968

Temporal2 ✓ ✓ ✗ 0.141 0.998 4.354 0.232 0.814 0.932 0.971

Depth Feat. ✓ ✗ ✓ 0.142 0.956 4.377 0.230 0.817 0.934 0.971

Full-Depth ✓ ✓ ✓ 0.137 0.893 4.348 0.228 0.821 0.935 0.971

Table 3. Ablation study on single view depth estimation. The result is evaluated in KITTI 2015 using Eigen Split test set, following the

evaluation protocol proposed in [9]. The results are capped at 50m depth. Stereo: stereo pairs are used for training; Temporal: additional

temporal pairs are used; Feature: feature reconstruction loss is used.

coder) trained on the stereo pairs with the loss described in

Sec.3.4 which closely follows [6] (GitHub version). When

we train the pose network jointly with the depth network,

we get a slight improvement in depth estimation accuracy.

Using features from ImageNet feature (conv1 features from

pretrained ResNet50-1by-2) improves depth estimation ac-

curacy slightly. In addition, using features from an off-the-

shelf image descriptor [40] gives a further boost. How-

ever, [40] is trained using NYUv2 dataset [27] (ground truth

poses and depths are required) so we follow [40] to train

an image descriptor using KITTI dataset but using the esti-

mated poses and depths generated from Method “Temporal”

as pseudo ground truths. Using the features extracted from

the self-supervised descriptor (KITTI Feat.) gives a compa-

rable result with that of [40]. The system having all three

components (Stereo + Temporal + NYUv2 Feat.) performs

best as can be seen in the top part of Table 3.

As most other unsupervised depth estimation methods

use a convolutional encoder with deconvnet architecture

like [28][29] for dense predictions, we also experimented

with learnable deconv architecture with the ResNet50-1by2

as encoder – learnable upsampler as decoder setup. The

results in the bottom part of the table reflects that overall

performance of this Baseline2 was slightly inferior to the

first baseline. To improve the performance of this baseline,

we explore the use of deep features extracted from the depth

decoder itself. At the end the decoder outputs a 32-channel

feature map which we directly use for feature reconstruc-

tion loss. Using these self-embedded depth features for ad-

ditional warp error minimization also shows promising im-

provements in the accuracy of the depth predictions without

requiring any explicit supervision for matching as required

by [40].

In Figure 6, we compare the deep features of [40] and

the self-embedded depth features against color consistency

on the task of stereo matching. Photometric error is not as

robust as deep feature error, especially in texture-less re-

gions, there are multiple local minima with similar magni-

tude. However, both NYUv2 Feature from [40] and self-

embedded depth features show distinctive local minimum

which is a desirable property.

5. Conclusion

We have presented an unsupervised learning framework

for single view depth estimation and monocular visual

odometry using stereo data for training. We have shown that

the use of binocular stereo sequences for jointly learning the

two tasks, enable odometry prediction in metric scale sim-

ply given 2 frames We also show the advantage of using

temporal image alignment, in addition to stereo pair align-

ment for single view depth predictions. Additionally, we

have proposed a novel feature reconstruction loss to have

state-of-the-art unsupervised single view depth and frame-

to-frame odometry without scale ambiguity.

There are still a number of challenges to be addressed.

Our framework assumes no occlusion and the scene is as-

sumed to be rigid. Modelling scene dynamics and occlu-

sions explicitly, in a deep learning framework will provide

a natural means for more practical and useful navigation in

real scenarios. Although we show odometry results that are

comparable to the best two-frame estimates available the

current systems do not compare favourably with state-of-

the-art SLAM systems. An extensive study of CNN archi-

tectures more suitable for odometry estimation and a pos-

sible way of integrating the map information over time are

challenging but very fruitful future directions.
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