
clcNet: Improving the Efficiency of Convolutional Neural Network using

Channel Local Convolutions

Dong-Qing Zhang

ImaginationAI LLC

dongqing@gmail.com

Abstract

Depthwise convolution and grouped convolution has

been successfully applied to improve the efficiency of convo-

lutional neural network (CNN). We suggest that these mod-

els can be considered as special cases of a generalized con-

volution operation, named channel local convolution(CLC),

where an output channel is computed using a subset of the

input channels. This definition entails computation depen-

dency relations between input and output channels, which

can be represented by a channel dependency graph(CDG).

By modifying the CDG of grouped convolution, a new CLC

kernel named interlaced grouped convolution (IGC) is cre-

ated. Stacking IGC and GC kernels results in a convolution

block (named CLC Block) for approximating regular con-

volution. By resorting to the CDG as an analysis tool, we

derive the rule for setting the meta-parameters of IGC and

GC and the framework for minimizing the computational

cost. A new CNN model named clcNet is then constructed

using CLC blocks, which shows significantly higher compu-

tational efficiency and fewer parameters compared to state-

of-the-art networks, when being tested using the ImageNet-

1K dataset.

1. Introduction

Convolutional Neural Network has achieved tremen-

dous success for many computer vision problems, such

as image classification[15], object detection[7], and image

segmentation[17]. More recently, due to the pervasive use

of mobile and wearable devices, and the rise of emerging

applications such as self-driving car, CNN models have

been implemented in resource constrained environments,

such as mobile and embedded platforms. The computa-

tional and memory efficiency of CNN is crucial for its suc-

cessful deployment on these platforms, since they generally

have very strict resource requirements. Therefore, how to

improve the computational and memory efficiency of CNN

has become an important research topic in the field of deep

Figure 1. Receptive field (gray-colored cube) in the input tensor of

(a) fully connected layer (b) regular convolution (c) channel local

convolution

learning, and also is the focus of this paper.

Convolution layer is the fundamental building block in

a convolutional neural network, and was inspired by the

model proposed by Hubel and Wiessel [11], which shows

that visual neurons respond to a local small region of the

visual field. This leads to one of the central tenets of the

convolution operation in CNN: spatial locality, namely, the

computation at a cell only involves a local spatial area in

the input. On the other hand, regular convolution always

assume that all channels (i.e. the feature planes) of the in-

put are involved in the computation at a cell. Namely, the

computation is always global for the channel dimension. It

was only unitl recently that researchers started to use depth-

wise convolution [3] and grouped convolution [15] , where

computation only involves subsets of the input channels.

This paper attempts to provide a generalized view about

depthwise convolution and grouped convolution through a

concept named channel local convolution, where the com-

putation of an output channel only depends on a subset of

its input channels. Distinct from the regular convolution,

the receptive field of channel local convolution is local both

along the spatial and channel dimension, which is concep-

tually illustrated in Figure 1.

A channel local convolution (CLC) kernel is character-

ized by its channel dependency graph (CDG), which is an

acyclic graph where the nodes represent channels and edges

represent dependencies. CDG describes the computation

dependency of the channels, and can be used to analyze a

convolution block composed of multiple CLC kernels for

approximating regular convolution.

7912



Channel receptive field is another proposed concept

analogous to spatial receptive field. When the output chan-

nels of convolution depends on all of the input channels,

we say that the convolution kernel achieves full channel re-

ceptive field. By analyzing previous models using grouped

convolution and depthwise convolution, we postulate that

full channel receptive field(FCRF) is necessary for achiev-

ing accurate approximation to regular convolution for a con-

volution block created by stacking multiple CLC kernels.

We designed a new convolution block structurally sim-

ilar to depthwise separable convolution [3] but using two

CLC kernels, grouped convolution (GC) and a GC variant

named interlaced grouped convolution(IGC), as building

blocks. Using the channel dependency graph as the anal-

ysis tool, we derive the rule for setting the meta-parameters

of the CLC kernels, and present a cost minimization frame-

work for finding the best meta-parameters using the rule as

a constraint.

A new convolutional neural network named clcNet is

then constructed using the developed CLC blocks. This

network is then tested using the ImageNet-1K classifi-

cation dataset (i.e. the ILSVRC 2012[20] classification

dataset). The experiment shows that the clcNet achieves

significant computational efficiency improvement and pa-

rameter reduction compared to the state-of-the-art models,

while achieving comparable or better accuracy. For exam-

ple, compared to MobileNet [10], one of the trained clcNet

models achieves 25% reduction in computation with 1.0%

increase of top-1 classification accuracy.

2. Prior Work

The research on CNN efficiency improvement can be

dated back to early days of convolutional network research.

For example, in the work of optimal brain damage[5], the

convolution kernel weights are pruned by estimating their

contributions to the final loss. The weight pruning approach

finds its reincarnation in more recent work such as [8] with

the help of more efficient sparse matrix libraries. However,

modern CPU architecture often favors continuous memory

addressing and computation. Therefore, weight pruning ap-

proaches may be only effective when the weight matrix is

sufficiently sparse.

For this reason, more recent work has been focused on

uniform sparsification of convolution kernel or filter-level

sparsification. A typical example is the Inception module

in GoogleNet [21], which seeks optimal sparse structure

of convolution by searching the best mixture of small and

large convolution kernels. Similar idea is also adopted in

SqueezeNet[12], where the fire module is constructed by

mixing 3x3 and 1x1 kernels. Another popular CNN model

is Residual Newtwork [9], in which the residual block can

be considered as the sparsification of regular convolution

by the summation of an identity function and a residual

function. The L2 weight regularization (weight decay) then

would make the residual function much closer to zero. The

ResNeXt model[24] further extends the residual transform

idea to the use of multi-branch residual functions, which can

be implemented using grouped convolution. From the per-

spective of the weight matrix of a convolution kernel, the

grouped convolution is manifested as block diagonal ma-

trix.

Another large category of approaches is low-rank ap-

proxiamtion [6][13][16], where convolution tensor is ap-

proximated by decomposing it into the composition of

smaller low-rank tensors. This decompsotion can be

achieved in different manners, for instance, by decomps-

ing 4D tensor into product of two 3D tensors [13], by SVD

or outer-product decomposition [6], or by using direct CP-

decomposition [16].

Other indirectly related work include Fast Fourier Trans-

form [18], convolution weight quantization[8], and binary

weight network[19].

The proposed method is most related to two recent

work: depthwise separable convolution [3][10][23] and

ShuffleNet[26]. In [3][10], depthwise separable convolu-

tion is created by stacking 3x3 depthwise convolution with

1x1 pointwise convolution. This achieves large computa-

tion and parameter reduction. However, the 1x1 pointwise

convolution dominates the computational cost and param-

eter count in depth seperable convolution, making further

efficiency gain difficult unless we partition the 1x1 point-

wise convolution further.

The work of ShuffleNet[26] attempts to overcome this

limitation by using grouped convolution with channel shuf-

fling. Its is based on convolution blocks following a three-

layer sandwich-like structure more similar to those in the

ResNeXt[24] model. However, although it achieves signif-

icant efficiency improvement for AlexNet[15] level classi-

fication accuracy, its efficiency improvement is less favor-

able for higher classification accuracy(e.g. above 70% top-

1 accuracy). The interlaced grouped convolution, which is

part of the proposed CLC convolution block in this paper,

may also be implemented as group convolution followed by

channel shuffling. However, the proposed CLC block is a

simpler two-layer structure. This simplified design requires

more careful choices of the convolution meta-parameters

in order to achieve minimal cost and accurate approxima-

tion to regular convolution. And the proposed framework

provides a systematic way and optimization-based frame-

work for choosing the best meta-parameters, leading to

lower computational cost of the proposed clcNet compared

to ShuffleNet. In comparison, the ShuffleNet work does not

provide similar framework for general designs, such as the

proposed two-layer structure.

7913



3. Channel Local Convolution

The idea of channel local convoltuion is inspired by

grouped convolution. In grouped convolution, the computa-

tion at a location only needs the input channels that belong

to the same group as the output channel. Grouped convo-

lution was first adopted in [15] for distributing convolution

computation to multiple GPUs. Later, it was utilized by

ResNeXt[24] model for implementing multi-branch resid-

ual transform. The success of ResNeXt network implies

that the convolution operation can be sparse along the

channel dimension while still achieving high representation

power. Such channel-wise sparsity reduces computational

cost and number of parameters. And fewer parameter leads

to higher generalization capability for classification.

Similarly, the depthwise convolution in depth separable

convolution is a grouped convolution with one group. It

leads to drastically reduced parameter count when being

combined with pointwise convolution in the MobileNet[10]

and Xception[3] model.

The grouped convolution has a distinct channel depen-

dency pattern: an output channel is only dependent on the

input channels in the same group.But can we have convo-

lution kernels with channel dependency not being confined

in the groups? This question inspires us to extend grouped

convolution to a more general concept, named channel local

convolution (CLC), where an output channel can depend on

an arbitrary subset of the input channels.

Formally, we define channel local convolution as a con-

volution operation where an output channel is computed us-

ing a subset of the input channels. This definition does not

exclude the possibility that the dependent input channels of

an output channel are scattered along the channel dimen-

sion. However, we expect that it is most often that the de-

pendent input channels are neighboring along the channel

dimension (e.g. in grouped convolution), forming local re-

gions in the channel domain.

3.1. Channel Dependency Graph and Channel Re­
ceptive Field

A channel local convolution(CLC) kernel is character-

ized by its channel dependency graph(CDG). CDG is a di-

rected acyclic graph, where nodes represent channels, and

edges represent channel dependency relations. For a CLC

kernel, its CDG is a bipartite graph, where the top row of

nodes represent the input channels, and the bottom row rep-

resents the output channels. The arrow of an edge points

from an output channel node to its corresponding input

channel node. Figure 2 illustrates the CDGs of regular con-

volution, grouped convolution and depthwise convolution.

CDG can be used to facilitate the analysis of channel depen-

dency for designing convolution blocks composed of multi-

ple CLC kernels.

Figure 2. Channel dependency graph of (a) regular convolution,

(b) grouped convolution, (c) depthwise convolution. Note: The ar-

rows of edges point from output channel nodes to their dependent

input channel nodes

Similar to the concept of spatial receptive field, we de-

fine the channel receptive field (CRF) of an output channel

in a convolution kernel or block as the subset of the input

channels that the output channel depends on. Similar to the

concept of receptive field size in spatial domain, the chan-

nel receptive field size (CRF size) of an output channel is

defined as the number of the dependent input channels of

the output channel. If every output channel in a convolution

kernel or block has the same CRF size s, then we say the

convolution kernel or block has CRF size of s. It can be

observed that grouped convolution has CRF size of M/g,

where M is the number of input channels, and g the group

parameter (number of groups). And depthwise convolution

has CRF size of 1. For regular convolution, its CRF size

is M . A regular convolution kernel can be approximated

by a convolution block composed of multiple convolution

kernels. For instance, depthwise separable convolution is

a convolution block by stacking 3x3 depthwise convolution

and 1x1 pointwise convolution. If a convolution kernel or

block has its CRF size equals to the number of its input

channels, we say the convolution kernel or block has full

channel receptive field (FCRF).

We postulate that in order for a convolution block to

achieve accurate approximation to regular convolution, it

needs to attain full channel receptive field(FCRF). We ar-

gue that this is because the regular convolution has FCRF,

and not achieving FCRF would result in fewer effective

channels for feature representation, leading to smaller effec-

Figure 3. Channel dependency graph of convolution blocks (a)

ResNet bottleneck structure[9], (b) ResNeXt block[24], (c) Depth

separable convolution in MobileNet[10] and Xception[3]

7914



Figure 4. Replacing pointwise and depthwise convolution with

grouped convolution results in loss of full channel receptive field

property

tive network width. And prior work[25] has demonstrated

that larger network width improves representation power

similar to increasing depth. Our experiments also validate

that FCRF is critical to achieve high classification accuracy.

Large accuracy degradation would be observed if FCRF is

not achieved for the convolution blocks in the network.

Channel dependency graph (CDG) can be used to ana-

lyze a convolution block to verify if it achieves FCRF and

facilitate the design of a convolution block for achieving

FCRF. Figure 3 illustrates the CDGs of the convolution

blocks propsed in the previous work, including the bottle-

neck structure in ResNet [9], the ResNext block [24], and

depth-separable convolution [10]. It can be observed that

all of them achieve FCRF.

3.2. Interlaced Grouped Convolution (IGC) and
CLC Block

The depth separable convolution, used by MobileNet[10]

and Xception[3], has been proved very efficient for convolu-

tional neural network. However, the computational cost of

depth separable convolution is dominated by the pointwise

convolution. Further cost reduction can be only achieved

by partitioning the pointwise convolution, for example us-

ing grouped convolution.

Nevertheless, our initial experiment shows that naively

replacing pointwise and depthwise convolution with

grouped convolution results in large degradation of clas-

sification accuracy. If we look at the CDG of the modi-

fied block, it is evident that the full channel receptive field

(FCRF) property is lost (Figure 4).

To remedy the above problem, we can change the chan-

nel dependency pattern of one of the grouped convolu-

tions by keeping the channel connectivity in its CDG un-

changed but interlacing the output channels into a number

of ”fields”. This results in a special case of channel local

convolution with the altered CDG shown in Figure 5(b).

The CDG creation process is analogous to that of the inter-

laced video format used in broadcast TV industry, therefore

the convolution operation is named interlaced grouped con-

volution (IGC). Similar to grouped convolution, IGC com-

putation can be performed group by group. Therefore, IGC

can also be parameterized by the group parameter g. And

the channel receptive field size of IGC is M/g, where M
is the number of input channels. The number of the parti-

tioned ”fields” is equal to the channel receptive field size.

A CLC block is a convolution block constructed by

stacking a 3x3 interlaced grouped convolution(IGC) kenrel

with a 1x1 grouped convolution(GC) kernel, with additinal

ReLU activiation and batch normalization layers. Similar to

the Xception model [3], there is no activation function fol-

lowing the IGC kernel. The structure is illustrated in Figure

6 (left).

3.3. Rule for FCRF and Cost Minimization

The CLC block can achieve full channel receptive field

(FCRF) if the group parameter g of the IGC and GC kernel

is set properly.

Figure 6 illustrates the CLC block (left) and its chan-

nel dependency graph (right). In the CDG, the block has

M input channels, N output channels, and L intermediate

channels (the output from the IGC kernel). The group pa-

rameter of the IGC kernel and GC kernel is g1 and g2 re-

spectively. It can be seen that the IGC kernel has channel

receptive filed size (CRF size) M/g1, and the GC kernel has

CRF size L/g2. In order for the output channel having the

receptive field covering all the input channels of the block,

we need to have L/g2 ≥ g1 or g1g2 ≤ L. Therefore, we

can summarize the condition to set the meta-parameters g1
and g2 for achieving FCRF as the following :

Rule for FCRF: if a convolution block is constructed by

stacking an IGC kernel with a GC kernel, to achieve full

channel receptive field (FCRF) property for the block, the

group parameter g1 of the IGC kernel and g2 of the GC

kernel have to satisfy the following condition:

g1g2 ≤ L (1)

Where L is the number of output channel of the IGC kernel.

Figure 5. Example channel dependency graph of (a)regular

grouped convolution, (b) interlaced grouped convolution

7915



Figure 6. CLC block and its channel dependency graph

Based on the rule for FCRF, every CLC block should

have a lower bound of computational cost to achieve FCRF.

And the group parameters to achieve the lower bound can

be found by minimizing the computational cost per location

(equals to number of parameters) with the rule for FCRF as

inequality constraint, which is written as the following:

minimize
g1,g2

C(g1, g2) =
ALM

g1
+

NL

g2
(2)

subject to 1 ≤ g1 ≤ min(M,L), 1 ≤ g2 ≤ min(L,N),

M,L mod g1 = 0, L,N mod g2 = 0,

g1g2 ≤ L.

Where A is the spatial area of the convolution kernel.

For instance, A equals 9 for a 3x3 kernel. Note that the

above equation assumes that the IGC kernel is 3x3 and GC

kernel is 1x1. Similar equations can be derived for other

cases, for instance for 3x3 GC kernel. It also assumes that

stride equals 1 for the GC kernel. For the above minimiza-

tion problem, since the group parameters are discrete and

lie in a limited range, it can be simply solved by enumerat-

ing all possible values of g1 and g2. Table 4 shows a list of

minimization results for typical input and output channels

when A = 9.

M L N g1 g2 M L N g1 g2

32 32 64 16 2 64 64 64 32 2

64 64 128 16 4 128 128 128 32 4

128 128 256 32 4 256 256 256 64 4

256 256 512 32 8 512 512 512 64 8

512 512 1024 64 8 1024 1024 1024 128 8

Table 1. Minimization results for typical input and output channels

4. The clcNet

A new convolutional network, named clcNet, is con-

structed using the CLC blocks. The macro structure of this

network is roughly the same as MobileNet, but all the depth

separable convolution layers are replaced by CLC blocks,

and the number of CLC blocks in different stages of the

network is changed for getting various classification accu-

racy.

4.1. Network Design

The group parameters g1 and g2 have to be determined

for every CLC block when designing clcNet. In theory, we

can set g1 and g2 to be the values that achieve the cost lower

bound. However, allocating too few parameters to the late

layers of the network would result in large degradation of

classification accuracy, while contributing not much to the

overall cost reduction, because the computational cost is

usually concentrated at early layers.

Another consideration is about the implementation of the

IGC kernel. If the channel receptive field size is small, the

IGC kernel could be more efficiently implemented using

depthwise convolution, because a specialized implementa-

tion (e.g. in TensorFlow) of depthwise convolution could

be faster than regular grouped convolution implementation.

Due to these considerations, we fix the g2 parameter to 2

for all CLC blocks, and find the value of g1 using Eq.(2)

to minimize the computational cost. This can achieve com-

putational cost close to the lower bound for early layers,

and make the channel receptive field size of the IGC kernel

equal to 2.

The overall design of the network is shown in Table 2.

For all the CLC blocks, we set L = M , therefore the group

parameters are only determined by the number of input and

output channels of the blocks. The parameter a,b,c,d in the

table is the count of CLC block repetition at different stages

in the network. Changing them would vary the accuracy

and computational cost of the network.

Block type Input Output Stride g1 g2
& repetition channel channel

Regular 3x3 conv 3 32 2

BatchNorm+ReLU

CLC block 32 64 1 16 2

CLC block 64 128 2 32 2

CLC block×a 128 128 1 64 2

CLC block 128 256 2 64 2

CLC block×b 256 256 1 128 2

CLC block 256 512 2 128 2

CLC block×c 512 512 1 256 2

CLC block 512 1024 2 256 2

CLC block×d 1024 1024 1 512 2

Average Pooling

FC layer 1024 1000

Table 2. The structure and block parameters of the clcNet, where

a, b, c, d is the count of block repetition, which can be changed for

different performance

7916



4.2. Network Implementation Issues

For interlaced grouped convolution (IGC), although we

can have a two-step implementation composed of grouped

convolution and channel interlacing, the preferable way for

production deployment is to have a monolithic implemen-

tation that directly access the respective channels.

For prototyping or experiment purposes, the IGC may be

more easily implemented using built-in components with

custom layers. For example, on Torch[4], PyTorch or

Caffe[14] platform, there is a built-in implementation of

grouped convolution. Thus, IGC can be implemented with

grouped convolution followed by a custom channel interlac-

ing layer. This is the choice of our current implementation.

On the Tensorflow[2] platform, there is no existing

grouped convolution component. But if the channel re-

ceptive field of IGC is small, it can be implemented using

depthwise convolution. More specifically, if the channel re-

ceptive field size is 2, the IGC kernel can be implemented

with two depthwise convolution operations, one acting on

the original input, and the other on the input with its odd

and even channels switched.

5. Experiments

The experiments are intended to evaluate the effective-

ness of the clcNet, and its computational efficiency com-

pared to state-of-the-art models with comparable image

classification accuracy.

The clcNet is implemented on Torch platform using the

codebase [1] for ResNet implementation provided by Face-

book AI Research (FAIR). The IGC kernel is implemented

using grouped convolution followed by a custom channel

interlacing layer.

The experiments are conducted on ImageNet-1K dataset

(a.k.a ILSVRC 2012 image classification dataset) to evalu-

ate the top-1 and top-5 image classification accuracy. De-

tails of this dataset can be found in [20]. The same as prior

work, the validation dataset is used as a proxy to test set for

accuracy evaluation. Previous papers, for instance [9], have

shown that the cross-experiment variation of test accuracy

is very small for the ImageNet-1K dataset due to its large

size, compared with other smaller-sized datasets. There-

fore, only ImageNet-1K dataset is used for evaluation.

The learning optimizer is important to ensure best accu-

racy results. SGD and RMSProp[22] are two popular op-

timizers used by previous work. In our experiments, both

SGD and RMSprop optimizers are tested. And SGD is

found to result in a slightly better accuracy than RMSProp.

The SGD optimizer uses the default setting in the ResNet

codebase, where momentum is set to 0.9, and nesterov mo-

mentum is enabled. As to learning rate schedule, a poly-

nomial learning rate schedule is used, where the power pa-

rameter is set to 1.0, which means a linear decay of learning

rate. The polynomial schedule is used, because our initial

experiment shows that it can reproduce MobileNet’s accu-

racy reported in [10], while the default multi-step schedule

(times 0.1 per 30 epochs) in ResNet codebase cannot. The

initial learning rate is set to 0.1. And the learning process

runs for 100 epochs.

The regularization parameter, namely weight decay, is

another important factor for achieving the optimal result.

We did not run an extensive search for finding optimal

weight decay due to lack of resource. Only two weight de-

cay values are experimented: 4.0e−5 and 1.0e−4, where

the former is used by the Inception model[21], and latter by

the ResNet model[9]. The value of 1.0e−4 is found to have

a better result. Also, unlike in MobileNet where weight de-

cay is set to different values for depthwise and pointwise

convolution, the weight decay is the same for all convolu-

tion kernels in training clcNet.

For data augmentation, we use the default data augmen-

tation module in the ResNet codebase, which performs ran-

domized crop, color jittering, and horizontal flips to the

training images. All the training and testing images are re-

sized and cropped to the size of 224× 224. And for testing

time, only single crop and single model evaluation is per-

formed. The image preprocessing process for evaluation

uses the default settings in the ResNet codebase.

5.1. Classification Accuracy of clcNet

For comparing with state-of-the-art models, we tried dif-

ferent layer configurations (a,b,c,d value in Table 2) of the

network for matching the top-1 classification accuracy with

MobileNet. At the end, two clcNets with different configu-

rations are chosen. They are named clcNet-A and clcNet-B

respectively. The configurations and classification accuracy

of these two networks are shown in Table 3 below. And Fig-

ure 7 shows the evolution of the top-1 test accuracy on the

validation dataset during the training process for clcNet-A

and clcNet-B.

Model (a,b,c,d) Top-1 Acc. Top-5 Acc.

clcNet-A (1, 1, 5, 2) 70.4% 89.5%

clcNet-B (1, 1, 7, 3) 71.6% 90.3%

Table 3. Classification accuracy of clcNet on ImageNet-1K

Our experiments with different layer configurations sug-

gest that adding more late layers (i.e. increasing c or d)

results in accuracy increase faster than adding more early

layers (a or b), with more parameter increase but less com-

putational efficiency degradation.

5.2. The importance of FCRF

To verify the importance of the full channel receptive

field(FCRF) property, we replace all the IGC kernels in

7917



Figure 7. Training profile on ImageNet-1K dataset

clcNet-A to GC kernels, resulting in a network (clcNet-Ap)

with almost the same computational cost but loss of FCRF

for CLC blocks. Table 4 shows the result comparison of

clcNet-A and its modified version (clcNet-Ap). The results

demonstrate the importance of the FCRF property.

Model Top-1 Acc. Top-5 Acc.

clcNet-A 70.4% 89.5%

clcNet-Ap 67.7% 87.8%

Table 4. Comparison of the results of clcNet-A and clcNet-Ap

5.3. Comparison with Previous Models

Because our model is targeted for resource constraint en-

vironments, such as mobile platform, we only compare with

the previous models with low computational cost, and small

memory footprint, which entails small model size and net-

work width. Both MobileNet[10] and ShuffleNet[26] are

designed for mobile platforms, therefore they are selected

for comparison baselines.

The metrics for comparison include top-1 accuracy,

mult-add operation count and number of parameters. These

are also used in previous papers for benchmark. Table 5 lists

the performance comparison between the previous models

and the clcNets, including clcNet-A and clcNet-B.

It can be observed that the developed clcNet models

achieve significant improvements for reducing computa-

tional cost and parameter count compared to previous mod-

els. More specifically, compared to MobileNet, the clcNet-

A model achieves 40% reduction in computation and 22.6%

reduction in parameter count with a slightly lower top-1 ac-

curacy. And the clcNet-B model achieves 25% reduction in

computation with 1.0% increase of top-1 accuracy. Com-

pared to ShuffleNet (v1[26]), the clcNet-B mdoel achieves

Model Top-1 Acc. Mult-Adds Parameters

GoogleNet 69.8% 1550M 6.8M

1.0 MobileNet-224 70.6% 569M 4.2M

ShuffleNet 2× 70.9% (v1) 524M 5.3M

clcNet-A 70.4% 343M 3.25M

clcNet-B 71.6% 425M 4.1M

Table 5. Comparison with previous models for classification accu-

racy and computational cost

19% reduction in computation, and 18% fewer parameters

with 0.7% increase of top-1 accuracy.

The computational cost in Table 5 is measured by

multiply-add operations(MACs), which does not consider

other costs such as memory accessing. The cache miss dur-

ing memory read could become a significant overhead for

overall computation. Therefore, it is also important to com-

pare the model inference speed running on actual devices.

However, the actual inference speed highly depends on the

way of implementation of the convolution and other opera-

tions. Therefore, it should not be considered alone for cost

measurement either.

We test the actual inference speed of different models on

an Android-based smartphone, BLU Advance 5.2, which

is a low-cost smartphone model. This device uses a Me-

diaTek MT6580 SOC with a Quad-core, 1300MHz ARM

Cortex-A7 processor, and has 1GB RAM. To run the model

inference on the smartphone, the PyTorch implementations

of the models are converted to the ONNX models, which

are further converted to the Caffe2 models that can be run

on smartphones using Caffe2 platform. Since this is a gen-

eral model conversion without specific code optimization,

there could be large space to improve the absolute infer-

ence speed. But the speed of clcNet relative to other models

should be still meaningful for evaluating its advantage. Ta-

ble 6 lists the actual inference speed (average of ten infer-

ence passes) of different models on the BLU phone, along

with their converted ONNX file sizes. It can be observed

that clcNets are still able to achieve significant speedup

compared to MobileNet and ShuffleNet, although the per-

centage of speedup is lower than that of the theoretical com-

putational cost listed in Table 5. This could be caused by

lower cache effiency after partitioning further the 1x1 con-

volution weight matrix in the clcNet.

Model Mult-Adds ONNX size Actual Speed

1.0 MobileNet-224 569M 17.1M 1780ms

ShuffleNet 2× 524M 22.3M 1812ms

clcNet-A 343M 17.3M 1431ms

clcNet-B 425M 21.6M 1692ms

Table 6. Comparison of the actual inference speed on smartphone

7918



6. Conclusion

We propose that depthwise convolution and grouped

convolution can be viewed as special cases of channel lo-

cal convolution(CLC). New analysis tools and concepts,

such as channel dependency graph and channel receptive

field, are introduced to help the analysis and design of

CLC models. We then construct a novel convolution block

named CLC block, which is composed of two CLC ker-

nels: grouped convolution and interlaced grouped convo-

lution. A new convolutional neural network named clcNet

then is constructed using the CLC blocks. The experiments

on ImageNet-1K data show that the clcNet achieves signifi-

cant efficiency improvements on top of state-of-the-art net-

works. In addition to the contribution of the clcNet, the

framework of channel local convolution along with the pro-

posed analysis tools provides a new paradigm for designing

more efficient convolution kernels in the future.

References

[1] https://github.com/facebook/fb.resnet.torch. 2016.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, and

et al. Tensorflow: Large-scale machine learning on heteroge-

neous distributed systems. arXiv preprint arXiv:1603.04467,

2016.

[3] F. Chollet. Xception: Deep learning with depthwise sepa-

rable convolutions. Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017.

[4] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A

matlab-like environment for machine learning. In BigLearn,

NIPS Workshop, 2011.

[5] Y. L. Cun, J. S. Denker, and S. A. Solla. Optimal brain dam-

age. In Advances in Neural Information Processing Systems,

pages 598–605. Morgan Kaufmann, 1990.

[6] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-

gus. Exploiting linear structure within convolutional net-

works for efficient evaluation. In Advances in Neural Infor-

mation Processing Systems 27, Montreal, Quebec, Canada,

pages 1269–1277, 2014.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 580–587,

2014.

[8] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural network with pruning, trained quantiza-

tion and huffman coding. arXiv preprint arXiv:1510.00149,

2015.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

770–778, 2016.

[10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[11] D. H. Hubel and T. N. Wiesel. Receptive fields and func-

tional architecture of monkey striate cortex. Journal of Phys-

iology (London), 195(1):215–243, 1968.

[12] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy

with 50x fewer parameters and¡ 0.5 mb model size. arXiv

preprint arXiv:1602.07360, 2016.

[13] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions.

arXiv preprint arXiv:1405.3866, 2014.

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B.

Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[16] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and

V. S. Lempitsky. Speeding-up convolutional neural net-

works using fine-tuned cp-decomposition. arXiv preprint

arXiv:1412.6553, 2014.

[17] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3431–3440, 2015.

[18] M. Mathieu, M. Henaff, and Y. LeCun. Fast training

of convolutional networks through ffts. arXiv preprint

arXiv:1312.5851, 2013.

[19] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. arXiv preprint arXiv:1603.05279, 2016.

[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015.

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–9, 2015.

[22] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide

the gradient by a running average of its recent magnitude.

COURSERA: Neural Networks for Machine Learning, 4(2),

2012.

[23] M. Wang, B. Liu, and H. Foroosh. Factorized convolutional

neural networks. arXiv preprint arXiv:1608.04337, 2016.

[24] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He. Ag-

gregated residual transformations for deep neural networks.

arXiv preprint arXiv:1611.05431, 2016.

[25] S. Zagoruyko and N. Komodakis. Wide residual networks.

In BMVC, 2016.

[26] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An

extremely efficient convolutional neural network for mobile

devices. arXiv preprint arXiv:1707.01083v1, Jul 2017.

7919


