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Abstract

We propose a new end-to-end single image dehazing

method, called Densely Connected Pyramid Dehazing Net-

work (DCPDN), which can jointly learn the transmission

map, atmospheric light and dehazing all together. The end-

to-end learning is achieved by directly embedding the atmo-

spheric scattering model into the network, thereby ensuring

that the proposed method strictly follows the physics-driven

scattering model for dehazing. Inspired by the dense net-

work that can maximize the information flow along features

from different levels, we propose a new edge-preserving

densely connected encoder-decoder structure with multi-

level pyramid pooling module for estimating the transmis-

sion map. This network is optimized using a newly in-

troduced edge-preserving loss function. To further incor-

porate the mutual structural information between the esti-

mated transmission map and the dehazed result, we pro-

pose a joint-discriminator based on generative adversar-

ial network framework to decide whether the correspond-

ing dehazed image and the estimated transmission map are

real or fake. An ablation study is conducted to demon-

strate the effectiveness of each module evaluated at both

estimated transmission map and dehazed result. Exten-

sive experiments demonstrate that the proposed method

achieves significant improvements over the state-of-the-

art methods. Code and dataset is made available at:

https://github.com/hezhangsprinter/DCPDN

1. Introduction

Under severe hazy conditions, floating particles in the at-

mosphere such as dusk and smoke greatly absorb and scat-

ter the light, resulting in degradations in the image quality.

These degradations in turn may affect the performance of

many computer vision systems such as classification and

detection. To overcome the degradations caused by haze,

image and video-based haze removal algorithms have been

proposed in the literature [33, 5, 42, 3, 13, 21, 27, 51, 24,

58, 8, 10, 9, 34].

Figure 1: Sample image dehazing result using the proposed

DCPDN method. Left: Input hazy image. Right: Dehazed result.

The image degradation (atmospheric scattering model)

due to the presence of haze is mathematically formulated as

I(z) = J(z)t(z) +A(z)(1− t(z)), (1)

where I is the observed hazy image, J is the true scene

radiance, A is the global atmospheric light, indicating the

intensity of the ambient light, t is the transmission map

and z is the pixel location. Transmission map is the

distance-dependent factor that affects the fraction of light

that reaches the camera sensor. When the atmospheric light

A is homogeneous, the transmission map can be expressed

as t(z) = e−βd(z), where β represents attenuation coeffi-

cient of the atmosphere and d is the scene depth. In single

image dehazing, given I , the goal is to estimate J .

It can be observed from Eq. 1 that there exists two im-

portant aspects in the dehazing process: (1) accurate esti-

mation of transmission map, and (2) accurate estimation of

atmospheric light. Apart from several works that focus on

estimating the atmospheric light [4, 40], most of the other

algorithms concentrate more on the accurate estimation of

the transmission map and they leverage empirical rule in

estimating the atmospheric light [13, 29, 33, 41]. This is

mainly due to the common belief that good estimation of

transmission map will lead to better dehazing. These meth-

ods can be broadly divided into two main groups: prior-

based methods and learning-based methods. Prior-based

methods often leverage different priors in characterizing

the transmission map such as dark-channel prior [13], con-

trast color-lines [10] and haze-line prior [3], while learning-

based methods, such as those based on convolutional neural

networks (CNNs), attempt to learn the transmission map di-
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Figure 2: An overview of the proposed DCPDN image dehazing

method. DCPDN consists of four modules: 1. Pyramid densely

connected transmission map estimation net. 2. Atmospheric light

estimation net. 3. Dehazing via Eq2. 4. Joint discriminator. We

first estimate the transmission map using the proposed pyramid

densely-connected transmission estimation net, followed by pre-

diction of atmospheric light using the U-net structure. Finally, us-

ing the estimated transmission map and the atmospheric light we

estimate the dehazed image via Eq. 2.

rectly from the training data [42, 33, 5, 51, 24]. Once the

transmission map and the atmospheric light are estimated,

the dehazed image can be recovered as follows

Ĵ(z) =
I(z)− Â(z)(1− t̂(z))

t̂(z)
. (2)

Though tremendous improvements have been made by

the learning-based methods, several factors hinder the per-

formance of these methods and the results are far from op-

timal. This is mainly because: 1. Inaccuracies in the es-

timation of transmission map translates to low quality de-

hazed result. 2. Existing methods do not leverage end-to-

end learning and are unable to capture the inherent relation

among transmission map, atmospheric light and dehazed

image. The disjoint optimization may hinder the overall de-

hazing performance. Most recently, a method was proposed

in [24] to jointly optimize the whole dehazing network.

This was achieved by leveraging a linear transformation to

embed both the transmission map and the atmospheric light

into one variable and then learning a light-weight CNN to

recover the clean image.

In this paper, we take a different approach in address-

ing the end-to-end learning for image dehazing. In partic-

ular, we propose a new image dehazing architecture, called

Densely Connected Pyramid Dehazing Network (DCPDN),

that can be jointly optimized to estimate transmission map,

atmospheric light and also image dehazing simultaneously

by following the image degradation model Eq. 1 (see

Fig. 2). In other words, the end-to-end learning is achieved

by embedding Eq. 1 directly into the network via the math

operation modules provided by the deep learning frame-

work. However, training such a complex network (with

three different tasks) is very challenging. To ease the train-

ing process and accelerate the network convergence, we

leverage a stage-wise learning technique in which we first

progressively optimize each part of the network and then

jointly optimize the entire network. To make sure that

the estimated transmission map preserves sharp edges and

avoids halo artifacts when dehazing, a new edge-preserving

loss function is proposed in this paper based on the observa-

tion that gradient operators and first several layers of a CNN

structure can function as edge extractors. Furthermore,

a densely connected encoder-decoder network with multi-

level pooling modules is proposed to leverage features from

different levels for estimating the transmission map. To ex-

ploit the structural relationship between the transmission

map and the dehazed image, a joint discriminator-based

generative adversarial network (GAN) is proposed. The

joint discriminator distinguishes whether a pair of estimated

transmission map and dehazed image is a real or fake pair.

To guarantee that the atmospheric light can also be opti-

mized within the whole structure, a U-net [35] is adopted to

estimate the homogeneous atmospheric light map. Shown

in Fig. 1 is a sample dehazed image using the proposed

method.

This paper makes the following contributions:

• A novel end-to-end jointly optimizable dehazing net-

work is proposed. This is enabled by embedding Eq. 1

directly into the optimization framework via math op-

eration modules. Thus, it allows the network to esti-

mate the transmission map, atmospheric light and de-

hazed image jointly. The entire network is trained by a

stage-wise learning method.

• An edge-preserving pyramid densely connected

encoder-decoder network is proposed for accurately

estimating the transmission map. Further, it is op-

timized via a newly proposed edge-preserving loss

function.

• As the structure of the estimated transmission map and

the dehazed image are highly correlated, we leverage a

joint discriminator within the GAN framework to de-

termine whether the paired samples (i.e. transmission

map and dehazed image) are from the data distribution

or not.

• Extensive experiments are conducted on two synthetic

datasets and one real-world image dataset. In addi-

tion, comparisons are performed against several re-

cent state-of-the-art approaches. Furthermore, an ab-

lation study is conducted to demonstrate the improve-

ments obtained by different modules in the proposed

network.

2. Related Work

Single Image Dehazing. Single image dehazing is a highly

ill-posed problem. Various handcrafted prior-based and

learning-based methods have been developed to tackle this

problem.
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Handcrafted Prior-based: Fattal [9] proposed a physically-

grounded method by estimating the albedo of the scene.

As the images captured from the hazy conditions always

lack color contrast, Tan [41] et al. proposed a patch-based

contrast-maximization method. In [22], Kratz and Nishino

proposed a factorial MRF model to estimate the albedo

and depths filed. Inspired by the observations that outdoor

objects in clear weather have at least one color channel

that is significantly dark, He. et al. in [13] proposed a

dark-channel model to estimate the transmission map.

More recently, Fattal [10] proposed a color-line method

based on the observation that small image patches typically

exhibit a one-dimensional distribution in the RGB color

space. Similarly, Berman et al. [3] proposed a non-local

patch prior to characterize the clean images.

Learning-based: Unlike some of the above mentioned

methods that use different priors to estimate the transmis-

sion map, Cai et al. [5] introduce an end-to-end CNN

network for estimating the transmission with a novel

BReLU unit. More recently, Ren et al. [33] proposed

a multi-scale deep neural network to estimate the trans-

mission map. One of the limitations of these methods is

that they limit their capabilities by only considering the

transmission map in their CNN frameworks. To address

this issue, Li. et al [24] proposed an all-in-one dehazing

network, where a linear transformation is leveraged to

encode the transmission map and the atmospheric light into

one variable. Most recently, several benchmark datasets

of both synthetic and real-world hazy images for dehazing

problems are introduced to the community [53, 25].

Generative Adversarial Networks (GANs). The notion

of GAN was first proposed by Goodfellow et al. in [12] to

synthesize realistic images by effectively learning the dis-

tribution of the training images via a game theoretic min-

max optimization framework. The success of GANs in

synthesizing realistic images has led researchers to explore

the adversarial loss for various low-level vision applica-

tions such as text-to-image synthesis[32, 52, 55, 6], image-

image translation [18, 28, 46, 45, 50], super-resolution

[23], human pose estimation [31] and other applications

[56, 59, 38, 44]. Inspired by the success of these meth-

ods in generating high-quality images with fine details, we

propose a joint discriminator-based GAN to refine the esti-

mated transmission map and dehazed image.

3. Proposed Method

The proposed DCPDN network architecture is illustrated

in Fig. 2 which consists of the following four modules: 1)

Pyramid densely connected transmission map estimation

net, 2) Atmosphere light estimation net, 3) Dehazing via

Eq. 2, and 4) Joint discriminator. In what follows, we

explain these modules in detail.

Pyramid Densely Connected Transmission Map Estima-

tion Network. Inspired by the previous methods that use

multi-level features for estimating the transmission map

[33, 5, 42, 1, 24], we propose a densely connected encoder-

decoder structure that makes use of the features from mul-

tiple layers of a CNN, where the dense block is used as

the basic structure. The reason to use dense block lies in

that it can maximize the information flow along those fea-

tures and guarantee better convergence via connecting all

layers. In addition, a multi-level pyramid pooling mod-

ule is adopted to refine the learned features by consider-

ing the ‘global’ structural information into the optimization

[57]. To leverage the pre-defined weights of the dense-net

[15], we adopt the first Conv layer and the first three Dense-

Blocks with their corresponding down-sampling operations

Transition-Blocks from a pre-trained dense-net121 as our

encoder structure. The feature size at end of the encoding

part is 1/32 of the input size. To reconstruct the transmission

map into the original resolution, we stack five dense blocks

with the refined up-sampling Transition-Blocks [19, 60, 54]

as the decoding module. In addition, concatenations are em-

ployed with the features corresponding to the same dimen-

sion.

Figure 3: An overview of the proposed pyramid densely con-

nected transmission map estimation network.

Even though the proposed densely connected encoder-

decoder structure combines different features within the

network, the result from just densely connected structure

still lack of the ‘global’ structural information of objects

with different scales. One possible reason is that the

features from different scales are not used to directly

estimate the final transmission map. To efficiently address

this issue, a multi-level pyramid pooling block is adopted to

make sure that features from different scales are embedded

in the final result. This is inspired by the use of global

context information in classification and segmentation tasks

[57, 48, 14]. Rather than taking very large pooling size to

capture more global context information between different

objects [57], more ‘local’ information to characterize the

‘global’ structure of each object is needed. Hence, a
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Figure 4: Left: a dehazed image. Right: The transmission map

used to produce a hazy image from which the dehazed image on

the left was obtained.

four-level pooling operation with pooling sizes 1/32, 1/16,

1/8 and 1/4 is adopted. Then, all four level features are

up-sampling to original feature size and are concatenated

back with the original feature before the final estimation.

Fig 3 gives an overview of the proposed pyramid densely

connected transmission map estimation network.

Atmospheric Light Estimation Network. Following

the image degradation model Eq.; 1, we assume that the

atmospheric light map A is homogeneous [13, 5]. Similar

to previous works, the predicted atmospheric light A is

uniform for a given image. In other words, the predicted

A is a 2D-map, where each pixel A(z) has the same value

(eg. A(z) = c, c is a constant). As a result, the ground

truth A is of the same feature size as the input image

and the pixels in A are filled with the same value. To

estimate the atmospheric light, we adopt a 8-block U-net

[35] structure, where the encoder is composed of four

Conv-BN-Relu blocks and the decoder is composed of

symmetric Dconv-BN-Relu block 1.

Dehazing via Eq. 2. To bridge the relation among the

transmission map, the atmospheric light and the dehazed

image and to make sure that the whole network structure is

jointly optimized for all three tasks, we directly embed (2)

into the overall optimization framework. An overview of

the entire DCPDN structure is shown in Fig 1.

3.1. Joint Discriminator Learning

Let Gt and Gd denote the networks that generate the

transmission map and the dehazed result, respectively. To

refine the output and to make sure that the estimated trans-

mission map Gt(I) and the dehazed image Gd(I) are indis-

tinguishable from their corresponding ground truths t and

J , respectively, we make use of a GAN [12] with novel joint

discriminator.

It can be observed from (1) and also Fig. 4 that the

structural information between the estimated transmission

1Con: Convolution, BN: Batch-normalization [17] and Dconv: Decon-

volution (transpose convolution).

(a) (b) (c) (d) (e)

Figure 5: Feature visualization for gradient operator and low-level

features. (a) Input transmission map. (b) Horizontal gradient out-

put. (c) Vertical gradient output. (d) and (e) are visualization of

two feature maps from relu1 2 of VGG-16 [37].

map t̂ = Gt(I) and the dehazed image Ĵ are highly cor-

related. Hence, in order to leverage the dependency in

structural information between these two modalities, we

introduce a joint discriminator to learn a joint distribu-

tion to decide whether the corresponding pairs (transmis-

sion map, dehazed image) are real or fake. By leverag-

ing the joint distribution optimization, the structural cor-

relation between them can be better exploited. Similar to

previous works, the predicted air-light A is uniform for a

given image. In other words, the predicted air-light A is

a 2D-map, where each pixel A(z) has the same value (eg.

A(z) = c, c is a constant). We propose the following

joint-discriminator based optimization

min
Gt,Gd

max
Djoint

EI∼pdata(I)
[log(1−Djoint(Gt(I)))]+

EI∼pdata(I)
[log(1−Djoint(Gd(I)))]+

Et,J∼pdata(t,J)
[logDjoint(t, J))].

(3)

In practice, we concatenate the dehazed image with the

estimated transmission map as a pair sample and then feed

it into the discriminator.

3.2. Edge­preserving Loss

It is commonly acknowledged that the Euclidean loss

(L2 loss) tends to blur the final result. Hence, inaccurate

estimation of the transmission map with just the L2 loss

may result in the loss of details, leading to the halo artifacts

in the dehazed image [16]. To efficiently address this issue,

a new edge-preserving loss is proposed, which is motivated

by the following two observations. 1) Edges corresponds

to the discontinuities in the image intensities, hence it can

be characterized by the image gradients. 2) It is known that

low-level features such as edges and contours can be cap-

tured in the shallow (first several) layers of a CNN structure

[47]. In other words, the first few layers function as an edge

detector in a deep network. For example, if the transmis-

sion map is fed into a pre-defined VGG-16 [37] model and

then certain features from the output of layer relu1 2 are

visualized, it can be clearly observed that the edge informa-

tion being preserved in the corresponding feature maps (see

Fig. 5).
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SSIM:0.9272 SSIM:0.9524 SSIM:0.9671 SSIM:0.9703 SSIM:0.9735 SSIM:1

SSIM:0.8882

(a)

SSIM:0.9119

(b)

SSIM:0.9201

(c)

SSIM:0.9213

(d)

SSIM:0.9283

(e)

SSIM:1

(f)

Figure 6: Transmission map estimation results using different modules. (a) DED; (b). DED-MLP; (c).DED-MLP-GRA; (d). DED-MLP-

EP; (e). DCPDN; (f) Target. It can be observed that the multi-level pooling module is able to refine better global structure of objects in

the image (observed from (a) and (b) ), the edge-preserving loss can preserve much sharper edges (comparing (b), (c) and (d)) and the final

joint-discriminator can better refine the detail for small objects (comparing (d) and (e)).

Based on these observations and inspired by the gradient

loss used in depth estimation [43, 26] as well as the use of

perceptual loss in low-level vision tasks [20, 49], we pro-

pose a new edge-preserving loss function that is composed

of three different parts: L2 loss, two-directional gradient

loss, and feature edge loss, defined as follows

LE = λE,l2LE,l2 + λE,gLE,g + λE,fLE,f , (4)

where LE indicates the overall edge-preserving loss, LE,l2

indicates the L2 loss, LE,g indicates the two-directional

(horizontal and vertical) gradient loss and LE,f is the fea-

ture loss. LE,g is defined as follows

LE,g =
∑

w,h

‖(Hx(Gt(I)))w,h − (Hx(t))w,h‖2

+ ‖(Hy(Gt(I)))w,h − (Hy(t))w,h‖2,

(5)

where Hx and Hy are operators that compute image gradi-

ents along rows (horizontal) and columns (vertical), respec-

tively and w×h indicates the width and height of the output

feature map. The feature loss is defined as

LE,f =
∑

c1,w1,h1

‖(V1(Gt(I)))c1,w1,h1 − (V1(t))c1,w1,h1‖2

+
∑

c2,w2,h2

‖(V2(Gt(I)))c2,w2,h2
− (V2(t))c2,w2,h2

‖2,

(6)

where Vi represents a CNN structure and ci, wi, hi are the

dimensions of the corresponding low-level feature in Vi. As

the edge information is preserved in the low-level features,

we adopt the layers before relu1-1 and relu2-1 of VGG-16

[37] as the edge extractors V1 and V2, respectively. Here,

λE,l2 , λE,g, and λE,f are weights to balance the loss func-

tion.

3.3. Overall Loss Function

The proposed DCPDN architecture is trained using the

following four loss functions

L = Lt + La + Ld + λjL
j , (7)

where Lt is composed of the edge-preserving loss LE , La

is composed of the traditional L2 loss in predicting the at-

mospheric light and Ld represents the dehazing loss, which

is also composed of the L2 loss only. Lj , which is denoted

as the joint discriminator loss 2, is defined as follows

Lj = − log(Djoint(Gt(I))− log(Djoint(Gd(I)). (8)

Here λj is a constant.

3.4. Stage­wise Learning

During experiments, we found that directly training the

whole network from scratch with the complex loss Eq. 7 is

difficult and the network converges very slowly. A possi-

ble reason may be due to the gradient diffusion caused by

different tasks. For example, gradients from the de-hazed

image loss may ‘distract’ the gradients from the loss of the

transmission map initially, resulting in the slower conver-

gence. To address this issue and to speed up the training, a

stage-wise learning strategy is introduced, which has been

2To address the vanishing gradients problem for the generator, we also

minimize (8) rather than the first two rows in (3) [12, 11].
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SSIM: 0.7654 SSIM: 0.9382 SSIM: 0.8637 SSIM: 0.9005 SSIM: 0.8683 SSIM: 0.9200 SSIM: 0.9777 SSIM:1

SSIM: 0.6642

Input

SSIM: 0.8371

He et al. [13]

SSIM: 0.8117

Zhu et al. [58]

SSIM: 0.8364

Ren et al. [33]

SSIM: 0.8575

Berman et al.

[3, 4]

SSIM: 0.7691

Li et al. [24]

SSIM: 0.9325

DCPDN

SSIM: 1

GT

Figure 7: Dehazing results from the synthetic test datasets TestA (first row) and TestB (second row).

used in different applications such as multi-model recogni-

tion [7] and feature learning [2]. Hence, the information

in the training data is presented to the network gradually.

In other words, different tasks are learned progressively.

Firstly, we optimize each task separately by not updating

the other task simultaneously. After the ‘initialization’ for

each task, we fine-tune the whole network all together by

optimizing all three tasks jointly.

4. Experimental Results

In this section, we demonstrate the effectiveness of the

proposed approach by conducting various experiments on

two synthetic datasets and a real-world dataset. All the re-

sults are compared with five state-of-the-art methods: He et

al. (CVPR’09) [13], Zhu et al (TIP’15) [58], Ren et al. [33]

(ECCV’16), Berman et al. [3, 4] (CVPR’16 and ICCP’17)

and Li et al. [24] (ICCV’17). In addition, we conduct an ab-

lation study to demonstrate the effectiveness of each module

of our network.

4.1. Datasets

Similar to the existing deep learning-based dehazing

methods [33, 5, 24, 51], we synthesize the training samples

{Hazy /Clean /Transmission Map /Atmosphere Light} based

on (1). During synthesis, four atmospheric light conditions

A ∈ [0.5, 1] and the scattering coefficient β ∈ [0.4, 1.6] are

randomly sampled to generate their corresponding hazy im-

ages, transmission maps and atmospheric light maps. A ran-

dom set of 1000 images are selected from the NYU-depth2

dataset [30] to generate the training set. Hence, there are in

total 4000 training images, denoted as TrainA. Similarly,

a test dataset TestA consisting of 400 (100×4) images also

from the NYU-depth2 are obtained. We ensure that none of

the testing images are in the training set. To demonstrate

the generalization ability of our network to other datasets,

we synthesize 200 {Hazy /Clean /Transmission Map /At-

mosphere Light} images from both the Middlebury stereo

Table 1: Quantitative SSIM results for ablation study evaluated on

synthetic TestA and TestB datasets.

TestA

DED DED-MLP DED-MLP-GRA DED-MLP-EP DCPDN

Transmission 0.9555 0.9652 0.9687 0.9732 0.9776

Image 0.9252 0.9402 0.9489 0.9530 0.9560

TestB

Transmission 0.9033 0.9109 0.9239 0.9276 0.9352

Image 0.8474 0.8503 0.8582 0.8652 0.8746

Table 2: Quantitative SSIM results on the synthetic TestA dataset.

Input
He. et al. [13]

(CVPR’09)

Zhu. et al. [58]

(TIP’15)

Ren. et al. [33]

(ECCV’16)

Berman. et al. [3, 4]

(CVPR’16)

Li. et al. [24]

(ICCV’17)
DCPDN

Transmission N/A 0.8739 0.8326 N/A 0.8675 N/A 0.9776

Image 0.7041 0.8642 0.8567 0.8203 0.7959 0.8842 0.9560

Table 3: Quantitative SSIM results on the synthetic TestB dataset.

Input
He. et al. [13]

(CVPR’09)

Zhu. et al. [58]

(TIP’15)

Ren. et al. [33]

(ECCV’16)

Berman. et al. [3, 4]

(CVPR’16)

Li. et al. [24]

(ICCV’17)
DCPDN

Transmission N/A 0.8593 0.8454 N/A 0.8769 N/A 0.9352

Image 0.6593 0.7890 0.8253 0.7724 0.7597 0.8325 0.8746

database (40) [36] and also the Sun3D dataset (160) [39] as

the TestB set.

4.2. Training Details

We choose λE,l2 = 1, λE,g = 0.5, λE,f = 0.8 for the

loss in estimating the transmission map and λj = 0.25 for

optimizing the joint discriminator. During training, we use

ADAM as the optimization algorithm with learning rate of

2 × 10−3 for both generator and discriminator and batch

size of 1. All the training samples are resized to 512 ×
512. We trained the network for 400000 iterations. All the

parameters are chosen via cross-validation.

4.3. Ablation Study

In order to demonstrate the improvements obtained by

each module introduced in the proposed network, we per-

form an ablation study involving the following five exper-
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Input He. et al.

(CVPR’09) [13]

Zhu. et al.

(TIP’15) [58]

Ren. et al.

(ECCV’16)[33]

Berman. et al.

(CVPR’16) [3, 4]

Li. et al.

(ICCV’17) [24]

DCPDN

Figure 8: Dehazing results evaluated on real-world images released by the authors of previous methods.

iments: 1) Densely connected encoder decoder structure

(DED), 2) Densely connected encoder decoder structure

with multi-level pyramid pooling (DED-MLP), 3) Densely

connected encoder decoder structure with multi-level pyra-

mid pooling using L2 loss and gradient loss (DED-MLP-

GRA), 4) Densely connected encoder decoder structure

with multi-level pyramid pooling using edge-preserving

loss (DED-MLP-EP), 5) The proposed DCPDN that is

composed of densely connected encoder decoder structure

with multi-level pyramid pooling using edge-preserving

loss and joint discriminator (DCPDN). 3

The evaluation is performed on the synthesized TestA

and TestB datasets. The SSIM results averaged on both es-

timated transmission maps and dehazed images for the var-

ious configurations are tabulated in Table 1. Visual compar-

isons are shown in the Fig 6. From Fig 6, we make the fol-

lowing observations: 1) The proposed multi-level pooling

module is able to better preserve the ‘global’ structural for

objects with relatively larger scale, compared with (a) and

(b). 2) The use of edge-preserving loss is able to better re-

fine the edges in the estimated transmission map, compared

with (b), (c) and (d). 3) The final joint-discriminator can

further enhance the estimated transmission map by ensur-

ing that the fine structural details are captured in the results,

such as details of the small objects on the table shown in the

3The configuration 1) DED and 2) DED-MLP are optimized only with

L2 loss.

second row in (e). The quantitative performance evaluated

on both TestA and TestB also demonstrate the effectiveness

of each module.

4.4. Comparison with state­of­the­art Methods

To demonstrate the improvements achieved by the pro-

posed method, it is compared against the recent state-of-

the-art methods [13, 58, 33, 3, 4, 24]. on both synthetic and

real datasets.

Evaluation on synthetic dataset: The proposed network is

evaluated on two synthetic datasets TestA and TestB. Since

the datasets are synthesized, the ground truth images and the

transmission maps are available, enabling us to evaluate the

performance qualitatively as well as quantitatively. Sample

results for the proposed method and five recent state-of-the-

art methods, on two sample images from the test datasets

are shown in Fig. 7. It can be observed that even though

previous methods are able to remove haze from the input

image, they tend to either over dehaze or under dehaze the

image making the result darker or leaving some haze in the

result. In contrast, it can be observed from our results that

they preserve sharper contours with less color distortion and

are more visually closer to the ground-truth. The quantita-

tive results, tabulated in Table 2 and Table 3 4, evaluated on

both TestA and TestB also demonstrate the effectiveness of

the proposed method.

4N/A: Code released is unable to estimate the transmission map.
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Figure 9: Dehazing results evaluated on real-world images downloaded from the Internet.

Evaluation on a real dataset: To demonstrate the gener-

alization ability of the proposed method, we evaluate the

proposed method on several real-world hazy images pro-

vided by previous methods and other challenging hazy im-

ages downloaded from the Internet.

Results for four sample images obtained from the previ-

ous methods [33, 5, 10] are shown in Fig. 8. As revealed in

Fig. 8, methods of He et al. [13] and Ren et al. [33] (ob-

served on the fourth row) tend to leave haze in the results

and methods of Zhu et al. [58] and Li et al. [24](shown

on the second row) tend to darken some regions (notice the

background wall). Methods from Berman et al. [3, 4] and

our method have the most competitive visual results. How-

ever, by looking closer, we observe that Berman et al. [3, 4]

produce unrealistic color shifts such as the building color

in the fourth row. In contrast, our method is able to gener-

ate realistic colors while better removing haze. This can be

seen by comparing the first and the second row.

We also evaluate on several hazy images downloaded

from the Internet. The dehazed results are shown in Fig. 9.

It can be seen from these results that outputs from He et

al. [13] and Berman et al. [3, 4] suffer from color distor-

tions, as shown in the second and third rows. In contrast,

our method is able to achieve better dehazing with visually

appealing results.

5. Conclusion

We presented a new end-to-end deep learning-based de-

hazing method that can jointly optimize transmission map,

atmospheric light and dehazed image. This is achieved

via directly embedding the atmospheric image degradation

model into the overall optimization framework. To effi-

ciently estimate the transmission map, a novel densely con-

nected encoder-decoder structure with multi-level pooling

module is proposed and this network is optimized by a new

edge-preserving loss. In addition, to refine the details and to

leverage the mutual structural correlation between the de-

hazed image and the estimated transmission map, a joint-

discriminator based GAN framework is introduced in the

proposed method. Various experiments were conducted to

show the significance of the proposed method.
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