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Abstract

Motion of the human body is the critical cue for un-

derstanding and characterizing human behavior in videos.

Most existing approaches explore the motion cue using opti-

cal flows. However, optical flow usually contains motion on

both the interested human bodies and the undesired back-

ground. This “noisy” motion representation makes it very

challenging for pose estimation and action recognition in

real scenarios. To address this issue, this paper presents a

novel deep motion representation, called PoseFlow, which

reveals human motion in videos while suppressing back-

ground and motion blur, and being robust to occlusion. For

learning PoseFlow with mild computational cost, we pro-

pose a functionally structured spatial-temporal deep net-

work, PoseFlow Net (PFN), to jointly solve the skeleton lo-

calization and matching problems of PoseFlow. Compre-

hensive experiments show that PFN outperforms the state-

of-the-art deep flow estimation models in generating Pose-

Flow. Moreover, PoseFlow demonstrates its potential on

improving two challenging tasks in human video analysis:

pose estimation and action recognition.

1. Introduction

Understanding and characterizing human behavior in

video have attracted tremendous research interests due to its

potential to revolutionize daily life, health care and public

security. In particular, applications such as video surveil-

lance, Telerehabilitation, social robotics and autonomous

driving, require automatically detecting and recognizing hu-

man body motion from cluttered background. To meet

these demands, researchers have made great efforts in

the last few years on pose estimation [3], tracking [6],

human parsing [23], action recognition [18], person re-

identification [22, 4]. In all these tasks, learning effective

representation of the body motion plays a critical role for

∗Corresponding author. †The first three authors contribute equally.

Figure 1. Optical flow and PoseFlow (our) computed on video

frames. Pixels in the Optical flow and PoseFlow images are visu-

alized as color-coded vector fields (Best viewed in color). Pose-

Flow reveals only human body motion in videos from the back-

ground motion (the 1st row), body motion blur (the 2nd row) and

occlusion (the 3rd row).

improving detection and recognition of human behavior in

videos.

One of the most widely used motion representations in

video is optical flow [2]. Optical flow consists of the dis-

placement vectors of correspondent pixels between video

frames. Most video analysis tasks require precomputed op-

tical flows. Without using the pose and action labels that

correspond to human body motion, the displacement vec-

tors of optical flow are produced not only on the interested

human bodies but also on the undesired background (See

the middle column in Fig. 1). Given cluttered background,

body motion blur and occlusion in both video frames and

optical flows, it is very challenging for latter algorithms to

estimate body poses and recognize actions. Moreover, tradi-

tional methods to compute optical flow would become inac-

curate especially when dealing with multi-scales and large

displacement.

The flourishing advance of deep neural networks [24,
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30, 25, 14] leads to faster and more accurate solution-

s for optical flow estimation. Among these approaches,

the early effort [24] mainly focuses on end-to-end mapping

with deep but simple network architectures. Unfortunate-

ly, learning without function-aware structures is inefficient

to train, blindness to tune, and requires huge training da-

ta and GPUs. As one step towards structured flow learn-

ing, [25, 14] outperform previous approaches by explicitly

performing pixel-wise matching: warping the former frame

to the latter frame using the predicted flow field. Howev-

er, such efforts are still insufficient for obtaining satisfac-

tory flow estimation performance. As we know, network

interpretation [8, 1] has become one of the emerging hot

research fields in recent years. Instead of interpreting what

has been learnt by the established DNNs, an alternative way

for ease of understanding DNNs is to build them with the

task-specific function-aware structures. When it comes to

very complex learning tasks like the investigated PoseFlow

estimation, the need for function-aware structures become

more pressing.

To address the aforementioned issues, we present Pose-

Flow – a computationally efficient while highly informative

motion representation of human body (see the right column

of Fig. 1). Different from conventional optical flow, Pose-

Flow reveals human motion while suppressing other mo-

tion in the background. More specifically, our work leads to

four main advantages over existing approaches: (1) Pose-

flow only computes motion on human body. It reflects the

intrinsic body motion and can avoid external factors like

person-specific body shape, illumination and cloth texture.

(2) Flow fields on Poseflow are sparser. They have lower

costs to store and compute, while already encoding enough

rich patterns for understanding human behaviors. therefore

could potentially reduce the computational cost (for the sub-

sequent processes) and storage space comparing to conven-

tional optical flow. (3) As an explicit representation of body

motion, PoseFlow can be used to improve multiple tasks

in understanding human behavior in video such as pose es-

timation and action recognition. Moreover (4) PoseFolw

is learned using a functional-structured network: PoseFlow

Net (PFN) (see Fig. 2). PFN consists of subnetworks ex-

plicitly modeling the spatial, temporal, and motion vector

mapping functions towards body motion estimation. This

design makes it possible to learn an informative PoseFlow

representation without resorting to heavy neural networks.

In learning PoseFlow, we need to jointly solve two prob-

lems: localization and matching. Specifically, in the local-

ization problem, human body regions (e.g., pixels of body

joints and limbs) are extracted from the complex back-

ground of each video frame. In the matching problem,

the corresponding regions on human bodies are found from

the adjacent video frames. Finally, PoseFlow is comput-

ed as a pixel-wise vector field on human bodies. Fig. 2

shows PoseFlow Net (PFN), which is an unified end-to-

end deep learning framework proposed for learning Pose-

Flow. The network inputs are two adjacent video frames

and the outputs are the flow maps of PoseFlow. The ground-

truth PoseFlow maps are generated by connecting annotat-

ed body joints into skeletons and computing pixel-wise dis-

placement on skeletons. PFN simultaneously learns to lo-

calize the human body skeleton and match the correspond-

ing pixels on skeleton between adjacent frames (see Fig. 2).

As shown in Fig. 2, PFN is composed of multiple encoder-

decoder branches, each of which corresponds to a compu-

tational component derived from the classic flow field esti-

mation model [2]. Comparing to the classic flow field es-

timation, PFN learns optimal spatial and temporal filters

to achieve highly nonlinear mapping from images to flow

fields. Comparing to the deep neural networks for optical

flow [9, 25, 14], PoseFlow Net (PFN) is explicitly struc-

tured with functional objectives. This enables PFN to ad-

vance the performance of high-level semantic problem, e.g.,

pose estimation and action recognition, with smaller model

size and lower computational cost than using some previous

deep models.

To sum up, this paper presents three-fold contributions:

• PoseFlow–a novel deep motion representation that

captures human body motion in video while suppress-

ing background and motion blur, and being robust to

occlusion.

• A functionally structured deep neural network, called

PoseFlow Net (PFN), which explicitly models spatial

and temporal mapping functions for estimating Pose-

Flow. Comprehensive experiments demonstrate effec-

tiveness and efficiency of PFN as compared with other

state-of-the-art flow estimation networks.

• Quantitative and qualitative experiments in application

study also demonstrate the benefits of using PoseFlow

on pose estimation and action recognition in videos.

2. Related Works

2.1. Flow Estimation

A number of DNN-based approaches estimate motion

in video as optical flow. Fischer et al. [9] proposed the

FlowNet, which directly predicts optical flow given two in-

put frames using either a cascade or a parallel network. In

training, FlowNet was supervised by ground-truth optical

flow. After several convolutional and deconvolutional lay-

ers, FlowNet predicts multi-channel flow field representa-

tions that are used to form the optical flow maps. The chan-

nel number depends on a pre-defined maximum displace-

ment parameter. This is a pioneer work towards end-to-end

learning of optical flow directly using a DNN model. Tran
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et al. [30] presented a deep 3D convolutional architecture

that models the flow estimation problem as a “Voxel2Voxel”

prediction problem. Teney and Hebert [28] developed a ro-

tationally invariant network architecture from signal pro-

cessing perspectives, which takes raw pixels as input and

produced features representing evidence for motion at var-

ious speeds and orientations. Ranjan and Black [25] com-

bined the spatial-pyramid formation with DNN for estimat-

ing large displacement in a coarse-to-fine approach. More

recently, Ilg et al. [14] improved FlowNet in both quality

and speed. They handled large displacement by warping

the second input frame with the intermediate optical flow

before stacked with the first frame and handled the small

displacement using an standard FlowNet sub-network. Note

this small step towards implicit temporal matching outper-

forms the “structureless” FlowNet. The warping technique

in [14] relies on flow field estimated over the entire image

to achieve implicit temporal matching, therefore, does not

apply to the body-only flow field in PoseFlow.

All these DNN architectures were designed to overcome

intuitive factors in flow estimation such as resolution, small

or large displacement. In contrast, our PFN is designed by

functional structures of flow estimation [2]. PFN explicitly

models the temporal derivative reasoning, spacial deriva-

tive reasoning, and motion vector reasoning sub-network

branches to help learning the computational components of

flow estimation.

2.2. Pose Estimation in Videos

Pose estimation aims to localize a set of human body

joints in visual scene. Most of the previous works were fo-

cused on still images. Recently several attempts have been

made to use temporal information in videos [34, 33, 24,

13, 27]. Zuffi et al. [34] used Flowing puppets, an articu-

late body part model, to estimate body poses. It is done by

matching Flowing puppets with pre-computed optical flows

between frames. In contrast, PoseFlow estimates flow field-

s on body skeletons and is a high-level representation built

for generally benefiting video-based human understanding

tasks like pose estimation and action recognition. Two of

the most recent achievements, Pfister et al. [24] and Song

et al. [27], used a sequential spatial-temporal deep learning

architecture. Given consecutive frames from videos, Pfister

et al. [24] first estimated preliminary heatmaps of joints in

individual frames, then aligned and pooled heatmaps before

making the final pose estimation. Note that the heatmap-

s were aligned using optical flow precomputed using tra-

ditional optical flow algorithms. Moreover, the success of

[24] relies on the accuracy of the preliminary joint heatmap-

s. Song et al. [27] improved the joint localization in [24] by

an extra inference layer.

In above approaches, estimating human pose in videos

requires motion cue of human bodies, while the pre-

computed optical flow contains background motion. Pose-

Flow addresses this problem by only estimating the flow on

human body. Moreover, using our PFN network, PoseFlow

estimation shares the same convolutional features for esti-

mating joint coordinates, making it very efficient to lever-

age temporal information for pose estimation in video.

2.3. Action Recognition in Videos

Action recognition [15, 26, 32, 12, 7] aims at recogniz-

ing pre-defined human behavior categories from video. In

the most recent DNN-based action recognition, deep rep-

resentations of action are usually learned from raw pixel

inputs and the precomputed optical flow maps. For exam-

ple, Simonyan and Zisserman [26] proposed a two-stream

DNN architecture: one spatial stream to learn appearance

from raw image, and one temporal stream to learn motion

from optical flows. Following this work, Feichtenhofer et

al. [11] comprehensively studied multiple ways to fuse s-

patial and temporal subnetworks for the best combination

of spatio-temporal information. Besides learning from raw

pixels, there are also several approaches that explicitly ex-

tract poses before learning representation for action recog-

nition. [15, 19, 31, 29] extended the conventional 2D CNN

to the CNNs with 3D spatio-temporal convolutions for im-

proving their invariance to translations both in image plane

and time.

In above approaches, the precomputed optical flow is

widely used as the network inputs for action recognition.

Since the goal of using optical flow is to characterizing hu-

man motion, it is not necessary to compute background

motion. Our approach replaces the conventional optical

flow with the PoseFlow. The obtained action recognition

approach works more effectively since PoseFlow encodes

salient human motion while suppresses the noisy back-

ground motions.

3. PoseFlow

For simplicity of presentation, we assume all video

frames are of the same size. The tth frame It ∈ ℜw×h×c

is an image of w pixels in width, h pixels in height and

c channels. PoseFlow of frame It is a 2D vector field

Vt ∈ ℜw×h×2 (see Fig. 1 for an example of PoseFlow).

This 2D flow field Vt describes the horizontal and vertical

body motion from the tth to the (t + 1)th frame. Vt is

non-zero only at the pixels overlapping with human body

skeletons, and is zero at remaining pixels.

The learning problem of PoseFlow V involves two mu-

tually dependent subtasks: localizing human body skeletons

and matching the skeletons between frames. The localiza-

tion task needs temporal information to overcome ambigu-

ity in single frame, while the matching task requires accu-

rate localization in individual frames. If these subtasks are
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Figure 2. PoseFlow net: The network architecture to learn PoseFlow. The output PoseFlow contains motion vectors only on human body.

The pixels in the output map is color-coded (the same visualization for standard optical flow).

solved independently or sequentially, the learning error in

either task will propagate and accumulate to the other.

PFN jointly localizes and matches body parts using two

parallel deep neural network branches, i.e., a spatial deriva-

tive reasoning branch and a temporal derivative reasoning

branch, and a motion vector reasoning branch. This net-

work architecture is developed following the classic optical

flow estimation approaches.

3.1. Flow Estimation Revisited

Denote I(x, y, t) is the intensity at pixel (x, y) in the tth

frame. The classic flow estimation approach [2] estimates

the temporal motion vector of pixels from t to t+∆t under

the brightness constancy constraint:

I(x, y, t) = I(x+∆x, y +∆y, t+∆t). (1)

Assuming the movement to be small, the pixel intensity

at (t + ∆t) is estimated by its first order approximation of

Taylor series. Then we can get

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t = 0. (2)

Dividing ∆x and ∆y with respect to ∆t, we obtain motion

vector vx = ∆x
∆t

and vy = ∆y
∆t

.

∂I

∂x
vx +

∂I

∂y
vx +

∂I

∂t
= 0, (3)

which leads to

[

∂I

∂x

∂I

∂y

]T [

vx

vy

]

= −
∂I

∂t
. (4)

Given the spatial derivatives
[

∂I
∂x

, ∂I
∂y

]

and temporal deriva-

tives ∂I
∂t

, the motion vector [vx,vy] can be solved by linear

programing. Note that in Eq. (4) the spatial and temporal

derivatives are usually computed as image gradients as in

the traditional flow estimation approaches, which are essen-

tially the convolution of original frames and fixed template.

The linear equations used in such traditional flow estima-

tion approaches are difficult to model the highly nonlinear

relation between non-rigid body and cluttered background.

Furthermore, using the traditional image gradients, the cal-

culated spatial and temporal derivatives will mainly appear

at the body contours, whereas the more important motions

on the body skeletons are hard to capture due to the lack of

sufficient textures on them.

To address the aforementioned issues, this paper pro-

poses a novel network architecture, i.e., the PoseFlow Net

(PFN), to estimate PoseFlow i.e., the flow on body skeleton.

PFN consists of multiple convolutional and deconvolution-

al network layers that learn the body skeleton-aware deep

features and desired convolution templates for inferring the

latent representations of the spatial and temporal derivatives
[

∂I
∂x

, ∂I
∂y

]

and ∂I
∂t

. Such representations are then fed to an-

other network branch to estimate the motion vector [vx,vy].
All network parameters are learnt in an end-to-end manner.

The proposed PFN extends the classic flow estimation

method to handle nonlinearities: replacing
[

∂I
∂x

∂I
∂y

]

with

a spatial derivative reasoning branch, replacing ∂I
∂t

with a

temporal derivative reasoning branch and replacing linear

transformation in Eq. (4) with a motion vector reasoning

branch. Denote It is an image of the tth frame. I(x, y, t) is

the intensity at pixel (x, y). We generalize the classic flow

estimation function Eq. 4 to convolution networks:

fs(Wxy, It) ·

[

vx

vy

]

= ft(Wt, [It, It+1]). (5)

where fs(·) denotes the spatial (de)convolution operators,

i.e., convolution in image coordinates {x, y}, Wxy is the

learnable parameters in fs(·); Similarly, ft(·) denotes the

temporal (de)convolution operators, i.e., convolution in

time t, and Wt is the learnable parameters in ft(·).

3.2. PoseFlow Net

The basic architecture of the proposed PFN is shown in

Fig. 2. Observe that PFN takes two adjacent video frames

as the input and outputs the 2D PoseFlow maps {vx,vy}.

Specifically, the first part of the PFN is two parallel net-

work branches, i.e., the spatial derivative reasoning branch

and the temporal derivative reasoning branch. The spatial

derivative reasoning branch computes the spatial derivative
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Figure 3. The detailed network architecture of the spatial/temporal derivative reasoning branch of our PFN network. The orange, green, and

blue rectangles indicate the convolution, pooling, and up-sampling operations, respectively. The red numbers under each of the operation

rectangle indicate the spatial size of the corresponding feature maps, while the black numbers indicate the corresponding channel number.

Notice that the spatial derivative reasoning branch does not have the temporal reasoning block. A ReLU nonlinear activation function is

used after each layer. The black dots in each deconv block indicates the concatenation operation of the feature maps.

on the human body skeleton in the tth frame and outputs the

estimated horizontal derivative representation ∂I
∂x

and verti-

cal derivative representation ∂I
∂y

. The corresponding net-

work parameters are denoted as Wxy . The temporal deriva-

tive reasoning branch computes the temporal derivative rep-

resentation ∂I
∂t

on the human body skeleton from the tth and

t + 1th frame, with network parameters Wt. Afterwards,

the derivative maps Dx,Dy,Dt formed by the estimated ∂I
∂x

,
∂I
∂y

, and ∂I
∂t

are combined together as the input of the motion

vector reasoning branch with parameters Wm. The motion

vector reasoning branch models the mapping functions to

produce the PoseFlow motion vector {vx,vy}.

Spatial Derivative Reasoning Branch: As shown in

Fig. 2, the spatial derivative reasoning branch is an encoder-

decoder network architecture with input as the tth video

frame. Fig. 3 (b) has displayed more concrete architecture

of the spatial derivative reasoning branch. Specifically, the

encoder network consists of six layers, i.e., three convolu-

tional layers and three pooling layers. Then, the obtained

feature map (with spatial size of 56 and channel number of

256) is fed into the decoder network, which contains three

deconv blocks. As shown in Fig. 3 (b), each of the decon-

v block has three convolutional layers and an up-sampling

layer, enabling the spatial size of the inferred feature maps

to increase gradually. After the last deconv block, the net-

work uses a convolutional layer to generate a two-channel

estimation map with spatial size of 448, which correspond-

s to the desired horizontal derivative map Dx and vertical

derivative map Dy .

Temporal Derivative Reasoning Branch: As shown

in Fig. 2, the temporal derivative reasoning branch is an

encoder-temporal reasoning-decoder network architecture

with input of the tth and t + 1th video frame. Its concrete

network architecture can be also referred to in Fig. 3 (b).

Specifically, it has the same encoder and decoder architec-

ture as those in the spatial derivative reasoning branch. The

main difference between the temporal derivative reasoning

branch and the spatial derivative reasoning branch is that the

former has the temporal reasoning layers with 1× 1 kernel

size to infer the temporal derivative representation. Here we

propose three different architectures of the temporal reason-

ing module, which are named as the constant (CS) module,

convex (CV) module, and concave (CC) module, respec-

tively. As shown in Fig. 3 (a), the channel numbers of the

temporal reasoning convolutional layers in the CS module

are constantly set as 256. The channel number in the CV

module gradually increases to 1024 and then decreases to

256. The channel number in the CC module gradually de-

creases to 64 and then increases to 256. After the temporal

reasoning layers, the network uses the decoder network fol-

lowed by a convolutional layer to generate a one-channel

estimation map with size of 448, which corresponds to the

desired temporal derivative map Dt.

Motion Vector Reasoning Branch: The motion vec-

tor reasoning branch mainly follows the FlowNetS archi-

tecture [9] due to its success in the conventional flow es-

timation task. As shown in Fig. 2, it also consists of an

encoder network and a decoder network. Basically, its en-

coder network propagates the input three-channel deriva-

tive map through 9 convolutoinal layers to obtain the feature

map with spatial size of 7× 7 and channel number of 1024.

Then, the obtained feature maps is feed into the decoder

network to obtain the final 2-channel PoseFlow estimation

map with spatial size of 112× 112.

Network Training: In training PFN, we follow the pre-

vious works [9, 14] to use the EndPoint Error (EPE), the

standard error measure for the flow estimation tasks, as the

loss function. EPE is computed as the average Euclidean

distance over all pixels between the predicted motion vec-

tor and the ground truth.

To obtain the ground truth PoseFlow map, we leverage

the ground truth human body joint locations provided by

6766



the existing benchmark datasets. Given the 2D ground truth

joint locations in each frame, we first connect joints be-

longing to the same bone using straight lines and uniformly

sample 10 pixels on each straight line. Then, we subtrac-

t 2D coordinates of the corresponding points between the

(t + 1)th and (t)th frame to compute motion vectors at the

sampled pixels. Finally, we use the amplitudes of the com-

puted motion vectors as the intensity of preliminary flow

map, and smooth the preliminary map through a dilation

process. More detailed description of the PoseFlow ground

truth can be referred to in the supplementary material.

When training PFN, following FlowNetC [9], we choose

the Adam as optimizer. The parameters of Adam is set as

recommended in [20]. The PFN is trained through 30 e-

pochs. The learning rate is set as 0.0001 for the first 15
epochs and reduced by a factor of 10 for the second 15 e-

pochs. We use batch normalization for every bottom lay-

er of concatenation operation (the black dots in Fig. 3).

PFN is implemented in C++ and Matlab, and is based on

the Caffe [16] and the publicly available implementation of

FlowNet2. All of the experiments were run on a NVIDIA

TitanXP GPU with 12GB memory.

4. Experiments

4.1. Datasets

We conducted experiments on three standard datasets:

CMU Panoptic dataset [17] records human behaviors

in social interactions using an advanced multi-camera sens-

ing system called the Panoptic Studio. Various games like

Ultimatum, Mafia, and Haggling were played to evoke nat-

ural interactions among participants. In our experiments,

we used the Pose subset. The body joints were annotated in

each frame. After down-sampling, 8908 frames were used

for training and 7924 frames for testing.

Poses in the Wild dataset [5] consists of 30 video se-

quences (totally 830 frames) extracted from Hollywood

movies. It contains realistic poses in indoor and outdoor

scenes, with background clutter, severe camera motion,

non-frontal view, unusual poses and occlusions. Body joint

are annotated for the upper human bodies. We followed [24]

and use this dataset to test the generalization capacity of the

flow estimation models trained on other datasets.

HMDB-51 dataset [21] consists of 766 videos, 51 dif-

ferent actions, three different splits of training and testing

sets. We report the performance of PoseFlow and state-of-

the-art flow estimation networks. Moreover, we compared

PoseFlow-based video action recognition with state-of-the-

art approaches based on optical flow. Note the actions in

the HMDB-51 dataset have wide variations, making it very

challenging for video action recognition.

4.2. PoseFlow Estimation

In this section, we conducted comprehensive evaluation

of PFN on the Pose subset of the CMU Panoptic dataset. We

used the standard error measure for flow estimation, i.e., the

EndPoint Error (EPE). It is computed as the average pixel-

wise Euclidean distance between the predicted flow vector

and the ground truth.

We first compared seven baselines settings of PFN to an-

alyze the contribution of each component. In Table 1, the

baseline “PFN-C” denotes the PFN architecture, which in-

puts the concatenated adjacent video frames into a single

forward encoder-decoder branch to infer ∂I
∂x

, ∂I
∂y

, ∂I
∂t

simul-

taneously. “PFN-D” denotes PFN shown in Fig. 2, where

the input two video frames are decoupled as in two dif-

ferent forward branches. The next three baselines “PFN-

D-T(CS)”, “PFN-D-T(CV)” and “PFN-D-T(CC)” include

additional temporal reasoning layers with content, convex,

and concave layer architecture, respectively. The sixth base-

line “PFN-partial” uses the traditional image gradients to

calculate ∂I
∂x

, ∂I
∂y

, and ∂I
∂t

, and then directly feed the ob-

tained ∂I
∂x

, ∂I
∂y

, and ∂I
∂t

into the middle layer of PFN dur-

ing the training process. In this case, only the motion vec-

tor reasoning branch of PFN is trained to generate the final

poseflow estimation. The last baseline “PFN-D-T(CS)-P”

uses the ∂I
∂x

, ∂I
∂y

, and ∂I
∂t

obtained by the image gradien-

t calculation as the supervision signals, pre-train the spa-

tial derivative reasoning branch and the temporal derivative

reasoning branch of “PFN-D-T(CS)”, and then followed by

end-to-end poseflow learning.

The experimental results of all above baselines are

shown in Table. 1. From the comparison between “PFN-C”

and “PFN-D”, we obtained 1.9% and 1% performance gain-

s in terms of the training and test error. This demonstrates

the rationality of inferring the latent spatial and temporal

motion derivative representations into two separate network

branches over directly inferring them through a single net-

work branch. It also shows that the inference of the ∂I
∂x

,
∂I
∂y

and ∂I
∂t

relies on different hidden patterns rather than the

shared ones.

From the comparison of “PFN-D-T(CS)”, “PFN-D-

T(CV)” and “PFN-D-T(CC), we observe that the most ef-

fective way to implement the temporal reasoning is to use

the convex layer architecture. The choice of different tem-

poral reasoning architectures cause 1.2% and 0.7% perfor-

mance variations in terms of training and test error, re-

spectively. In addition, the comparison between “PFN-D-

T(CV)” and “PFN-D” indicates that using the proper tem-

poral reason block will produce extra 1.5% performance

gain in testing. According to the above comparisons, we

use PFN-D-T(CV) as our final PFN model due to its supe-

rior effectiveness.

The last two baselines “PFN-partial” and “PFN-D-
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Figure 4. Some examples of the flow estimation results. The pink block indicates the predicted PoseFlow results by using different network

architectures, while the blue block indicates the predicted optical flow results. The models in the pink block are trained on the pose CMU

dataset with the PoseFlow ground-truth, while the models (FlowNetC-Op and FlowNet2-Op) in the blue block are trained on the traditional

flow estimation dataset with the optical flow ground-truth.

Table 1. Comparison of PFN baseline models on the Pose subset

of the CMU Panoptic dataset in terms of EPE.

Baseline name Train error Test error Run time

PFN-C 0.243 0.346 49ms

PFN-D 0.224 0.336 59ms

PFN-D-T(CS) 0.233 0.328 60ms

PFN-D-T(CV)(final) 0.223 0.321 60ms

PFN-D-T(CC) 0.235 0.324 60ms

PFN-partial 0.531 0.539 174ms

PFN-D-T(CS)-P 0.226 0.331 60ms

T(CS)-P” cause various degrees of performance degen-

eration comparing to PFN-D-T(CV). Specifically, “PFN-

partial” , about 20% worse than PFN-D-T(CV), uses the
∂I
∂x

, ∂I
∂y

and ∂I
∂t

obtained by the image gradient calculation

to directly train the motion vector reasoning branch of PFN.

“PFN-D-T(CS)-P”, 1% worse than PFN-D-T(CV) in test-

ing, pre-trains the spatial derivative reasoning branch and

temporal derivative reasoning branch of PFN. This indicates

that using ∂I
∂x

, ∂I
∂y

and ∂I
∂t

obtained by the image gradient cal-

culation will mislead the flow estimation even only using it

for pre-training, which is the most critical bottle neck of the

traditional flow estimation methods.

Finally, we compared PFN with three state-of-the-

art DNN-based flow learning models: FlowNetS [9],

FlowNetC [9] and FlowNet2 [14], respectively. We con-

ducted comparison on both the pose subset of the CMU

Panoptic dataset (short for “pose CMU”) and the Poses in

the Wild dataset. On the pose CMU dataset, we used the

Table 2. Comparison PFN with the state-of-the-art flow estimation

models in PoseFlow estimation. EPE are reported on test sets of

two databases [17] and [5].

Comparison pose CMU Poses in the Run

methods dataset Wild dataset time

FlowNetC 0.400 3.852 56ms

FlowNetS 0.430 1.818 45ms

FlowNet2 0.539 2.960 83ms

PFN(ours) 0.321 1.661 60ms

training and test split provided in the dataset. Then, to test

the generalization capacity of different flow estimation ap-

proaches, we used the flow estimation models (including

FlowNetS, FlowNetC, FlowNet2, and PFN) trained on the

pose CMU dataset to predict the PoseFlow fields on all the

video frames of the Poses in the Wild dataset. The visual

comparisons are shown in Fig. 4 and the quantitative results

are shown in Table 2. These comparisons show that PFN

significantly outperforms other state-of-the-art deep flow

models by 0.079 − 0.218 EPE on the pose CMU dataset

and 0.157 − 2.191 EPE on the Poses in the Wild dataset.

Based on our understanding, learning PoseFlow under hu-

man skeleton ground-truth would guide PFN to learn pat-

terns on localizing human body and capturing the sparse

flow fields. Whereas learning optical flow in the reviewer

mentioned way can only capture the dense flow fields on

all possible motion regions. Thus, PFN can better focus

on human skeletons. Examples in Fig. 5 further demon-

strate that PFN can better handle body occlusions, both in

the simulated case and the real case. Besides, we also test
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Figure 5. Quantitative comparisons between PFN and other ap-

proaches on occlusion cases.

Figure 6. Quantitative and qualitative comparisons between the

optical flow-based video pose estimation and PoseFlow-based

video pose estimation results. We only show the joint locations

of human shoulder in this figure.

the per-frame running times of using different flow estima-

tion models. As shown in Table 2, the running times of

these flow estimation models vary slightly. The proposed

PFN require moderate running time, which is slightly slow-

er than FlowNetS, approximately equal to FlowNetC, and

faster than FlowNet2.

4.3. Pose Estimation

Existing approaches for video-based pose estimation

used optical flow and the body joint locations in adjacen-

t frames to help infer the body joints in the current frame.

In this experiment, we explore the benefit of PoseFlow in

this task. Specifically, we chose Pfister’s method [24] as

the baseline for localizing human shoulders in the Poses

in the Wild dataset. The red curve in Fig. 6 shows accu-

racy vs distance from Ground Truth curve by [24]. The

higher curve indicates better performance. Then, we used

PoseFlow to replace the optical flow in [24] to generate the

joint locations of human shoulders. The obtained accura-

cy vs distance from Ground Truth curve is shown in cyan

in Fig. 6. We also show some qualitative comparison re-

sults in Fig. 6. From the comparisons shown in Fig. 6, we

can observe the benefit of using PoseFlow in pose estima-

tion: Even just adopting a simple warping strategy as it is

in [24], the PoseFlow-based pose estimation can already ob-

tain encouragingly better results especially for the examples

shown in Fig. 6. More advanced strategies for introducing

flow fields in pose estimation could lead to full advantages

of PoseFlow, which will be considered in our future work.

Table 3. Velidation the effectiveness of PoseFlow for action recog-

nition on the HBDM-51 dataset.
Methods Accuracy

ST-ResNet w/o motion [10] 43.42%

ST-ResNet w optical flow (FlowNet2) 48.58%

ST-ResNet w Poseflow (FlowNetS) 50.68%

ST-ResNet w Poseflow (our PFN) 51.74%

4.4. Action Recognition

In this section, we demonstrate the effectiveness of

PoseFlow in the action recognition task. Our experimen-

t is based on one of the state-of-the-art action recognition

framework [10]. This framework consists of a two-stream

ConvNet model (One motion stream and one appearance

stream) with residual connections. We report the recog-

nition accuracy without any motion information as “ST-

ResNet w/o motion” in Table 3. Then, we used the pre-

trained FlowNet2, which is the most state-of-the-art deep

model for estimation optical flow [14], to generate opti-

cal flow fields for introducing motion cues. This method,

denoted by “ST-ResNet w optical flow (FlowNet2)” obtains

5.16% performance gain as compared with “ST-ResNet w/o

motion”. Finally, we replace the optical flow fields gener-

ated by FlowNet2 by the PoseFlow fields generated by the

pre-trained PFN, denoted by “ST-ResNet w Poseflow (our

PFN)”. As shown in Table 3, with the informative motion

vectors on human bodies, PoseFlow can further improve the

action recognition accuracy by 3.16%. Note that the accu-

racies reported in Table 3 are the mean accuracy of all three

train-test splits as reported in previous works.

5. Conclusion

PoseFlow is a rich and powerful representation that joint-

ly describes body pose and motion. Comparing to the con-

ventional motion representation based on optical flow, Pose-

Flow can suppress the background and motion blur, and

is robust to occlusion. To learn such a rich representation

without resorting to heavy neural networks, we developed

PoseFlow Net (PFN), a functional-structured networks that

explicitly models the spatial derivative reasoning, temporal

derivative reasoning and motion vector reasoning. Experi-

ments show that this cleaner representation, PoseFlow, re-

sulted in substantial improvement on pose estimation and

action recognition in videos. Moreover, PoseFlow does not

rely on accurate body joint detection and dense flow track-

ing, therefore can be widely applied to video data with low

resolution, video blur and small human body size.
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