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Abstract

We propose a novel single shot object detection network

named Detection with Enriched Semantics (DES). Our mo-

tivation is to enrich the semantics of object detection fea-

tures within a typical deep detector, by a semantic seg-

mentation branch and a global activation module. The

segmentation branch is supervised by weak segmentation

ground-truth, i.e., no extra annotation is required. In con-

junction with that, we employ a global activation mod-

ule which learns relationship between channels and object

classes in a self-supervised manner. Comprehensive exper-

imental results on both PASCAL VOC and MS COCO de-

tection datasets demonstrate the effectiveness of the pro-

posed method. In particular, with a VGG16 based DES, we

achieve an mAP of 81.7 on VOC2007 test and an mAP of

32.8 on COCO test-dev with an inference speed of 31.5

milliseconds per image on a Titan Xp GPU. With a lower

resolution version, we achieve an mAP of 79.7 on VOC2007

with an inference speed of 13.0 milliseconds per image.

1. Introduction

With the emergence of deep neural networks, computer

vision has been improved significantly in many aspects

such as image classification [11, 13, 15, 24, 27], object de-

tection [3, 17, 20, 21, 25], and segmentation [2, 10, 18].

Among them, object detection is a fundamental task which

has already been extensively studied. Currently there are

mainly two series of object detection frameworks: the

two-stage frameworks such as Faster-RCNN [21] and R-

FCN [3] which extract proposals, followed by per-proposal

classification and regression; and the one-stage frameworks

such as YOLO [20] and SSD [17], which apply object clas-

sifiers and regressors in a dense manner without objectness-

based pruning. Both of them do classification and regres-

sion on a set of pre-computed anchors.

Previous single shot object detectors, such as SSD, use

multiple convolutional layers to detect objects with differ-

ent sizes and aspect ratios. SSD uses a backbone network

(e.g., VGG16) to generate a low level detection feature map.

Based on that, several layers of object detection feature

maps are built, learning semantic information in a hierar-

chal manner. Smaller objects are detected by lower layers

while larger objects are detected by higher layers. However,

the low level features usually only capture basic visual pat-

terns without strong semantic information. This may cause

two problems: small objects may not be detected well, and

the quality of high level features is also damaged by the im-

perfect low level features.

In this paper, we aim to address the problem discussed

above, by designing a novel single shot detection network,

named Detection with Enriched Semantics (DES), which

consists of two branches, a detection branch and a segmen-

tation branch. The detection branch is a typical single shot

detector, which takes VGG16 as its backbone, and detect

objects with multiple object detection feature maps in dif-

ferent layers. This is shown in the upper part of Figure 1.

The segmentation branch is used to augment the low

level detection feature map with strong semantic informa-

tion. It takes the low level detection feature map as input,

to learn semantic segmentation supervised by bounding-box

level segmentation ground-truth. Then it augments the low

level detection features with its semantic meaningful fea-

tures, as shown in the left lower part of Figure 1.

Figure 2 gives an illustration of this semantic augmen-

tation process. After the original low level features (B) are

activated by segmentation features (C), the augmented low

level features (D) can capture both the basic visual pattern

as well as the semantic information of the object. This can

be considered as an attention process, where each channel

of the original low level feature map is activated by a se-

mantically meaningful attention map, to combine both basic

visual pattern and semantically meaningful knowledge.

In addition to the segmentation branch attached to the

low level detection feature map, we also employ a global

activation module for higher level detection feature maps.

It consists of several global activation blocks, as shown in

the right lower corner of Figure 1. The global activation

block can prune out the location information, and learn the
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Figure 1. Pipeline for DES: the upper half is the object detection branch for DES which has six prediction source layers from conv4 3

up to conv9 2; the lower half is the segmentation branch and the global activation module. The segmentation branch is added at the first

prediction source layer conv4 3. The global activation module consists of six global activation blocks. Those global activation blocks are

added at each prediction source layer. The black arrows pointed to those modules are the input flow, and the red arrows pointed out from

those modules are the output flow to replace the original feature map.

A B C D

Figure 2. Low level features augmented with semantic meaningful

features from the segmentation branch. A: original image fed into

our detection network. B: original low level detection features (X)

for the input image. C: semantic meaningful features (Z) from

the segmentation branch. D: augmented low level features (X ′
=

X ⊙ Z) which is then used in the later stages for our detection

network. We can see that X ′ can capture both basic visual pattern

and high level semantic information.

relationship between channels and object classes in a self-

supervised manner, which increases the semantic informa-

tion of the object detection feature maps at higher layers.

We summarize our contributions as follows:

• We improve the typical deep single shot detectors by

enriching semantics, with a semantic segmentation

branch to enhance low level detection features, and

a global activation module to learn the semantic rela-

tionship between detection feature channels and object

classes for higher level object detection features.

• We significantly improve the performance compared

with popular single shot detectors. DES achieves an

mAP of 81.7 on VOC2007 test and mAP of 32.8 on

COCO test-dev.

• DES is time efficient. With a single Titan Xp GPU, it

achieves 31.7 FPS, and is much faster than competitors

like R-FCN and ResNet based SSD.

2. Related work

General object detection is a fundamental task in com-

puter vision and has received lots of attention. Almost

all the recent object detectors are based on deep networks.

Generally there are two series of object detectors. The first

series is the two-stage detectors. Some representative exam-

ples are R-CNN [8], Fast-RCNN [7], Faster-RCNN [21] and

R-FCN [3]. These methods first generated a pool of object

candidates, named object proposals, by a separate proposal

generator such as Selective Search [26], Edge Boxes [28] or
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Region Proposal Network (RPN), and then did per-proposal

classification and bounding box regression.

Due to the speed limit of the two-stage frameworks,

some research interest has been attracted by the series of

one-stage object detectors, such as OverFeat [22], SSD [17]

and YOLO [20]. These detectors eliminated the proposal

generation, and did object detection and bounding box re-

gression in a dense manner at different locations and scales.

However, all these methods take the object detection as

the sole part in the training phase, without paying close

attention to local cues at each position within the object,

which happens to be semantic segmentation.

Semantic segmentation is another important vision task,

which requires each pixel to be assigned to one of

classes. General semantic segmentation methods such as

DeepLab [2] and fully convolutional network (FCN) [18]

need per-pixel labelling for the training. However, it has

been shown that weakly annotated training data such as

bounding boxes or image-level labels can also be utilized

for semantic segmentation in [19].

We are not the first one to show segmentation informa-

tion can be leveraged to help object detection [6, 10, 23].

Gidaris and Komodakis [6] used semantic segmentation-

aware CNN features to augment detection features by con-

catenation at the highest level, but our work differs in a

way that we put the segmentation information at the low-

est detection feature map, and we use activation instead of

concatenation to combine object detection features and seg-

mentation features. He et al. [10] showed that multi-task

training of object detection and instance segmentation can

help to improve the object detection task with extra instance

segmentation annotation, however, we do not consider extra

annotation in our work. Another difference is how the seg-

mentation branch in used. He et al. [10] train detection and

segmentation in parallel, but our method uses segmentation

features to activate the detection features.

Other work such as [14] has been done to improve object

detectors by using top-down architecture to increase the se-

mantic information. Our work achieves this in a simpler

way, which does not involve reverse connections.

3. Proposed method

Detection with Enriched Semantics (DES) is a single-

shot object detection network with three parts: a single shot

detection branch, a segmentation branch to enrich semantics

at low level detection layer, and a global activation module

to enrich semantics at higher level detection layers.

We use SSD [17] as our single shot detection branch.

SSD is built on top of a backbone which generates a low

level detection feature map for object detection (conv4 3 for

VGG16). Based on that, SSD builds a series of feature maps

(i.e., conv4 3 to conv9 2) to detect objects of small to large

sizes, in a hierarchical manner, by applying anchors with

different sizes and aspect ratios on these feature maps.

In order to deal with the problems discussed previously,

we employ a segmentation branch to augment low level de-

tection features with semantic information. This segmen-

tation branch is added at the first prediction source layer

conv4 3. General segmentation algorithms require pixel-

level image annotation, but this is not feasible in the ob-

ject detection task. Instead, we use bounding-box level

weak segmentation labels to perform supervision for seg-

mentation task. As shown in the left lower part in Fig-

ure 1, our segmentation branch takes conv4 3 as input, rep-

resented by the black arrow pointed from conv4 3 to seg-

mentation branch. Then it generates a semantically aug-

mented low level feature map conv4 3’, which will be used

for detection, represented by the red arrow pointed from

segmentation module to conv4 3. By employing segmen-

tation branch, our network becomes a multi-task learning

problem.

The feature map generated by the segmentation branch

captures high level semantic information for each local area

since the segmentation supervision pushes each local area

to be assigned to one of the classes.

At higher level detection layers, the semantic informa-

tion is already learned from previous layers; so it is not nec-

essary to employ the segmentation branch for them. Fur-

ther, since the resolution is smaller in higher levels, it will

become harder to do the segmentation task based on them.

Due to these reasons, we employ simple global activation

blocks, on conv4 3 through conv9 2, to enrich their seman-

tic information in a self-supervised manner.

3.1. Semantic enrichment at low level layer

Semantic enrichment at low level detection feature layer

is achieved by the segmentation branch, which performs

weakly supervised semantic segmentation. It takes the low

level detection layer from the detection branch (conv4 3

for SSD300) and bounding-box level segmentation ground-

truth as inputs, and generates a semantic meaningful fea-

ture map with the same dimension. Then this feature map is

used to activate the input low level detection layer from the

detection branch by element-wise multiplication.

Mathematically, let X ∈ R
C×H×W be the low level

detection feature map from the detection branch, G ∈
{0, 1, 2, · · · , N}H×W be the segmentation ground-truth

where N is the number of classes (20 for VOC and 80

for COCO). The segmentation branch computes Y ∈
R

(N+1)×H×W as the prediction of per-pixel segmentation

where

Y = F(G(X))

satisfying

Y ∈ [0, 1](N+1)×H×W ,

N∑

c=0

Yc,h,w = 1.
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Figure 3. Segmentation branch takes an intermediate feature map from object detection branch (e.g. conv4 3 for SSD300) as input, which

generates a semantically meaningful feature map Z to activate input X to be X
′. X ′ is then used in the detection branch.

G(X) ∈ R
C′

×H×W is the intermediate result which will be

further used to generate semantic meaningful feature map:

Z = H(G(X)) ∈ R
C×H×W .

The semantic meaningful feature map Z is then used to ac-

tivate the original low level detection feature map X by

element-wise multiplication: X ′ = X ⊙ Z. where X ′ is

the semantically activated low level detection feature map

which conveys both basic visual patterns and high level se-

mantic information. X ′ will replace the original X in the

detection branch for object detection. Figure 3 gives an il-

lustration of this process.

For the segmentation branch, we design a simple net-

work branch mainly composed of atrous convolutional lay-

ers [2]. We add four atrous convolutional layers (noted as

‘A. convolution’ in Figure 3) with 3×3 kernel size after the

input feature map X . The first three atrous convolutional

layers have a dilation rate of 2 and the last atrous convolu-

tional layer has a dilation rate of 4. After that we deploy

another 1 × 1 convolutional layer to generate G(X) men-

tioned above. This intermediate feature map has two func-

tions: generate segmentation prediction Y = F(G(X)) and

provide high semantic information to activate the input fea-

ture map X ′ = X ⊙ H(G(X)). Towards this end, there

are two paths attached to G(X). The first path (F path)

takes a 1× 1 convolution layer with N + 1 output channels

and a softmax layer to generate the segmentation prediction

Y . The second path (H path) takes another 1 × 1 convolu-

tion layer whose output channel number equals the channel

number of X , to generate a semantic meaningful feature

map Z in order to activate the feature map in the detection

branch by element-wise multiplication. We show an exam-

ple of this activation process in Figure 2. Column A is the

input image and column B is one slice of the original low

level object detection feature map X . We can notice that

the semantic meaningful feature map Z generated by our

segmentation branch can capture very high level semantic

information (the dog or human information). The final acti-

vated feature map X ′ conveys both basic visual pattern and

high level semantic information. All these layers keep the

size of feature maps unchanged.

The final problem is how to generate segmentation

ground-truth given only the object bounding boxes. The

segmentation ground-truth G has the same resolution as the

input layer of segmentation branch (conv4 3 for SSD300).

We use a simple strategy to generate it: if a pixel Ghw lo-

cates within a bounding-box on the image lattice I , we as-

sign the label of that bounding-box to Ghw; if it locates

within more than one bounding-boxes, we choose the label

of the bounding-box with the smallest size; and if it does not

locate in any bounding-box, we assign it to the background

class. This strategy guarantees that there is only one class

to be assigned to each pixel in G. We show an example of

this weak segmentation ground-truth in Figure 4.

3.2. Semantic enrichment at higher level layers

In conjunction with our segmentation branch, we pro-

pose another module named global activation module at

higher layers. It contains several global activation blocks,

attached at each object detection source layer in the detec-

tion branch. Global activation blocks can learn the relation-

ship between channels and object classes, by eliminating

the spatial information, in a self-supervised manner.

The global activation module is shown in the right lower

part of Figure 1, which consists of several global activation

blocks attached to each of the object detection source layer
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Figure 4. Example of weak segmentation ground-truth. Left: Input

image with a size of 300× 300, with a person and a horse. Right:

Segmentation ground-truth for the left image, with a size of 38 ×

38; the pixels locate in both person and horse bounding-boxes will

be assigned to person class since its bounding-box is smaller.

(i.e., conv4 3 up to conv9 2 for SSD300).

The global activation block consists of three stages: spa-

tial pooling, channel-wise learning and broadcasted multi-

plying. Formally, given the input X ∈ R
C×H×W , the spa-

tial pooling stage will produce Z ∈ R
C by

Zi =
1

HW

∑

h,w

Xihw

and the channel-wise learning stage will generate the acti-

vation feature

S = Sigmoid(W2 · ReLU(W1Z)) ∈ R
C×1×1

where W2 ∈ R
C×C′

,W1 ∈ R
C′

×C . In the broadcasted

multiplying stage, S is used to activate X to get X ′ ∈
R

C×H×W where X ′

ihw = Xihw · Si. Finally, the X ′ will

replace the original X in the detection branch. In our exper-

iments, we keep C ′ = 1
4C for all global activation blocks.

This architecture was used for image classification

in [12]. Here we extend it for object detection.

3.3. Multi­task training

In the training phase, an extra cross-entropy loss function

for segmentation task will be added in conjunction with the

original object detection loss function Ldet(I, B) where I is

the image and B is the bounding-box annotation. Our new

loss function is formulated as:

Lseg(I,G) = −
1

HW

∑

h,w

log(YGh,w,h,w)

where Y ∈ [0, 1](N+1)×H×W is the segmentation predic-

tion, and G ∈ {0, 1, 2, · · · , N}H×W is the segmentation

ground-truth generated by bounding-box annotation, where

N is the number of classes excluding background class.

By adding the new segmentation loss function to the

original detection loss function, the final objective function

we are optimizing is:

L(I, B,G) = Ldet(I, B) + αLseg(I,G)

where α is a parameter to balance those two tasks.

4. Experiments

We present comprehensive experimental results on two

main object detection datasets: PascalVOC [4] and MS

COCO [16]. For PascalVOC, we follow the common

split, which uses the union of VOC2007 trainval

and VOC2012 trainval as the training data, and uses

VOC2007 test as the test data. We also show the

result on VOC2012 test with the model trained on

the union of VOC2007 trainvaltest and VOC2012

trainval. For COCO, we use a popular split which takes

trainval35k [1] for training, minival for validation,

and we show results on test-dev2017 which is evalu-

ated on the official evaluation server.

For the basic object detection framework, we choose

VGG16-based SSD300 [17] and SSD512 as our single shot

detection branch. Note that SSD has been updated with a

new data augmentation trick which boosts the performance

with a huge gap. We follow the latest version of SSD with

all those tricks. The segmentation branch is inserted at the

first prediction source layer, i.e. conv4 3 for both SSD300

and SSD512. The global activation module consists of

several global activation blocks, 6 for SSD300 and 7 for

SSD512, and all of those blocks are added at each predic-

tion source layer. For the first prediction source layer, the

segmentation branch is inserted before the global activation

block. We follow the SSD training strategy throughout our

experiments, and set the trade-off parameter α to be 0.1.

We will use the terminology ‘DES300’ and ‘DES512’ to

represent our Detection with Enriched Semantics network

built on VGG16-based SSD300 and SSD512 respectively

in the rest of our paper.

4.1. Experiment on VOC

For the VOC dataset, we do the training on a machine

with 2 Titan Xp GPUs. To focus on the effectiveness of our

DES network, we keep the training settings used in SSD un-

changed. We first train the model with lr = 10−3 for 80k

iterations, and then continue the training with lr = 10−4 for

20k iterations and lr = 10−5 for another 20k iterations. The

momentum is fixed to be 0.9 and the weight decay is set to

be 0.0005. Those parameters are aligned with the original

SSD experiments. We use pre-trained SSD model for VOC

to initialize our model, and initialize the parameters in the

first five layers of segmentation branch with the parameters

of conv5 1, conv5 2, conv5 3, fc 6 and fc 7 in the detection

branch. The rest two convolutional layers of the segmenta-

tion branch are initialized by Xavier initialization [9]. We
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method backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

Fast [7] VGG16 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

Faster [21] VGG16 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

Faster [11] ResNet101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0

R-FCN [3] ResNet101 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9

RON384++ [14] VGG16 77.6 86.0 82.5 76.9 69.1 59.2 86.2 85.5 87.2 59.9 81.4 73.3 85.9 86.8 82.2 79.6 52.4 78.2 76.0 86.2 78.0

Gidaris et al. [6] VGG16 78.2 80.3 84.1 78.5 70.8 68.5 88.0 85.9 87.8 60.3 85.2 73.7 87.2 86.5 85.0 76.4 48.5 76.3 75.5 85.0 81.0

Shrivastava et al. [23] VGG16 76.4 79.3 80.5 76.8 72.0 58.2 85.1 86.5 89.3 60.6 82.2 69.2 87.0 87.2 81.6 78.2 44.6 77.9 76.7 82.4 71.9

SSD300 [17] VGG16 77.5 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0 86.1 87.5 84.0 79.4 52.3 77.9 79.5 87.6 76.8

SSD321 [17] ResNet101 77.1 76.3 84.6 79.3 64.6 47.2 85.4 84.0 88.8 60.1 82.6 76.9 86.7 87.2 85.4 79.1 50.8 77.2 82.6 87.3 76.6

DES300 (Ours) VGG16 79.7 83.5 86.0 78.1 74.8 53.4 87.9 87.3 88.6 64.0 83.8 77.2 85.9 88.6 87.5 80.8 57.3 80.2 80.4 88.5 79.5

SSD512 [17] VGG16 79.5 84.8 85.1 81.5 73.0 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79.0 86.6 80.0

SSD513 [17] ResNet101 80.6 84.3 87.6 82.6 71.6 59.0 88.2 88.1 89.3 64.4 85.6 76.2 88.5 88.9 87.5 83.0 53.6 83.9 82.2 87.2 81.3

DES512 (Ours) VGG16 81.7 87.7 86.7 85.2 76.3 60.6 88.7 89.0 88.0 67.0 86.9 78.0 87.2 87.9 87.4 84.4 59.2 86.1 79.2 88.1 80.5

Table 1. Results on VOC2007 test. The first section contains some representative baselines [3, 7, 11, 14, 21], the second section contains

other detectors exploiting segmentation information [6, 23], the third section contains low resolution SSD and DES, and the last section

contains high resolution SSD and DES. Note that all these methods are trained on VOC2007 trainval and VOC2012 trainval.

method backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

Faster [11] ResNet101 73.8 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6

R-FCN [3] ResNet101 77.6 86.9 83.4 81.5 63.8 62.4 81.6 81.1 93.1 58.0 83.8 60.8 92.7 86.0 84.6 84.4 59.0 80.8 68.6 86.1 72.9

RON384++ [14] VGG16 75.4 86.5 82.9 76.6 60.9 55.8 81.7 80.2 91.1 57.3 81.1 60.4 87.2 84.8 84.9 81.7 51.9 79.1 68.6 84.1 70.3

Gidaris et al. [6] VGG16 73.9 85.5 82.9 76.6 57.8 62.7 79.4 77.2 86.6 55.0 79.1 62.2 87.0 83.4 84.7 78.9 45.3 73.4 65.8 80.3 74.0

Shrivastava et al. [23] VGG16 72.6 84.0 81.2 75.9 60.4 51.8 81.2 77.4 90.9 50.2 77.6 58.7 88.4 83.6 82.0 80.4 41.5 75.0 64.2 82.9 65.1

SSD300 [17] VGG16 75.8 88.1 82.9 74.4 61.9 47.6 82.7 78.8 91.5 58.1 80.0 64.1 89.4 85.7 85.5 82.6 50.2 79.8 73.6 86.6 72.1

SSD321 [17] ResNet101 75.4 87.9 82.9 73.7 61.5 45.3 81.4 75.6 92.6 57.4 78.3 65.0 90.8 86.8 85.8 81.5 50.3 78.1 75.3 85.2 72.5

DES300 (Ours)1 VGG16 77.1 88.5 84.4 76.0 65.0 50.1 83.1 79.7 92.1 61.3 81.4 65.8 89.6 85.9 86.2 83.2 51.2 81.4 76.0 88.4 73.3

SSD512 [17] VGG16 78.5 90.0 85.3 77.7 64.3 58.5 85.1 84.3 92.6 61.3 83.4 65.1 89.9 88.5 88.2 85.5 54.4 82.4 70.7 87.1 75.6

SSD513 [17] ResNet101 79.4 90.7 87.3 78.3 66.3 56.5 84.1 83.7 94.2 62.9 84.5 66.3 92.9 88.6 87.9 85.7 55.1 83.6 74.3 88.2 76.8

DES512 (Ours)2 VGG16 80.3 91.1 87.7 81.3 66.5 58.9 84.8 85.8 92.3 64.7 84.3 67.8 91.6 89.6 88.7 86.4 57.7 85.5 74.4 89.2 77.6

Table 2. Results on VOC2012 test. Note that all methods in this table are trained on VOC2007 trainvaltest and VOC2012

trainval, except Gidaris et al. is trained on VOC2007 trainval and VOC2012 trainval.

also do another experiment by resetting all the parameters

after conv6 1 layer in the detection branch with Xavier ini-

tialization. This will lead to similar results compared with

the current setting.

The results on VOC2007 test are shown in Table 1.

DES outperforms original SSD on both resolution settings,

and it improves the mAP from 77.5 to 79.7 and from 79.5 to

81.7 for low and high resolution respectively. Our VGG16-

based model can even significantly outperform ResNet101-

based SSD models, which are much deeper than VGG16,

and this highlights the effectiveness of our method.

Compared with other baselines such as popular two-

stage methods and other detector combined with segmen-

tation, our DES still shows a significant performance im-

provement. For VOC2012 test results shown in Table 2,

the same tendency remains. DES outperforms all the com-

petitors with a large gap.

Table 3 summarizes the results when SSD and DES are

fine-tuned from models trained on COCO. DES outper-

forms SSD on all test settings with a large margin. It shows

our method can also get benefit from extra training data like

the COCO dataset.

4.2. Experiment on COCO

We use the similar strategy for COCO task. The DES is

implemented from the original SSD networks which have

1http://host.robots.ox.ac.uk:8080/anonymous/RCMS6B.html
2http://host.robots.ox.ac.uk:8080/anonymous/OBE3UF.html

method backbone 07 test 12 test

SSD300 [17] VGG16 79.8 78.5

DES300 VGG16 82.7 81.0

SSD512 [17] VGG16 83.2 82.2

DES512 VGG16 84.3 83.7
Table 3. Results on VOC2007 test and VOC2012 test when

detectors are fine-tuned from models pre-trained on COCO.

slightly different default box settings to fit COCO dataset.

The training is conducted on the trainvel35k generated

from COCO trainval2014 dataset. We first train the

network with lr = 10−3 for 280k iterations, followed by

training with lr = 10−4 for 80k iteration and training with

lr = 10−5 for another 40k iteration. The momentum is set

to be 0.9 and the weight decay is set to be 0.0005, which are

consistent with the original SSD settings.

Similar to our methods used for VOC, we use the pre-

trained SSD model for COCO to initialize our parameters,

and use weights in conv5 1, conv5 2, conv5 3, fc 6 and

fc 7 to initialize the first five layers in the segmentation

branch. However, different from VOC, we find that reset-

ting weights after conv6 1 is crucial for good performance,

and we can only get a small improvement around 0.2 for

AP@0.5 if we keep those weights after conv6 1 same as

the SSD pre-trained model.

We report results on COCO test-dev2017 with

20288 images from the official evaluation server deployed

on CodaLab in Table 4. Compared with our baseline SSD,
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method backbone data mAP AP50 AP75 APsml APmdm APlrg AR1 AR10 AR100 ARsml ARmdm ARlrg

Faster [21] VGG16 trainval 21.9 42.7 - - - - - - - - - -

Faster+++ [11] ResNet101 trainval 34.9 55.7 - - - - - - - - - -

R-FCN [3] ResNet101 trainval 29.9 51.9 - 10.8 32.8 45.0 - - - - - -

RON384++ [14] VGG16 trainval 27.4 49.5 27.1 - - - - - - - - -

Shrivastava et al. [23] VGG16 trainval35k 27.5 49.2 27.8 8.9 29.5 41.5 25.5 37.4 38.3 14.6 42.5 57.4

SSD300 [17] VGG16 trainval35k 25.1 43.1 25.8 6.6 25.9 41.4 23.7 35.1 37.2 11.2 40.4 58.4

SSD321 [17] ResNet101 trainval35k 28.0 45.4 29.3 6.2 28.3 49.3 25.9 37.8 39.9 11.5 43.3 64.9

DES300 (Ours) VGG16 trainval35k 28.3 47.3 29.4 8.5 29.9 45.2 25.6 38.3 40.7 14.1 44.7 62.0

SSD512 [17] VGG16 trainval35k 28.8 48.5 30.3 10.9 31.8 43.5 26.1 39.5 42.0 16.5 46.6 60.8

SSD513 [17] ResNet101 trainval35k 31.2 50.4 33.3 10.2 34.5 49.8 28.3 42.1 44.4 17.6 49.2 65.8

DES512 (Ours) VGG16 trainval35k 32.8 53.2 34.6 13.9 36.0 47.6 28.4 43.5 46.2 21.6 50.7 64.6

Table 4. Results on COCO test-dev. ‘sml’, ‘mdm’ and ‘lrg’ stand for small, medium and large respectively, and ‘mAP’, ‘AP50’ and

‘AP75’ mean average precision of IOU =0.5:0.95, IOU=0.5 and IOU=0.75 respectively. trainval35k is obtained by removing the 5k

minival set from trainval.

our DES can provide huge improvement on all of the met-

rics. For the low resolution version (the third section in

the table), we can achieve a relative improvement of 12.7%

for mAP compared with baseline SSD300, from 25.1 to

28.3, and a significant relative improvement of 28.8% for

small objects. For the high resolution version (the fourth

section in the table), DES can improve the baseline from

28.8 to 32.8. Our DES can also outperform SSD based on

ResNet101, which is deeper and much slower.

We can find that DES performs very good on small ob-

jects, outperforms at least 27.5% relatively compared with

all other competitors which report performance on small

objects. Although DES512 outperforms SSD512 based on

VGG16 for detecting large objects, it is slightly worse than

SSD513 based on ResNet101. We argue that SSD513 can

benefit from ResNet101 which is much deeper, to detect

large objects.

4.3. Discussion

4.3.1 Architecture ablation and diagnosis

To further understand the effectiveness of our two extra

modules, we do experiments with different settings and re-

port the results in Table 5 on the VOC2007 test dataset

based on DES300.

As can be seen from Table 5, the global activation mod-

ule (G) can improve the performance by 0.6, which shows

the effectiveness of global activation with global activa-

tion features. With the segmentation branch (S) added, the

performance can be further improved with a large margin,

which confirms our intuition that segmentation can be used

to help object detection, and introducing high level seman-

tic knowledge to the early stage of the detection network

can contribute to a stronger object detector.

Another ablation study conducted is the weight of the

segmentation loss. To do this, we train our DES network

for VOC2007 test task with different α’s, i.e., 0, 0.1 and

1. This hyper-parameter plays an important role for balanc-

ing object detection and segmentation tasks. Experiments

shows that α = 0.1 yields the best performance, 0.3 better

than α = 0 (eliminating segmentation loss) and 1.1 better

method mAP

SSD300 77.5

SSD300+G 78.1

SSD300+G+S (α = 0.0) 79.4

SSD300+G+S (α = 0.1) 79.7

SSD300+G+S (α = 1.0) 78.6

SSD300+G+S (in parallel) 78.2

SSD300+G+DeeperVGG16 77.6
Table 5. Ablation result evaluated on VOC2007 test dataset. G

stands for the global activation module and S stands for the seg-

mentation branch. α is the hyper-parameter controlling the trade-

off between segmentation loss and detection loss discussed in Sec-

tion 3.3.

than α = 1 (taking the tasks of object detection and seg-

mentation equally important). This means the supervision

over the segmentation task is important in our segmentation

branch. But it should take less weight since the final task is

object detection instead of segmentation, otherwise the seg-

mentation module would lean toward the segmentation task

too much and hurt the detection performance.

To further justify the effectiveness of our segmentation

branch architecture, we conduct another two experiments.

In the first experiment, we mimic Mask-RCNN [10] by

training segmentation and detection branches in parallel, in

stead of using segmentation features to activate low level

detection features. The improvement is very small (mAP of

78.2 as shown in the 6-th row in Table 5) and we believe

the activation process is very important to improve detec-

tion features, and since our weak segmentation ground-truth

does not contain extra information, it will not improve the

performance significantly if trained in parallel. As a side

evidence, we train two versions of Mask-RCNN, with no

segmentation supervision and with weak segmentation su-

pervision respectively, and the performance only goes up

by a small amount of 0.6 on COCO minival. This in-

dicates that Mask-RCNN cannot get a huge benefit from

the weak segmentation supervision trained in parallel, and

confirms our observation on DES. The second experiment

we do is removing the segmentation loss and the activation

process. Then the Z = H(G(X)) is directly used by the ob-
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method backbond mAP time (ms/img) FPS batchsize

R-FCN [3] ResNet101 80.5 89.6 11.2 1

SSD300 [17] VGG16 77.5 9.2 109.3 8

SSD321 [17] ResNet101 77.1 33.2 30.2 8

DES300 VGG16 79.7 13.0 76.8 8

SSD512 [17] VGG16 79.5 18.6 53.8 8

SSD513 [17] ResNet101 80.6 61.6 16.2 8

DES512 VGG16 81.7 31.5 31.7 8

Table 6. Inference Speed of two-shot baseline R-FCN and single-

shot SSD and DES under different resolutions. Here we report the

mAP on VOC2007 test dataset in the mAP column, the time

spent for inferring one image in milliseconds in the time column,

as well as the number images processed within one second in the

FPS column.

ject detection branch. This modification keeps the number

of parameters introduced by our segmentation branch, and

can be regraded as a ‘deeper VGG16’ with more parame-

ters as the backbone. This architecture achieves an mAP of

77.6, which is much lower than our DES. This means the

architecture of our segmentation branch is crucial, and the

performance can be worse by naively adding more layers

and parameters.

4.3.2 Inference Speed

To quantitatively evaluate the inference speed, we run DES,

SSD, as well as R-FCN, on our machine with an nVIDIA

Titan Xp GPU to compare the speed fairly.

All results are shown in Table 6. Note that to make

comparison fair, we keep the batchsize to be the same in

each comparison group (i.e. low resolution group based on

SSD300 and the high resolution group based on SSD512).

For ResNet101 based SSD321 and SSD513, we remove the

batch normalization layer at the test time to reduce the run

time and memory consumption following [5].

Our method is slower than original VGG16-based SSD

due to our extra modules, however, DES is faster than

ResNet101-based SSD with a large margin, and outper-

forms it in the meantime. DES300 has an FPS of 76.8 with

mAP of 79.7, while DES512 achieves higher mAP with

more inference time.

4.3.3 Detection examples

We show some detection examples in Figure 5. Left column

is the result of original SSD300, and the right column is the

result of our DES300. We show ‘aeroplane’ in the first two

rows, and ‘pottedplant’ in the last row, for all detection re-

sults with a score higher than 0.3. From these examples, we

can see that our method is good at detecting small objects

like small aeroplanes and pottedplants, and it can also prune

out some false positives which are incorrectly detected as

aeroplane in the first row.

Figure 5. Examples of detection results. Left: Original SSD300.

Right: DES300. See details in Section 4.3.3.

5. Conclusion

In this paper, we propose a novel single shot object de-

tector named Detection with Enriched Semantics (DES). To

address the problem that low level detection feature map

does not have high level semantic information, we introduce

a segmentation branch, which utilize the idea of weakly su-

pervised semantic segmentation, to provide high semantic

meaningful and class-aware features to activate and cali-

brate feature map used in the object detection. We also

utilize a global activation module to provide global context

information and pure channel-wise learning. Our method is

flexible and simple, and does not require too much modi-

fications to the original detection framework SSD. Quanti-

tative evaluation shows our method excels in both accuracy

and speed. Our method can also be applied to other two-

stage or single shot object detectors, with stronger back-

bone, and we remain this as future work.
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