
Single-Shot Refinement Neural Network for Object Detection

Shifeng Zhang1,2, Longyin Wen3, Xiao Bian3, Zhen Lei1,2*, Stan Z. Li4,1,2

1 CBSR & NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
2 University of Chinese Academy of Sciences, Beijing, China.

3 GE Global Research, Niskayuna, NY.
4 Faculty of Information Technology, Macau University of Science and Technology, Macau, China.

{shifeng.zhang,zlei,szli}@nlpr.ia.ac.cn, {longyin.wen,xiao.bian}@ge.com

Abstract

For object detection, the two-stage approach (e.g.,

Faster R-CNN) has been achieving the highest accuracy,

whereas the one-stage approach (e.g., SSD) has the ad-

vantage of high efficiency. To inherit the merits of both

while overcoming their disadvantages, in this paper, we pro-

pose a novel single-shot based detector, called RefineDet,

that achieves better accuracy than two-stage methods and

maintains comparable efficiency of one-stage methods. Re-

fineDet consists of two inter-connected modules, namely,

the anchor refinement module and the object detection mod-

ule. Specifically, the former aims to (1) filter out negative

anchors to reduce search space for the classifier, and (2)

coarsely adjust the locations and sizes of anchors to pro-

vide better initialization for the subsequent regressor. The

latter module takes the refined anchors as the input from

the former to further improve the regression accuracy and

predict multi-class label. Meanwhile, we design a trans-

fer connection block to transfer the features in the anchor

refinement module to predict locations, sizes and class la-

bels of objects in the object detection module. The multi-

task loss function enables us to train the whole network

in an end-to-end way. Extensive experiments on PASCAL

VOC 2007, PASCAL VOC 2012, and MS COCO demon-

strate that RefineDet achieves state-of-the-art detection ac-

curacy with high efficiency. Code is available at https:

//github.com/sfzhang15/RefineDet.

1. Introduction

Object detection has achieved significant advances in re-

cent years, with the framework of deep neural networks

(DNN). The current DNN detectors of state-of-the-art can

be divided into two categories: (1) the two-stage approach,

including [3, 15, 36, 41], and (2) the one-stage approach,

*Corresponding author

including [29, 35]. In the two-stage approach, a sparse set

of candidate object boxes is first generated, and then they

are further classified and regressed. The two-stage meth-

ods have been achieving top performances on several chal-

lenging benchmarks, including PASCAL VOC [8] and MS

COCO [28].

The one-stage approach detects objects by regular and

dense sampling over locations, scales and aspect ratios. The

main advantage of this is its high computational efficiency.

However, its detection accuracy is usually behind that of

the two-stage approach, one of the main reasons being due

to the class imbalance problem [27].

Some recent methods in the one-stage approach aim to

address the class imbalance problem, to improve the detec-

tion accuracy. Kong et al. [23] use the objectness prior con-

straint on convolutional feature maps to significantly reduce

the search space of objects. Lin et al. [27] address the class

imbalance issue by reshaping the standard cross entropy

loss to focus training on a sparse set of hard examples and

down-weights the loss assigned to well-classified examples.

Zhang et al. [54] design a max-out labeling mechanism to

reduce false positives resulting from class imbalance.

In our opinion, the current state-of-the-art two-stage

methods, e.g., Faster R-CNN [36], R-FCN [5], and FPN

[26], have three advantages over the one-stage methods as

follows: (1) using two-stage structure with sampling heuris-

tics to handle class imbalance; (2) using two-step cascade to

regress the object box parameters; (3) using two-stage fea-

tures to describe the objects1. In this work, we design a new

object detection framework, called RefineDet, to inherit the

merits of the two approaches (i.e., one-stage and two-stage

approaches) and overcome their shortcomings. It improves

the architecture of the one-stage approach, by using two

1In case of Faster R-CNN, the features (excluding shared features) in

the first stage (i.e., RPN) are trained for binary classification (being an ob-

ject or not), while the features (excluding shared features) in the second

stage(i.e., Fast R-CNN) are trained for multi-class classification (back-

ground or object classes).

4203

https://github.com/sfzhang15/RefineDet
https://github.com/sfzhang15/RefineDet

Anchor Refinement Module

Object Detection Module

Transfer

Connection

Block

O
b
je

c
t M

u
lti-C

la
s
s

C
la

s
s
ific

a
tio

n
 a

n
d

R
e
g
re

s
s
io

n
 L

o
s
s

Refined

Anchors

A
n
c
h
o
r B

in
a
ry

C
la

s
s
ific

a
tio

n
 a

n
d

R
e
g
re

s
s
io

n
 L

o
s
s

Refined

Anchors

Refined

Anchors
Refined

Anchors

Image

Transfer

Connection

Block

Transfer

Connection

Block

Transfer

Connection

Block

Figure 1: Architecture of RefineDet. For better visualization, we only display the layers used for detection. The celadon

parallelograms denote the refined anchors associated with different feature layers. The stars represent the centers of the

refined anchor boxes, which are not regularly paved on the image.

inter-connected modules (see Figure 1), namely, the anchor
2 refinement module (ARM) and the object detection mod-

ule (ODM). Specifically, the ARM is designed to (1) iden-

tify and remove negative anchors to reduce search space for

the classifier, and (2) coarsely adjust the locations and sizes

of anchors to provide better initialization for the subsequent

regressor. The ODM takes the refined anchors as the in-

put from the former to further improve the regression and

predict multi-class labels. As shown in Figure 1, these two

inter-connected modules imitate the two-stage structure and

thus inherit the three aforementioned advantages to produce

accurate detection results with high efficiency. In addition,

we design a transfer connection block (TCB) to transfer the

features3 in the ARM to predict locations, sizes, and class

labels of objects in the ODM. The multi-task loss function

enables us to train the whole network in an end-to-end way.

Extensive experiments on PASCAL VOC 2007, PAS-

CAL VOC 2012, and MS COCO benchmarks demonstrate

that RefineDet outperforms the state-of-the-art methods.

Specifically, it achieves 85.8% and 86.8% mAPs on VOC

2007 and 2012, with VGG-16 network. Meanwhile, it out-

2We denote the reference bounding box as “anchor box”, which is also

called “anchor” in [36]. However, in [29], it is called “default box”.
3The features in the ARM focus on distinguishing positive anchors

from background. We design the TCB to transfer the features in the ARM

to handle the more challenging tasks in the ODM, i.e., predict accurate

object locations, sizes and multi-class labels.

performs the previously best published results from both

one-stage and two-stage approaches by achieving 41.8%
AP4 on MS COCO test-dev with ResNet-101. In ad-

dition, RefineDet is time efficient, i.e., it runs at 40.2 FPS

and 24.1 FPS on a NVIDIA Titan X GPU with the input

sizes 320× 320 and 512× 512 in inference.

The main contributions of this work are summarized as

follows. (1) We introduce a new one-stage framework for

object detection, composed of two inter-connected mod-

ules, i.e., the ARM and the ODM. This leads to perfor-

mance better than the two-stage approach while maintain-

ing high efficiency of the one-stage approach. (2) To ensure

the effectiveness, we design the TCB to transfer the fea-

tures in the ARM to handle more challenging tasks, i.e., pre-

dict accurate object locations, sizes and class labels, in the

ODM. (3) RefineDet achieves the latest state-of-the-art re-

sults on generic object detection (i.e., PASCAL VOC 2007

[10], PASCAL VOC 2012 [11] and MS COCO [28]).

2. Related Work

Classical Object Detectors. Early object detection meth-

ods are based on the sliding-window paradigm, which ap-

ply the hand-crafted features and classifiers on dense image

4Based on the evaluation protocol in MS COCO [28], AP is computed

by averaging over all 10 intersection over union (IoU) thresholds (i.e., in

the range [0.5:0.95] with uniform step size 0.05) of 80 categories.

4204

grids to find objects. As one of the most successful meth-

ods, Viola and Jones [47] use Haar feature and AdaBoost

to train a series of cascaded classifiers for face detection,

achieving satisfactory accuracy with high efficiency. DPM

[12] is another popular method using mixtures of multi-

scale deformable part models to represent highly variable

object classes, maintaining top results on PASCAL VOC [8]

for many years. However, with the arrival of deep convolu-

tional network, the object detection task is quickly dom-

inated by the CNN-based detectors, which can be roughly

divided into two categories, i.e., the two-stage approach and

one-stage approach.

Two-Stage Approach. The two-stage approach consists of

two parts, where the first one (e.g., Selective Search [46],

EdgeBoxes [56], DeepMask [32, 33], RPN [36]) generates a

sparse set of candidate object proposals, and the second one

determines the accurate object regions and the correspond-

ing class labels using convolutional networks. Notably,

the two-stage approach (e.g., R-CNN [16], SPPnet [18],

Fast R-CNN [15] to Faster R-CNN [36]) achieves dom-

inated performance on several challenging datasets (e.g.,

PASCAL VOC 2012 [11] and MS COCO [28]). After

that, numerous effective techniques are proposed to fur-

ther improve the performance, such as architecture diagram

[5, 25, 55], training strategy [31, 41, 48, 50], contextual

reasoning [1, 14, 40, 51] and multiple layers exploiting

[3, 24, 26, 42].

One-Stage Approach. Considering the high efficiency, the

one-stage approach attracts much more attention recently.

Sermanet et al. [38] present the OverFeat method for clas-

sification, localization and detection based on deep Con-

vNets, which is trained end-to-end, from raw pixels to ul-

timate categories. Redmon et al. [34] use a single feed-

forward convolutional network to directly predict object

classes and locations, called YOLO, which is extremely

fast. After that, YOLOv2 [35] is proposed to improve

YOLO in several aspects, i.e., add batch normalization on

all convolution layers, use high resolution classifier, use

convolution layers with anchor boxes to predict bounding

boxes instead of the fully connected layers, etc. Liu et al.

[29] propose the SSD method, which spreads out anchors

of different scales to multiple layers within a ConvNet and

enforces each layer to focus on predicting objects of a cer-

tain scale. DSSD [13] introduces additional context into

SSD via deconvolution to improve the accuracy. DSOD

[39] designs an efficient framework and a set of principles to

learn object detectors from scratch, following the network

structure of SSD. To improve the accuracy, some one-stage

methods [23, 27, 54] aim to address the extreme class im-

balance problem by re-designing the loss function or classi-

fication strategies. Although one-stage detectors have made

good progress, their accuracy still trails that of two-stage

methods.

3. Network Architecture

Refer to the overall network architecture shown in Fig-

ure 1. Similar to SSD [29], RefineDet is based on a feed-

forward convolutional network that produces a fixed num-

ber of bounding boxes and the scores indicating the pres-

ence of different classes of objects in those boxes, followed

by the non-maximum suppression to produce the final re-

sult. RefineDet is formed by two inter-connected modules,

i.e., the ARM and the ODM. The ARM aims to remove neg-

ative anchors so as to reduce search space for the classifier

and also coarsely adjust the locations and sizes of anchors

to provide better initialization for the subsequent regressor,

whereas ODM aims to regress accurate object locations and

predict multi-class labels based on the refined anchors. The

ARM is constructed by removing the classification layers

and adding some auxiliary structures of the base networks

(i.e., VGG-16 [43] and ResNet-101 [19] pretrained on Im-

ageNet [37]) to meet our needs. The ODM is composed of

the outputs of TCBs followed by the prediction layers (i.e.,

the convolution layers with 3× 3 kernel size), which gener-

ates the scores for object classes and shape offsets relative to

the refined anchor box coordinates. The following explain

three core components in RefineDet, i.e., (1) transfer con-

nection block (TCB), converting the features from the ARM

to the ODM for detection; (2) two-step cascaded regression,

accurately regressing the locations and sizes of objects; (3)

negative anchor filtering, early rejecting well-classified neg-

ative anchors and mitigate the imbalance issue.

Transfer Connection Block. To link the ARM and ODM,

we introduce the TCBs to convert features of different lay-

ers from the ARM, into the form required by the ODM, so

that the ODM can share features from the ARM. Notably,

from the ARM, we only use the TCBs on the feature maps

associated with anchors. Another function of the TCBs is

to integrate large-scale context [13, 26] by adding the high-

level features to the transferred features to improve detec-

tion accuracy. To match the dimensions between them, we

use the deconvolution operation to enlarge the high-level

feature maps and sum them in the element-wise way. Then,

we add a convolution layer after the summation to ensure

the discriminability of features for detection. The architec-

ture of the TCB is shown in Figure 2.

Two-Step Cascaded Regression. Current one-stage meth-

ods [13, 23, 29] rely on one-step regression based on various

feature layers with different scales to predict the locations

and sizes of objects, which is rather inaccurate in some chal-

lenging scenarios, especially for the small objects. To that

end, we present a two-step cascaded regression strategy to

regress the locations and sizes of objects. That is, we use

the ARM to first adjust the locations and sizes of anchors to

provide better initialization for the regression in the ODM.

Specifically, we associate n anchor boxes with each regu-

larly divided cell on the feature map. The initial position of

4205

Conv

3x3-s1, 256

Conv

3x3-s1, 256

Conv

3x3-s1, 256

Transfer

Connection

Block

Relu

Relu

Relu

Deconv

2x2-s2, 256
Eltw sum

Figure 2: The overview of the transfer connection block.

each anchor box relative to its corresponding cell is fixed.

At each feature map cell, we predict four offsets of the re-

fined anchor boxes relative to the original tiled anchors and

two confidence scores indicating the presence of foreground

objects in those boxes. Thus, we can yield n refined anchor

boxes at each feature map cell.

After obtaining the refined anchor boxes, we pass them

to the corresponding feature maps in the ODM to further

generate object categories and accurate object locations and

sizes, as shown in Figure 1. The corresponding feature

maps in the ARM and the ODM have the same dimension.

We calculate c class scores and the four accurate offsets of

objects relative to the refined anchor boxes, yielding c + 4
outputs for each refined anchor boxes to complete the de-

tection task. This process is similar to the default boxes

used in SSD [29]. However, in contrast to SSD [29] di-

rectly uses the regularly tiled default boxes for detection,

RefineDet uses two-step strategy, i.e., the ARM generates

the refined anchor boxes, and the ODM takes the refined

anchor boxes as input for further detection, leading to more

accurate detection results, especially for the small objects.

Negative Anchor Filtering. To early reject well-classified

negative anchors and mitigate the imbalance issue, we de-

sign a negative anchor filtering mechanism. Specifically, in

training phase, for a refined anchor box, if its negative con-

fidence is larger than a preset threshold θ (i.e., set θ = 0.99
empirically), we will discard it in training the ODM. That is,

we only pass the refined hard negative anchor boxes and re-

fined positive anchor boxes to train the ODM. Meanwhile,

in the inference phase, if a refined anchor box is assigned

with a negative confidence larger than θ, it will be discarded

in the ODM for detection.

4. Training and Inference

Data Augmentation. We use several data augmentation

strategies presented in [29] to construct a robust model to

adapt to variations of objects. That is, we randomly ex-

pand and crop the original training images with additional

random photometric distortion [20] and flipping to generate

the training samples. Please refer to [29] for more details.

Backbone Network. We use VGG-16 [43] and ResNet-101

[19] as the backbone networks in our RefineDet, which are

pretrained on the ILSVRC CLS-LOC dataset [37]. Notably,

RefineDet can also work on other pretrained networks, such

as Inception V2 [22], Inception ResNet [44], and ResNeXt-

101 [49]. Similar to DeepLab-LargeFOV [4], we convert

fc6 and fc7 of VGG-16 to convolution layers conv fc6 and

conv fc7 via subsampling parameters. Since conv4 3 and

conv5 3 have different feature scales compared to other lay-

ers, we use L2 normalization [30] to scale the feature norms

in conv4 3 and conv5 3 to 10 and 8, then learn the scales

during back propagation. Meanwhile, to capture high-level

information and drive object detection at multiple scales,

we also add two extra convolution layers (i.e., conv6 1 and

conv6 2) to the end of the truncated VGG-16 and one extra

residual block (i.e., res6) to the end of the truncated ResNet-

101, respectively.

Anchors Design and Matching. To handle different scales

of objects, we select four feature layers with the total stride

sizes 8, 16, 32, and 64 pixels for both VGG-16 and ResNet-

1015, associated with several different scales of anchors for

prediction. Each feature layer is associated with one spe-

cific scale of anchors (i.e., the scale is 4 times of the to-

tal stride size of the corresponding layer) and three aspect

ratios (i.e., 0.5, 1.0, and 2.0). We follow the design of

anchor scales over different layers in [54], which ensures

that different scales of anchors have the same tiling den-

sity [52, 53] on the image. Meanwhile, during the train-

ing phase, we determine the correspondence between the

anchors and ground truth boxes based on the jaccard over-

lap [7], and train the whole network end-to-end accordingly.

Specifically, we first match each ground truth to the anchor

box with the best overlap score, and then match the anchor

boxes to any ground truth with overlap higher than 0.5.

Hard Negative Mining. After matching step, most of the

anchor boxes are negatives, even for the ODM, where some

easy negative anchors are rejected by the ARM. Similar

to SSD [29], we use hard negative mining to mitigate the

extreme foreground-background class imbalance, i.e., we

select some negative anchor boxes with top loss values to

make the ratio between the negatives and positives below

3 : 1, instead of using all negative anchors or randomly se-

lecting the negative anchors in training.

5For the VGG-16 base network, the conv4 3, conv5 3, conv fc7, and

conv6 2 feature layers are used for prediction. While for the ResNet-101

base network, res3b3, res4b22, res5c, and res6 are used for prediction.

4206

Loss Function. The loss function for RefineDet consists

of two parts, i.e., the loss in the ARM and the loss in the

ODM. For the ARM, we assign a binary class label (being

an object or not) to each anchor and regress its location and

size simultaneously to get the refined anchor. After that, we

pass the refined anchors with the negative confidence less

than the threshold to the ODM to further predict object cat-

egories and accurate object locations and sizes. With these

definitions, we define the loss function as:

L({pi}, {xi}, {ci}, {ti}) =
1

Narm

(
∑

i
Lb(pi, [l

∗

i
≥ 1])

+
∑

i
[l∗
i
≥ 1]Lr(xi, g

∗

i
)
)

+ 1

Nodm

(
∑

i
Lm(ci, l

∗

i
)

+
∑

i
[l∗
i
≥ 1]Lr(ti, g

∗

i
)
)

where i is the index of anchor in a mini-batch, l∗
i

is the

ground truth class label of anchor i, g∗
i

is the ground truth

location and size of anchor i. pi and xi are the predicted

confidence of the anchor i being an object and refined co-

ordinates of the anchor i in the ARM. ci and ti are the

predicted object class and coordinates of the bounding box

in the ODM. Narm and Nodm are the numbers of positive

anchors in the ARM and ODM, respectively. The binary

classification loss Lb is the cross-entropy/log loss over two

classes (object vs. not object), and the multi-class classifi-

cation loss Lm is the softmax loss over multiple classes con-

fidences. Similar to Fast R-CNN [15], we use the smooth

L1 loss as the regression loss Lr. The Iverson bracket indi-

cator function [l∗
i
≥ 1] outputs 1 when the condition is true,

i.e., l∗
i
≥ 1 (the anchor is not the negative), and 0 other-

wise. Hence [l∗
i
≥ 1]Lr indicates that the regression loss is

ignored for negative anchors. Notably, if Narm = 0, we set

Lb(pi, [l
∗

i
≥ 1]) = 0 and Lr(xi, g

∗

i
) = 0; and if Nodm = 0,

we set Lm(ci, l
∗

i
) = 0 and Lr(ti, g

∗

i
) = 0 accordingly.

Optimization. As mentioned above, the backbone network

(e.g., VGG-16 and ResNet-101) in our RefineDet method is

pretrained on the ILSVRC CLS-LOC dataset [37]. We use

the “xavier” method [17] to randomly initialize the parame-

ters in the two extra added convolution layers (i.e., conv6 1

and conv6 2) of VGG-16 based RefineDet, and draw the pa-

rameters from a zero-mean Gaussian distribution with stan-

dard deviation 0.01 for the extra residual block (i.e., res6) of

ResNet-101 based RefineDet. We set the default batch size

to 32 in training. Then, the whole network is fine-tuned us-

ing SGD with 0.9 momentum and 0.0005 weight decay. We

set the initial learning rate to 10−3, and use slightly differ-

ent learning rate decay policy for different dataset, which

will be described in details later.

Inference. At inference phase, the ARM first filters out the

regularly tiled anchors with the negative confidence scores

larger than the threshold θ, and then refines the locations

and sizes of remaining anchors. After that, the ODM takes

over these refined anchors, and outputs top 400 high confi-

dent detections per image. Finally, we apply the NMS with

jaccard overlap of 0.45 per class and retain the top 200 high

confident detections per image to produce the final results.

5. Experiments

Experiments are conducted on three datasets: PASCAL

VOC 2007, PASCAL VOC 2012 and MS COCO. The PAS-

CAL VOC and MS COCO datasets include 20 and 80 object

classes, respectively. The classes in PASCAL VOC are the

subset of that in MS COCO.

5.1. PASCAL VOC 2007

All models are trained on the VOC 2007 and VOC 2012

trainval sets, and tested on the VOC 2007 test set. We

set the learning rate to 10−3 for the first 80k iterations, and

decay it to 10−4 and 10−5 for training another 20k and 20k
iterations, respectively. We use the default batch size 32 in

training, and only use VGG-16 as the backbone network for

all the experiments on the PASCAL VOC dataset, including

VOC 2007 and VOC 2012.

We compare RefineDet6 with the state-of-the-art detec-

tors in Table 1. With low dimension input (i.e., 320× 320),

RefineDet produces 80.0% mAP without bells and whis-

tles, which is the first method achieving above 80% mAP

with such small input images, much better than several

modern objectors. By using larger input size 512 × 512,

RefineDet achieves 81.8% mAP, surpassing all one-stage

methods, e.g., RON384 [23], SSD513 [13], DSSD513 [13],

etc. Comparing to the two-stage methods, RefineDet512

performs better than most of them except CoupleNet [55],

which is based on ResNet-101 and uses larger input size

(i.e., ∼ 1000 × 600) than our RefineDet512. As pointed

out in [21], the input size significantly influences detection

accuracy. The reason is that high resolution inputs make

the detectors “seeing” small objects clearly to increase suc-

cessful detections. To reduce the impact of input size for a

fair comparison, we use the multi-scale testing strategy to

evaluate RefineDet, achieving 83.1% (RefineDet320+) and

83.8% (RefineDet512+) mAPs, which are much better than

the state-of-the-art methods.

5.1.1 Run Time Performance

We present the inference speed of RefineDet and the state-

of-the-art methods in the fifth column of Table 1. The speed

is evaluated with batch size 1 on a machine with NVIDIA

Titan X, CUDA 8.0 and cuDNN v6. As shown in Table 1,

we find that RefineDet processes an image in 24.8ms (40.3
FPS) and 41.5ms (24.1 FPS) with input sizes 320 × 320
and 512× 512, respectively. To the best of our knowledge,

RefineDet is the first real-time method to achieve detection

accuracy above 80% mAP on PASCAL VOC 2007. Com-

paring to SSD, RON, DSSD and DSOD, RefineDet asso-

ciates fewer anchor boxes on the feature maps (e.g., 24564

6Due to the shortage of computational resources, we only train Re-

fineDet with two kinds of input size, i.e., 320 × 320 and 512 × 512. We

believe the accuracy can be further improved using larger input images.

4207

Table 1: Detection results on PASCAL VOC dataset. For VOC 2007, all methods are trained on VOC 2007 and VOC 2012

trainval sets and tested on VOC 2007 test set. For VOC 2012, all methods are trained on VOC 2007 and VOC 2012

trainval sets plus VOC 2007 test set, and tested on VOC 2012 test set. Bold fonts indicate the best mAP.

Method Backbone Input size #Boxes FPS
mAP (%)

VOC 2007 VOC 2012

two-stage:

Fast R-CNN[15] VGG-16 ∼ 1000× 600 ∼ 2000 0.5 70.0 68.4

Faster R-CNN[36] VGG-16 ∼ 1000× 600 300 7 73.2 70.4

OHEM[41] VGG-16 ∼ 1000× 600 300 7 74.6 71.9

HyperNet[24] VGG-16 ∼ 1000× 600 100 0.88 76.3 71.4

Faster R-CNN[36] ResNet-101 ∼ 1000× 600 300 2.4 76.4 73.8

ION[1] VGG-16 ∼ 1000× 600 4000 1.25 76.5 76.4

MR-CNN[14] VGG-16 ∼ 1000× 600 250 0.03 78.2 73.9

R-FCN[5] ResNet-101 ∼ 1000× 600 300 9 80.5 77.6

CoupleNet[55] ResNet-101 ∼ 1000× 600 300 8.2 82.7 80.4

one-stage:

YOLO[34] GoogleNet [45] 448× 448 98 45 63.4 57.9

RON384[23] VGG-16 384× 384 30600 15 75.4 73.0

SSD321[13] ResNet-101 321× 321 17080 11.2 77.1 75.4

SSD300∗[29] VGG-16 300× 300 8732 46 77.2 75.8

DSOD300[39] DS/64-192-48-1 300× 300 8732 17.4 77.7 76.3

YOLOv2[35] Darknet-19 544× 544 1445 40 78.6 73.4

DSSD321[13] ResNet-101 321× 321 17080 9.5 78.6 76.3

SSD512∗[29] VGG-16 512× 512 24564 19 79.8 78.5

SSD513[13] ResNet-101 513× 513 43688 6.8 80.6 79.4

DSSD513[13] ResNet-101 513× 513 43688 5.5 81.5 80.0

RefineDet320 VGG-16 320× 320 6375 40.3 80.0 78.1

RefineDet512 VGG-16 512× 512 16320 24.1 81.8 80.1

RefineDet320+ VGG-16 - - - 83.1 82.7

RefineDet512+ VGG-16 - - - 83.8 83.5

Table 2: Effectiveness of various designs. All models are

trained on VOC 2007 and VOC 2012 trainval set and

tested on VOC 2007 test set.

Component RefineDet320

negative anchor filtering? ✦

two-step cascaded regression? ✦ ✦

transfer connection block? ✦ ✦ ✦

mAP (%) 80.0 79.5 77.3 76.2

anchor boxes in SSD512∗[29] vs. 16320 anchor boxes in

RefineDet512). However, RefineDet still achieves top accu-

racy with high efficiency, mainly thanks to the design of two

inter-connected modules, (e.g., two-step regression), which

enables RefineDet to adapt to different scales and aspect ra-

tios of objects. Meanwhile, only YOLO and SSD300∗ are

slightly faster than our RefineDet320, but their accuracy are

16.6% and 2.5% worse than ours. In summary, RefineDet

achieves the best trade-off between accuracy and speed.

5.1.2 Ablation Study

To demonstrate the effectiveness of different components

in RefineDet, we construct four variants and evaluate them

on VOC 2007, shown in Table 2. Specifically, for a fair

comparison, we use the same parameter settings and input

size (320 × 320) in evaluation. All models are trained on

VOC 2007 and VOC 2012 trainval sets, and tested on

VOC 2007 test set.

Negative Anchor Filtering. To demonstrate the effective-

ness of the negative anchor filtering, we set the confidence

threshold θ of the anchors to be negative to 1.0 in both train-

ing and testing. In this case, all refined anchors will be

sent to the ODM for detection. Other parts of RefineDet re-

main unchanged. Removing negative anchor filtering leads

to 0.5% drop in mAP (i.e., 80.0% vs. 79.5%). The reason

is that most of these well-classified negative anchors will be

filtered out during training, which solves the class imbal-

ance issue to some extent.

Two-Step Cascaded Regression. To validate the effective-

ness of the two-step cascaded regression, we redesign the

network structure by directly using the regularly paved an-

chors instead of the refined ones from the ARM (see the

fourth column in Table 2). As shown in Table 2, we find that

mAP is reduced from 79.5% to 77.3%. This sharp decline

(i.e., 2.2%) demonstrates that the two-step anchor cascaded

regression significantly help promote the performance.

Transfer Connection Block. We construct a network by

cutting the TCBs in RefineDet and redefining the loss func-

tion in the ARM to directly detect multi-class of objects,

just like SSD, to demonstrate the effect of the TCB. The

4208

Table 3: Detection results on MS COCO test-dev set. Bold fonts indicate the best performance.

Method Data Backbone AP AP50 AP75 APS APM APL

two-stage:

Fast R-CNN [15] train VGG-16 19.7 35.9 - - - -

Faster R-CNN [36] trainval VGG-16 21.9 42.7 - - - -

OHEM [41] trainval VGG-16 22.6 42.5 22.2 5.0 23.7 37.9

ION [1] train VGG-16 23.6 43.2 23.6 6.4 24.1 38.3

OHEM++ [41] trainval VGG-16 25.5 45.9 26.1 7.4 27.7 40.3

R-FCN [5] trainval ResNet-101 29.9 51.9 - 10.8 32.8 45.0

CoupleNet [55] trainval ResNet-101 34.4 54.8 37.2 13.4 38.1 50.8

Faster R-CNN by G-RMI [21] - Inception-ResNet-v2[44] 34.7 55.5 36.7 13.5 38.1 52.0

Faster R-CNN+++ [19] trainval ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [26] trainval35k ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN w TDM [42] trainval Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

Deformable R-FCN [6] trainval Aligned-Inception-ResNet 37.5 58.0 40.8 19.4 40.1 52.5

umd det [2] trainval ResNet-101 40.8 62.4 44.9 23.0 43.4 53.2

G-RMI [21] trainval32k Ensemble of Five Models 41.6 61.9 45.4 23.9 43.5 54.9

one-stage:

YOLOv2 [35] trainval35k DarkNet-19[35] 21.6 44.0 19.2 5.0 22.4 35.5

SSD300∗ [29] trainval35k VGG-16 25.1 43.1 25.8 6.6 25.9 41.4

RON384++ [23] trainval VGG-16 27.4 49.5 27.1 - - -

SSD321 [13] trainval35k ResNet-101 28.0 45.4 29.3 6.2 28.3 49.3

DSSD321 [13] trainval35k ResNet-101 28.0 46.1 29.2 7.4 28.1 47.6

SSD512∗ [29] trainval35k VGG-16 28.8 48.5 30.3 10.9 31.8 43.5

SSD513 [13] trainval35k ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 [13] trainval35k ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet500 [27] trainval35k ResNet-101 34.4 53.1 36.8 14.7 38.5 49.1

RetinaNet800 [27]∗ trainval35k ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

RefineDet320 trainval35k VGG-16 29.4 49.2 31.3 10.0 32.0 44.4

RefineDet512 trainval35k VGG-16 33.0 54.5 35.5 16.3 36.3 44.3

RefineDet320 trainval35k ResNet-101 32.0 51.4 34.2 10.5 34.7 50.4

RefineDet512 trainval35k ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4

RefineDet320+ trainval35k VGG-16 35.2 56.1 37.7 19.5 37.2 47.0

RefineDet512+ trainval35k VGG-16 37.6 58.7 40.8 22.7 40.3 48.3

RefineDet320+ trainval35k ResNet-101 38.6 59.9 41.7 21.1 41.7 52.3

RefineDet512+ trainval35k ResNet-101 41.8 62.9 45.7 25.6 45.1 54.1

∗ This entry reports the single model accuracy of RetinaNet method, trained with scale jitter and for 1.5× longer than RetinaNet500.

detection accuracy of the model is presented in the fifth col-

umn in Table 2. We compare the results in the fourth and

fifth columns in Table 2 (77.3% vs. 76.2%) and find that

the TCB improves the mAP by 1.1%. The main reason is

that the model can inherit the discriminative features from

the ARM, and integrate large-scale context information to

improve the detection accuracy by using the TCB.

5.2. PASCAL VOC 2012

Following the protocol of VOC 2012, we submit the de-

tection results of RefineDet to the public testing server for

evaluation. We use VOC 2007 trainval set and test

set plus VOC 2012 trainval set (21, 503 images) for

training, and test on VOC 2012 test set (10, 991 images).

We use the default batch size 32 in training. Meanwhile, we

set the learning rate to 10−3 in the first 160k iterations, and

decay it to 10−4 and 10−5 for another 40k and 40k itera-

tions.

Table 1 shows the accuracy of the proposed RefineDet al-

gorithm, as well as the state-of-the-art methods. Among the

methods fed with input size 320 × 320, RefineDet320 ob-

tains the top 78.1% mAP, which is even better than most of

those two-stage methods using about 1000× 600 input size

(e.g., 70.4% mAP of Faster R-CNN [36] and 77.6% mAP

of R-FCN [5]). Using the input size 512 × 512, RefineDet

improves mAP to 80.1%, which is surpassing all one-stage

methods and only slightly lower than CoupleNet [55] (i.e.,

80.4%). CoupleNet uses ResNet-101 as base network with

1000 × 600 input size. To reduce the impact of input size

for a fair comparison, we also use multi-scale testing to

evaluate RefineDet and obtain the state-of-the-art mAPs of

82.7% (RefineDet320+) and 83.5% (RefineDet512+).

5.3. MS COCO

In addition to PASCAL VOC, we also evaluate Re-

fineDet on MS COCO [28]. Unlike PASCAL VOC, the

detection methods using ResNet-101 always achieve bet-

ter performance than those using VGG-16 on MS COCO.

Thus, we also report the results of ResNet-101 based Re-

fineDet. Following the protocol in MS COCO, we use the

trainval35k set [1] for training and evaluate the results

from test-dev evaluation server. We set the batch size to

4209

Table 4: Detection results on PASCAL VOC dataset. All

models are pre-trained on MS COCO, and fine-tuned on

PASCAL VOC. Bold fonts indicate the best mAP.

Method Backbone
mAP (%)

VOC 2007 test VOC 2012 test

two-stage:

Faster R-CNN[36] VGG-16 78.8 75.9

OHEM++[41] VGG-16 - 80.1

R-FCN[5] ResNet-101 83.6 82.0

one-stage:

SSD300[29] VGG-16 81.2 79.3

SSD512[29] VGG-16 83.2 82.2

RON384++[23] VGG-16 81.3 80.7

DSOD300[39] DS/64-192-48-1 81.7 79.3

RefineDet320 VGG-16 84.0 82.7

RefineDet512 VGG-16 85.2 85.0

RefineDet320+ VGG-16 85.6 86.0

RefineDet512+ VGG-16 85.8 86.8

32 in training7, and train the model with 10−3 learning rate

for the first 280k iterations, then 10−4 and 10−5 for another

80k and 40k iterations, respectively.

Table 3 shows the results on MS COCO test-dev set.

RefineDet320 with VGG-16 produces 29.4% AP that is bet-

ter than all other methods based on VGG-16 (e.g., SSD512∗

[29] and OHEM++ [41]). The accuracy of RefineDet can

be improved to 33.0% by using larger input size (i.e.,

512 × 512), which is much better than several modern ob-

ject detectors, e.g., Faster R-CNN [36] and SSD512∗ [29].

Meanwhile, using ResNet-101 can further improve the per-

formance of RefineDet, i.e., RefineDet320 with ResNet-101

achieves 32.0% AP and RefineDet512 achieves 36.4% AP,

exceeding most of the detection methods except Faster R-

CNN w TDM [42], Deformable R-FCN [6], RetinaNet800

[27], umd det [2], and G-RMI [21]. All these methods use a

much bigger input images for both training and testing (i.e.,

1000×600 or 800×800) than our RefineDet (i.e., 320×320
and 512 × 512). Similar to PASCAL VOC, we also report

the multi-scale testing AP results of RefineDet for fair com-

parison in Table 3, i.e., 35.2% (RefineDet320+ with VGG-

16), 37.6% (RefineDet512+ with VGG-16), 38.6% (Re-

fineDet320+ with ResNet-101) and 41.8% (RefineDet512+

with ResNet-101). The best performance of RefineDet is

41.8%, which is the state-of-the-art, surpassing all pub-

lished two-stage and one-stage approaches. Although the

second best detector G-RMI [21] ensembles five Faster R-

CNN models, it still produces 0.2% lower AP than Re-

fineDet using a single model. Comparing to the third and

fourth best detectors, i.e., umd det [2] and RetinaNet800

[27], RefineDet produces 1.0% and 2.7% higher APs. In

addition, the main contribution: focal loss in RetinaNet800,

7Due to the memory issue, we reduce the batch size to 20 (which is the

largest batch size we can use for training on a machine with 4 NVIDIA

M40 GPUs) to train the ResNet-101 based RefineDet with the input size

512× 512, and train the model with 10−3 learning rate for the first 400k

iterations, then 10−4 and 10−5 for another 80k and 60k iterations.

is complementary to our method. We believe that it can be

used in RefineNet to further improve the performance.

5.4. From MS COCO to PASCAL VOC

We study how the MS COCO dataset help the detec-

tion accuracy on PASCAL VOC. Since the object classes

in PASCAL VOC are the subset of MS COCO, we directly

fine-tune the detection models pretrained on MS COCO via

subsampling the parameters, which achieves 84.0% mAP

(RefineDet320) and 85.2% mAP (RefineDet512) on VOC

2007 test set, and 82.7% mAP (RefineDet320) and 85.0%
mAP (RefineDet512) on VOC 2012 test set, shown in Ta-

ble 4. After using the multi-scale testing, the detection ac-

curacy are promoted to 85.6%, 85.8%, 86.0% and 86.8%,

respectively. As shown in Table 4, using the training data in

MS COCO and PASCAL VOC, our RefineDet obtains the

top mAP scores on both VOC 2007 and VOC 2012. Most

important, our single model RefineNet512+ based on VGG-

16 ranks as the top 5 on the VOC 2012 Leaderboard (see

[9]), which is the best accuracy among all one-stage meth-

ods. Other two-stage methods achieving better results are

based on much deeper networks (e.g., ResNet-101 [19] and

ResNeXt-101 [49]) or using ensemble mechanism.

6. Conclusions

In this paper, we present a single-shot refinement neu-

ral network based detector, which consists of two inter-

connected modules, i.e., the ARM and the ODM. The ARM

aims to filter out the negative anchors to reduce search space

for the classifier and also coarsely adjust the locations and

sizes of anchors to provide better initialization for the subse-

quent regressor, while the ODM takes the refined anchors as

the input from the former ARM to regress the accurate ob-

ject locations and sizes and predict the corresponding multi-

class labels. The whole network is trained in an end-to-end

fashion with the multi-task loss. We carry out several exper-

iments on PASCAL VOC 2007, PASCAL VOC 2012, and

MS COCO datasets to demonstrate that RefineDet achieves

the state-of-the-art detection accuracy with high efficiency.

In the future, we plan to employ RefineDet to detect some

other specific kinds of objects, e.g., pedestrian, vehicle, and

face, and introduce the attention mechanism in RefineDet to

further improve the performance.

Acknowledgments

This work was supported by the National Key Research

and Development Plan (Grant No.2016YFC0801002), the

Chinese National Natural Science Foundation Projects

#61473291, #61572501, #61502491, #61572536, the

Science and Technology Development Fund of Macau

(No.151/2017/A, 152/2017/A), and AuthenMetric R&D

Funds.

4210

References

[1] S. Bell, C. L. Zitnick, K. Bala, and R. B. Girshick. Inside-

outside net: Detecting objects in context with skip pooling

and recurrent neural networks. In CVPR, pages 2874–2883,

2016. 3, 6, 7

[2] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis. Improv-

ing object detection with one line of code. In ICCV, 2017. 7,

8

[3] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos. A unified

multi-scale deep convolutional neural network for fast object

detection. In ECCV, pages 354–370, 2016. 1, 3

[4] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Semantic image segmentation with deep convolu-

tional nets and fully connected crfs. In ICLR, 2015. 4

[5] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: object detection via

region-based fully convolutional networks. In NIPS, pages

379–387, 2016. 1, 3, 6, 7, 8

[6] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.

Deformable convolutional networks. In ICCV, 2017. 7, 8

[7] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable

object detection using deep neural networks. In CVPR, pages

2155–2162, 2014. 4

[8] M. Everingham, L. J. V. Gool, C. K. I. Williams, J. M. Winn,

and A. Zisserman. The pascal visual object classes (VOC)

challenge. IJCV, 88(2):303–338, 2010. 1, 3

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The Leaderboard of the PASCAL

Visual Object Classes Challenge 2012 (VOC2012). http:

//host.robots.ox.ac.uk:8080/leaderboard/

displaylb.php?challengeid=11&compid=4.

Online; accessed 1 October 2017. 8

[10] M. Everingham, L. Van Gool, C. K. I. Williams,

J. Winn, and A. Zisserman. The PASCAL Visual Ob-

ject Classes Challenge 2007 (VOC2007) Results. http:

//www.pascal-network.org/challenges/VOC/

voc2007/workshop/index.html. Online; accessed

1 October 2017. 2

[11] M. Everingham, L. Van Gool, C. K. I. Williams,

J. Winn, and A. Zisserman. The PASCAL Visual Ob-

ject Classes Challenge 2012 (VOC2012) Results. http:

//www.pascal-network.org/challenges/VOC/

voc2012/workshop/index.html. Online; accessed

1 October 2017. 2, 3

[12] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and

D. Ramanan. Object detection with discriminatively trained

part-based models. TPAMI, 32(9):1627–1645, 2010. 3

[13] C. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg.

DSSD : Deconvolutional single shot detector. CoRR,

abs/1701.06659, 2017. 3, 5, 6, 7

[14] S. Gidaris and N. Komodakis. Object detection via a multi-

region and semantic segmentation-aware CNN model. In

ICCV, pages 1134–1142, 2015. 3, 6

[15] R. B. Girshick. Fast R-CNN. In ICCV, pages 1440–1448,

2015. 1, 3, 5, 6, 7

[16] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. In CVPR, pages 580–587, 2014. 3

[17] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In AISTATS,

pages 249–256, 2010. 5

[18] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. In

ECCV, pages 346–361, 2014. 3

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016. 3, 4,

7, 8

[20] A. G. Howard. Some improvements on deep convolu-

tional neural network based image classification. CoRR,

abs/1312.5402, 2013. 4

[21] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,

A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and

K. Murphy. Speed/accuracy trade-offs for modern convolu-

tional object detectors. In CVPR, 2017. 5, 7, 8

[22] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, pages 448–456, 2015. 4

[23] T. Kong, F. Sun, A. Yao, H. Liu, M. Lu, and Y. Chen. RON:

reverse connection with objectness prior networks for object

detection. In CVPR, 2017. 1, 3, 5, 6, 7, 8

[24] T. Kong, A. Yao, Y. Chen, and F. Sun. Hypernet: Towards ac-

curate region proposal generation and joint object detection.

In CVPR, pages 845–853, 2016. 3, 6

[25] H. Lee, S. Eum, and H. Kwon. ME R-CNN: multi-expert

region-based CNN for object detection. In ICCV, 2017. 3

[26] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and

S. J. Belongie. Feature pyramid networks for object detec-

tion. In CVPR, 2017. 1, 3, 7

[27] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár. Focal

loss for dense object detection. In ICCV, 2017. 1, 3, 7, 8

[28] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: com-

mon objects in context. In ECCV, pages 740–755, 2014. 1,

2, 3, 7

[29] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed,

C. Fu, and A. C. Berg. SSD: single shot multibox detector.

In ECCV, pages 21–37, 2016. 1, 2, 3, 4, 6, 7, 8

[30] W. Liu, A. Rabinovich, and A. C. Berg. Parsenet: Looking

wider to see better. In ICLR workshop, 2016. 4

[31] M. Najibi, M. Rastegari, and L. S. Davis. G-CNN: an itera-

tive grid based object detector. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2016, Las

Vegas, NV, USA, June 27-30, 2016, pages 2369–2377, 2016.

3

[32] P. H. O. Pinheiro, R. Collobert, and P. Dollár. Learning to

segment object candidates. In NIPS, pages 1990–1998, 2015.

3

[33] P. O. Pinheiro, T. Lin, R. Collobert, and P. Dollár. Learning

to refine object segments. In ECCV, pages 75–91, 2016. 3

[34] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.

You only look once: Unified, real-time object detection. In

CVPR, pages 779–788, 2016. 3, 6

[35] J. Redmon and A. Farhadi. YOLO9000: better, faster,

stronger. CoRR, abs/1612.08242, 2016. 1, 3, 6, 7

4211

http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4
http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4
http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

[36] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:

towards real-time object detection with region proposal net-

works. TPAMI, 39(6):1137–1149, 2017. 1, 2, 3, 6, 7, 8

[37] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein,

A. C. Berg, and F. Li. Imagenet large scale visual recognition

challenge. IJCV, 115(3):211–252, 2015. 3, 4, 5

[38] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. Overfeat: Integrated recognition, localization

and detection using convolutional networks. In ICLR, 2014.

3

[39] Z. Shen, Z. Liu, J. Li, Y. Jiang, Y. Chen, and X. Xue. DSOD:

learning deeply supervised object detectors from scratch. In

ICCV, 2017. 3, 6, 8

[40] A. Shrivastava and A. Gupta. Contextual priming and feed-

back for faster R-CNN. In ECCV, pages 330–348, 2016. 3

[41] A. Shrivastava, A. Gupta, and R. B. Girshick. Training

region-based object detectors with online hard example min-

ing. In CVPR, pages 761–769, 2016. 1, 3, 6, 7, 8

[42] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta. Be-

yond skip connections: Top-down modulation for object de-

tection. CoRR, abs/1612.06851, 2016. 3, 7, 8

[43] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 3, 4

[44] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In AAAI, pages 4278–4284, 2017.

4, 7

[45] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, pages 1–9, 2015.

6

[46] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and

A. W. M. Smeulders. Selective search for object recognition.

IJCV, 104(2):154–171, 2013. 3

[47] P. A. Viola and M. J. Jones. Rapid object detection using a

boosted cascade of simple features. In CVPR, pages 511–

518, 2001. 3

[48] X. Wang, A. Shrivastava, and A. Gupta. A-fast-rcnn: Hard

positive generation via adversary for object detection. In

CVPR, 2017. 3

[49] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He. Aggre-

gated residual transformations for deep neural networks. In

CVPR, 2017. 4, 8

[50] D. Yoo, S. Park, J. Lee, A. S. Paek, and I. Kweon. Attention-

net: Aggregating weak directions for accurate object detec-

tion. In 2015 IEEE International Conference on Computer

Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015,

pages 2659–2667, 2015. 3

[51] X. Zeng, W. Ouyang, B. Yang, J. Yan, and X. Wang. Gated

bi-directional CNN for object detection. In ECCV, pages

354–369, 2016. 3

[52] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li. De-

tecting face with densely connected face proposal network.

In CCBR, pages 3–12, 2017. 4

[53] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li.

Faceboxes: A CPU real-time face detector with high accu-

racy. In IJCB, 2017. 4

[54] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li.

S3FD: Single shot scale-invariant face detector. In ICCV,

2017. 1, 3, 4

[55] Y. Zhu, C. Zhao, J. Wang, X. Zhao, Y. Wu, and H. Lu. Cou-

plenet: Coupling global structure with local parts for object

detection. In ICCV, 2017. 3, 5, 6, 7

[56] C. L. Zitnick and P. Dollár. Edge boxes: Locating object

proposals from edges. In ECCV, pages 391–405, 2014. 3

4212

