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Abstract

Facial action unit (AU) intensity estimation plays an im-

portant role in affective computing and human-computer

interaction. Recent works have introduced deep neural

networks for AU intensity estimation, but they require a

large amount of intensity annotations. AU annotation needs

strong domain expertise and it is expensive to construct a

large database to learn deep models. We propose a novel

knowledge-based semi-supervised deep convolutional neu-

ral network for AU intensity estimation with extremely lim-

ited AU annotations. Only the intensity annotations of peak

and valley frames in training sequences are needed. To

provide additional supervision for model learning, we ex-

ploit naturally existing constraints on AUs, including rela-

tive appearance similarity, temporal intensity ordering, fa-

cial symmetry, and contrastive appearance difference. Ex-

perimental evaluations are performed on two public bench-

mark databases. With around 2% of intensity annotations

in FERA 2015 and around 1% in DISFA for training, our

method can achieve comparable or even better performance

than the state-of-the-art methods which use 100% of inten-

sity annotations in the training set.

1. Introduction

Expressions are conveyed through facial appearance

which is produced by the movements of facial muscles un-

der the skin. Facial Action Coding System (FACS) was de-

veloped by Ekman and Friesen [5] to depict these muscle

movements. It defines AUs as a contraction or relaxation

of one or a group of muscles (see Fig. 1a). Nearly any

anatomically possible facial expression can be coded by a

combination of AUs. FACS also divides AU intensity into 6
discrete ordinal levels and provides rules to annotate the in-

tensity from neutral to maximum, i.e., Neutral (0) < Trace
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(A) < Slight (B) < Pronounced (C) < Extreme (D) < Max-

imum (E). The goal of AU intensity estimation is to predict

the AU intensity for an unseen image.

Recently, deep neural networks (DNNs) have achieved

breakthroughs in a variety of computer vision tasks, includ-

ing image classification [14], image segmentation [18], ac-

tion recognition [37], etc. The millions of parameters are

learned through the end-to-end strategy with raw images

as the input and targets as the output. DNNs have also

been applied to facial behavior analysis, including expres-

sion recognition [13, 4], AU recognition [52, 16, 39], and

AU intensity estimation [6, 42]. Since DNNs contain a huge

number of parameters, a large set of training samples are

required for model learning to avoid overfitting. However,

AU annotation needs strong domain expertise and is time-

consuming. Hence, it requires great effort to construct a

large database with AU intensity annotations to meet the re-

quirement of fully supervised DNNs.

Instead of requiring a large set of annotations, we pro-

pose a knowledge-based semi-supervised deep convolu-

tional neural network (CNN) for AU intensity estimation.

Prior knowledge can be used to facilitate the model learn-

ing and reduce the dependence on data [9, 8, 26]. In emo-

tional sequences, only the AU intensity annotations of peak

and valley frames are needed. Since peak and valley frames

account for a rather small proportion of whole sequences,

using semi-supervised learning can save great effort for in-

tensity annotation. To leverage unlabeled frames, we ex-

ploit four types of domain knowledge on AU intensity to

provide additional supervision for model learning, includ-

ing relative appearance similarity, temporal intensity order-

ing, facial symmetry, and contrastive appearance difference.

They come from the observation on AU intensity in emo-

tional sequences. Fig. 1b shows the annotated peak and val-

ley frames of AU12 in a sequence. Firstly, local appearance

of AU changes smoothly since the physical movements of

muscles are smooth. AU intensity gradually increases from
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Figure 1. (a) Facial appearance of facial action units. (b) The in-

tensity curve of AU12 in a sequence from [20].

a valley frame to its neighbor peak frame (rising duration)

and it gradually decreases from a peak frame to its neighbor

valley frame (decaying duration). The learned deep net-

work is encouraged to provide intensity predictions that re-

tain such relations. Secondly, during both rising and decay-

ing durations, the closer two frames are, the more similar

their appearance looks. The learned feature representation

is encouraged to retain such property. Thirdly, human face

is symmetric. For spontaneous expression, the facial ap-

pearance is always nearly the same on the left and right

faces. So do the AU occurrence and intensity. The left

and right faces should have close feature representations.

Though there exist different head poses in face images, the

learned representation is encouraged to be invariant to head

pose. Fourthly, the facial appearance of an emotional face

is different from a neutral face. The learned representation

is encouraged to be able to tell apart emotion faces from

neutral faces. The domain knowledge provides weak super-

vision and makes it feasible to exploit the unlabeled frames.

Our main contributions are summarized as follows.

Firstly, we propose a knowledge-based semi-supervised

deep convolutional neural network for AU intensity esti-

mation. Only annotations of peak and valley frames in se-

quences are needed for model learning, which significantly

reduces the effort for intensity annotation. Secondly, we

identify four types of domain knowledge to provide weak

supervision for model learning, including relative appear-

ance similarity, temporal intensity ordering, facial symme-

try, and contrastive appearance difference. The knowledge

builds connections between labeled and unlabeled sam-

ples. Thirdly, we propose to use 5-element tuples for model

learning instead of individual frames or frame pairs, which

leverages high-order relationships among multiple frames.

Fourthly, we evaluate the proposed method on two public

benchmark databases.

2. Related Work

Shallow models for AU intensity estimation. Several

frame-based methods treat each frame independently with-

out considering relationships among frames. For single

AU intensity estimation, SVMs were used in [19, 41] and

SVRs were used in [34]. Kaltwang et al. proposed to use

Relevance Vector Regression for AU intensity prediction

in [10] and [12]. To consider relationships among multiple

AUs, Sandbach et al. [33] used the tree structured Markov

Random Field to capture relationships among intensities of

AUs. Walecki et al. proposed to jointly estimate the in-

tensities of multiple AUs by using copula functions in [43]

and [44]. Kaltwang et al. [11] used a latent tree model

and learned the structure from the input features and la-

bels. Temporal dynamics have been used to model sequen-

tial data in different vision tasks [23, 48, 3, 24, 47, 46, 50],

which can also be used for AU intensity estimation. Prob-

abilistic graphical models are used to capture temporal and

spatial relationships among the AU intensities for joint esti-

mation such as [21, 17, 28, 29, 1].

Several works focus on learning model with limited an-

notations. Ruiz et al. [30] proposed Multi-instance Dy-

namic Ordinal Random Fields for AU intensity estimation

by exploiting the idea of the multi-instance learning to treat

each sequence as a bag. Zhao et al. [53] formulated expres-

sion intensity estimation as a weakly supervised learning

problem by combining the unsupervised ordinal regression

and SVR. They consider only pairwise relationships while

we consider relationships among multiple frames and more

types of knowledge. One issue of these methods is that

they have to extract hand-craft features first and then per-

form the model learning. The dynamics are applied only for

AU intensity. Unlike them, we apply the dynamics to both

AU intensity and image representation. Furthermore, The

complexity of shallow models is limited. They are unable

to handle high-dimensional image features and millions of

training samples.

Deep models for AU intensity estimation. Recently, few

works applied DNNs for AU intensity estimation. Gudi et

al. [6] exploited a 7-layer CNN for both AU intensity es-

timation and AU detection. Walecki et al. [42] combined

conditional random field (CRF) and CNN. CRF is used to

capture the dependencies among the intensities of multiple

AUs. CRF is parameterized by using copula functions to al-

low non-linear AU intensity relations while CNN is used to

learn deep representation. They are learned simultaneously.

Tran et al. [40] combined variational auto-encoder (VAE)

and non-parametric ordinal Gaussian Process (OGPs) for

joint learning of latent representations and classifiers of

multiple ordinal outputs. Zhou et al. [54] and Batista et

al. [2] applied DNN to estimate AU intensity under multi-

ple head poses. However, these methods use fully super-

vised DNNs which require a large set of training samples.

They tend to overfit the training set when the number of

annotated samples is limited. On the contrary, our method

not only uses the limited annotations, but also exploits four

types of domain knowledge to take advantage of unlabeled

samples to avoid overfitting.

Semi-supervised deep neural networks. Several works
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use the semi-supervised training paradigm to learn deep

models. Lee et al. [15] used the predicted label by the

current model as the pseudo-labels for unlabeled samples.

Then, labeled and unlabeled samples are used to train the

model. Mehdi et al. [31] exploited an unsupervised regular-

ization term to force the classifiers prediction for multiple

classes to be mutually exclusive and to effectively guide the

location of the decision boundary. They then proposed to

add regularization term with stochastic transformations and

perturbations for semi-supervised learning [32]. Haeusser

et al. [7] used the associations between label and unlabeled

samples through two-step walking to learn neural networks.

[32, 45, 51] introduced an auto-encoder to an existing net-

work to learn efficient representations. Rasmus et al. [27]

combined supervised learning with unsupervised learning

by minimizing the sum of supervised cost and denoising

cost. These methods are originally proposed for image

classification, rather than AU intensity estimation. Unlike

them, we use unlabeled samples through domain knowledge

on AU intensity rather than adding perturbations or using

reconstruction cost of auto-encoder. The domain knowl-

edge contains the relationships among labeled and unla-

beled frames on image representation and AU intensity.

3. Proposed Method

The pipeline of the proposed method is shown in Fig. 2a.

We first present the four types of domain knowledge in

Sec. 3.1 and then explain the training tuples and encode the

knowledge in Sec. 3.2. We present the structure of CNN in

Sec. 3.3 and the learning and inference in Sec. 3.4.

As shown in Fig. 1b, given the annotated peak and valley

frames, the sequences can be split into segments by using

the locations of peak and valley frames. Segments can be

divided into three groups according to the trend of AU in-

tensity, i.e., evolving from a valley frame to a peak frame,

evolving from a peak frame to a valley frame, and keep-

ing AU intensity unchanged. To make the trend consistent,

we reverse the order of frames for the segments that evolve

from a peak frame to a valley frame. Then, each training

segment either evolves from a valley frame to a peak frame

or keeps AU intensity unchanged.

Notation: The training set for one AU is denoted as D =
{Xm, y1m, yNm

m }Mm=1
, where Xm = {Xn

m}Nm

n=1
. Xn

m is the

n-th frame of the m-th training segment, which represents

a raw image. M is the number of training segments. Nm

is the length of the m-th sequence. Only the first frame

and the last frame in each segment are annotated with AU

intensities. y1m denotes the intensity of X1

m while yNm

m de-

notes the intensity of XNm

m . Let Θ denote the parameters of

CNN. Let ỹnm = f(Xn
m; Θ) denote the predicted intensity

of Xn
m and fn

m denote the extracted features of Xn
m, i.e., the

last fully connected layer of CNN. Let d(a, b) denote the

distance d(a, b) = ||a − b||2. Given the partially annotated

training set, our goal is to learn the parameters Θ. We train

a CNN for each AU individually since the locations of peak

and valley frames are different for different AUs.

3.1. Domain Knowledge

Relative appearance similarity Since facial appearance

changes smoothly, in a segment, the closer two frames are,

the more similar they look. We encourage image represen-

tations extracted from the CNN to satisfy that the closer two

frames are, the closer their representations are, namely,

d(f i
m, f j

m) ≤ d(f i
m, fk

m), 1 ≤ i < j < k ≤ Nm, (1)

where d(f i
m, f j

m) = ||f i
m− f j

m||2. When i, j, and k contain

the first or last frame, Eq. 1 builds the connections between

labeled and unlabeled frames on image representation.

Temporal intensity ordering During a facial action, the

facial appearance changes smoothly as the physical move-

ments of muscles are smooth. So does the AU intensity.

Neighboring frames have the similar facial appearance and

AU intensity. Though there exist multiple peak and val-

ley frames in an expression sequence, the whole sequence

can be split into segments. AU intensity of each segment

changes monotonically. After the rearrangement, AU in-

tensity in each segment changes without decreasing along

time. To leverage the intensity ordering to supervise model

learning, we encourage the predictions of AU intensity in a

segment to satisfy the following constraint, i.e.,

ỹ1m ≤ ỹ2m ≤ · · · ≤ ỹNm

m ,m = 1, 2, · · · ,M. (2)

It contains the first and last labeled frames and also unla-

beled frames between them, which builds the connections

between labeled and unlabeled frames on AU intensity.

Facial symmetry Human face has the symmetry prop-

erty. When performing an expression spontaneously, the

appearance of the left face is always similar to the right. So

do the AU occurrence and AU intensity. Though the cap-

tured faces might not be symmetric in image if they have

a non-frontal head pose, it does not change the AU occur-

rence and AU intensity. When the corresponding regions

of AUs are visible on both left and right faces, distinct pat-

terns of AUs still appear on both sides. The appearance of

these patterns is different due to head pose, but is similar.

We encourage the CNN to provide head pose invariant rep-

resentation for AU intensity estimation. For an aligned face

by two eye centers, the horizontally flipped face should have

the close representation to the original one, i.e., the distance

d(fn
m, f̂n

m) = ||fn
m − f̂n

m||2, (3)

should be small. f̂n
m is the representation of the flipped face.
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Figure 2. (a) The pipeline of the proposed method. Each frame in a tuple and also flipped face images of A and B go through the same

CNN. The predictions are collected, including the representation from the fully collected layer and the predicted AU intensity. The loss is
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Figure 3. Training tuples. (a) yS < yE . (b) yS
= yE .

Contrastive appearance difference For every subject,

the appearance of an emotional face is different from a neu-

tral face. We encourage the CNN to provide representa-

tions that can tell emotional faces apart from neutral faces.

Since the neutral faces differ from subjects, we compute the

distance between representations of emotional and neutral

faces from the same subject. The distance should satisfy

d(fn
m, fN

m ) = ||fn
m − fN

m ||2 ≥ η, (4)

where η ≥ 0 is the threshold. fN
m is the representation of a

labeled neutral frame from the subject of the m-th segment.

3.2. Encoding knowledge

Training tuples Instead of directly using Eq. 2∼ 4 to

form the objective, we propose to encode the knowledge

based on training tuples (see Fig. 3). A tuple sampled

from a segment is denoted as T = {S,A,B,E,N} where

S < A < B < E and N are the frame indices. It consists

of the first (S) and the last (E) frame of the segment, two

frames (A and B) between S and E, and a neutral frame (N).

The intensities of S, E, and N are labeled while A and B

are unlabeled. Given a training segment, we can generate

a large set of such tuples. Tuples from the same segment

share the same S and E. The labeled neural frame N can be

from other segments of the same subject. The advantages of

using tuples are shown as follows. Given the training set D,

we can obtain the training tuples DT = {T k
m}m=M,k=Km

m=1,k=1
,

where Km is the number of tuples from the m-th segment.

Encoding labels In each segment, only the first frame

and the last frame are annotated. The intensity annotations

provide strong supervisory information for model learning.

They can not only supervise the model to give accurate in-

tensity predictions on the two labeled frames during train-

ing, but also indirectly provide the upper and lower bounds

of intensity for unlabeled frames through ỹS and ỹE . Given

a tuple T , the loss of provided labels is defined as

ℓlb(T ) = d(ỹS , yS) + d(ỹE , yE). (5)

Encoding relative appearance similarity In a segment,

instead of directly applying Eq. 1 to arbitrary three frames,

we design the loss on a tuple to make full use of the anno-

tations of the first and the last frames. The loss should have

such properties: (a) captures the evolution of facial appear-

ance in a segment, i.e., from the first to the last frame, the

representation gets more different from the first and gets

more similar to the last, (b) makes full use of the annotated

frames, and (c) considers high-order relationships among

multiple frames. Given a tuple T , the loss is defined as

ℓrel(T ) = max(d(fS , fA)− d(fS , fB) + α, 0)

+ max(d(fE , fB)− d(fE , fA) + α, 0)

+ max(d(fB , fA)− d(fB , fS), 0)

+ max(d(fA, fB)− d(fA, fE), 0), (6)

where α ≥ 0 is the margin. Each term is a triplet loss [35]

with respect to an anchor frame. Note that one triplet

loss can not encode the correct evolution of facial appear-

ance. As shown in Fig. 4, the two simplified cases show

the distances between representations of frames. When S

is the anchor frame of (S,A,B), the triple losses of both

cases are 0, i.e., max(d(f̃S , f̃A)− d(f̃S , f̃B) + α, 0) = 0,

but only the second case (Fig. 4b) is the one that cap-

tures the right evolution of facial appearance. Hence, we

introduce another term to ensure the right evolution, i.e.,

max(d(f̃B , f̃A) − d(f̃B , f̃S), 0). To build more connec-

tions between the unlabeled frames A and B and labeled
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Figure 4. Simplified distances between representations of frames.

When S is the anchor, the triplet losses of both (a) and (b) are 0,

but only (b) is the correct one.

frames, we simultaneously consider S and E as two an-

chor frames. The loss encodes the relationships among four

frames. We use different margins for two types of tuples

(Fig. 3), i.e., α = 0 if yS = yE . Otherwise, α > 0.

Encoding temporal intensity ordering A straightfor-

ward way of directly using Eq. 2 is to enforce frame pairs

to satisfy the knowledge. Given a tuple T , the ordinal in-

formation is that the predictions are supposed to satisfy

ỹS ≤ ỹA ≤ ỹB ≤ ỹE . It can be encoded as

ℓ = max(ỹS − ỹA, 0) + max(ỹA − ỹB , 0)

+ max(ỹB − ỹE , 0). (7)

However, the issue of using pairwise relationships is that it

adjusts the parameters to make the local violated pair satisfy

the constraint without considering other frames out of the

pair. For example, when the predictions are ỹS ≤ ỹB ≤
ỹA ≤ ỹE , only the second term in Eq. 7 is used to compute

the gradient. The gradient involves only A and B, but the

labeled S and E are not used.

To alleviate this issue, we consider the high-order rela-

tionships among multiple frames in the similar way to en-

coding relative appearance similarity. Instead of directly

comparing intensity predictions, we use the distances be-

tween intensity predictions to encode the ordinal informa-

tion. Given a tuple T , the loss of ordinal intensity is

ℓord(T ) = max(d(ỹS , ỹA)− d(ỹS , ỹB) + β, 0)

+ max(d(ỹE , ỹB)− d(ỹE , ỹA) + β, 0)

+ max(d(ỹB , ỹA)− d(ỹB , ỹS), 0)

+ max(d(ỹA, ỹB)− d(ỹA, ỹE), 0), (8)

where β ≥ 0 is the margin. When the predictions are ỹS ≤
ỹB ≤ ỹA ≤ ỹE , at least the first and the second terms

are used to compute the gradient. All the frames are jointly

considered to update the parameters, including the labeled

S and E. We use different margins for the two types of

tuples, i.e., β = 0 if yS = yE . Otherwise, β > 0.

Encoding facial symmetry Facial symmetry involves

one face image and its horizontally flipped image. Given

a tuple T , Eq. 3 can be directly used to define the loss of

facial symmetry, i.e.,

ℓsym(T ) = d(fA, f̂A) + d(fB , f̂B). (9)

We compute loss for only A and B because S and E are

the same for tuples from the same segment. A and B can

be very close to S and E in some tuples and they can cover

the similar information from S and E. Since S could be a

neutral frame of some tuples, N is also not included.

Encoding contrastive appearance difference Con-

trastive appearance difference involves one emotional face

image and one neutral image. Given a tuple T , the loss is

ℓcon(T ) = max(η − d(fA, fN ), 0)

+ max(η − d(fB , fN ), 0), (10)

where η ≥ 0 is the threshold. If yS = yE = 0, η = 0;

otherwise, η > 0. We consider the loss only for A and B

for the same reason as facial symmetry.

3.3. CNN structure

We use a CNN with 3 convolutional layers, 3 max pool-

ing layers, and 1 fully connected layer. The CNN structure

is shown is Fig. 2b. The image has the size of 64×64 and 3
channels. The number of kernels is 32, 64, and 128 for the

convolutional layers respectively. All convolution kernels

have the same size of 5 × 5. Each convolutional layer is

followed by a ReLu (Rectified Linear Unit) activation layer.

All pooling kernels have the size of 3 × 3 and their stride

is 2. The fully connected layer has 128 nodes. The dimen-

sion of the output is 1 since we train a CNN for each AU

individually. The total number of parameters is 1, 307, 457.

3.4. Learning and inference

Learning. Given training tuples DT , the goal is to learn

the parameters Θ that minimize the objective L(DT ). As

shown in Fig. 2a, each frame of a tuple is fed to the CNN.

The predictions including the AU intensity and the repre-

sentation are collected. Since only using the limited anno-

tations leads to overfitting, we introduce domain knowledge

to provide additional supervision. With the definitions of

losses for the knowledge, the total loss of a training tuple

can be computed as

ℓ(T ) = ℓlb(T ) + λ1ℓrel(T ) + λ2ℓord(T )

+ λ3ℓsym(T ) + λ4ℓcon(T ) (11)

where λ1, ..., λ4 are the weights for losses. The total loss of

all training tuples can be computed as

L(DT ) =
1

G

M
∑

m=1

Km
∑

k=1

ℓ(T k
m), (12)
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where G =
∑M

m=1
Km. In Eq. 11, the loss is computed by

using the predictions and the supervision from two sources,

i.e., limited annotations and the domain knowledge. The

gradient of the loss with respect to Θ is

∂ℓ(T )

∂Θ
=

∑

z∈V

[

∂ℓlb

∂z
+ λ1

∂ℓrel

∂z
+ λ2

∂ℓord

∂z

+ λ3

∂ℓsym

∂z
+ λ4

∂ℓcon

∂z

]

∂z

∂Θ
, (13)

where V = {fS , fA, fB , fE , fN , f̃A, f̃B , ỹS , ỹA, ỹB , ỹE}.

Each loss term is a function of Θ. We first compute the

gradients with respect to elements in V and then update the

CNN parameters through backpropogation. The detailed

gradients are presented in the supplementary material.

Inference. Though the CNN is trained by using tuples,

it can be used to predict AU intensity for a single image.

Given a testing image, we feed it to the CNN and the pre-

dicted AU intensity is y = f(X; Θ). For evaluation, we dis-

cretize the continuous prediction into discrete intensity la-

bel, i.e., 0 (y < 0.5), 1 (0.5 ≤ y < 1.5), 2 (1.5 ≤ y < 2.5),

3 (2.5 ≤ y < 3.5), 4 (3.5 ≤ y < 4.5), and 5 (4.5 ≤ y). We

also report the performance of using continuous prediction

for evaluation in the supplementary material.

4. Experiments

4.1. Settings

Data. The BinghamtonPittsburgh 4D database [49] is a

spontaneous expression database, which is used as a bench-

mark in FERA 2015 challenge [41]. It consists of 328 se-

quences from 41 subjects. Around 140, 000 frames are an-

notated with AU intensity for 5 AUs. The official Training

split of FERA 2015 contains 21 subjects while the Devel-

opment split contains the other 20 subjects. In our experi-

ments, we use the offical Training/Development splits.

The Denver Intensity of Spontaneous Facial Ac-

tion (DISFA) [22] database is a spontaneous expression

database, which consists of 27 sequences from 27 subjects

when watching videos. Around 130, 000 frames are anno-

tated with AU intensity for 12 AUs. In our experiments, we

perform 3-fold subject independent cross validation with 18
subjects for training and 9 subjects for testing.

The AU intensity is qualified into 6 discrete levels. The

distributions of AU intensities in FERA 2015 and DISFA

are shown in Fig. 5a and Fig. 5b. The number of peak and

valley frames of each AU in the training set is shown in

Table 1. Note that the percentage of peak and valley frames

is around 2% in FERA 2015 while the percentage is around

1% in DISFA. Our method uses only the annotations of peak

and valley frames and unlabeled frames for learning.

Data preprocessing. Data preprocessing includes cropping

face, image normalization, and data augmentation. We first
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Figure 5. Distribution of AU intensities.

register face images according to two eye centers. The eye

centers are obtained by using facial landmarks provided in

each database. Then, we crop the face and resize it to the

size of 64× 64. We perform per-image contrast normaliza-

tion to alleviate the influence of illumination changes. Since

the model has about 1.3 million parameters, to avoid overfit-

ting via data augmentation, we randomly shrink or enlarge

face images to 90% ∼ 110% of its original size and crop

the center part with the size of 64× 64.

Tuple generation. Given peak and valley frames which can

be identified according to their definitions in [20], training

sequences can be split into segments. We sample training

tuples from each segment. As shown in Fig. 3, each tuple

consists of 5 frames. Given a segment, the first and last

frames are S and E. We select two frames between S and

E and treat them as A and B. Then, we select an annotated

neutral frame as N . A subset of valley frames are neutral

frames. As both databases have a high frame rate, close

frames have similar appearance. We collect one frame every

5 frames in the segment and then use each frame pair from

the collected frames as A and B to form a tuple.

Evaluation metrics. For evaluation, we use Intra-

Class Correlation (ICC(3,1) [36]) and Mean Absolute Er-

ror (MAE) as the measures. The hyperparameters are

{α, β, η, {λi}
i=5

i=1
}. To tune them, we use 70% of the train-

ing subjects for training and 30% for evaluation. MAE is

used as measure and the grid search strategy is used. For

the margins, α ∈ {0.1, 0.5, 1} and β ∈ {0.01, 0.05, 0.1} if

yS 6= yE . Otherwise, α = 0 and β = 0. If yS = yE = 0,

η = 0. Otherwise, η ∈ {0.1, 0.5, 1}. For penalty factors,

{λi}
i=5

i=1
∈ {0.01, 0.1, 1}. The learning rate is 0.0002.

Models. (i) We compare our method (KBSS) to the baseline

methods. To verify the effectiveness of each type of knowl-

edge, we learn the model without using one type of knowl-

edge, including removing relative appearance similarity

(KBSS-NR), removing temporal intensity ordering (KBSS-

NO), removing facial symmetry (KBSS-NS), and remov-

ing contrastive appearance difference (KBSS-NC). We also

compare to CNN-K which uses only the knowledge with-

out intensity annotations, and compare to CNN-P which

uses only limited annotations of peak and valley frames,

and CNN-F which uses annotations of all frames. We then
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Table 1. The number of peak and valley frames in the training set. The total numbers of training frames in FERA and DISFA are 74906

and 87209 respectively. ’Percentage’ represents the percentage of peak and valley frames in the training set.

Dataset FERA 2015 DISFA

AU 6 10 12 14 17 1 2 4 5 6 9 12 15 17 20 25 26

Peak&Valley 1527 1563 1636 1811 2830 871 769 1031 776 841 711 1072 745 1069 734 1129 1165

Percentage 2.04% 2.09% 2.18% 2.42% 3.78% 1.00% 0.88% 1.18% 0.89% 0.96% 0.82% 1.23% 0.85% 1.23% 0.84% 1.29% 1.34%

Table 2. Comparison to the baseline methods. Numbers in bracket and bold indicate the best performance; numbers in bold indicate the

second best.

FERA 2015 DISFA

AU 6 10 12 14 17 avr. 1 2 4 5 6 9 12 15 17 20 25 26 avr.

IC
C

(3
,1

)

CNN-F [.76] .69 .83 .29 [.53] .62 .02 .06 .43 .02 [.56] .22 .75 .13 .18 [.09] .79 .28 .29

CNN-P .72 .47 .79 .18 .29 .49 .05 .02 .11 .01 .51 .09 .72 .00 .15 .00 .71 .28 .22

CNN-K .39 .18 .38 .12 -.09 .20 .00 .00 -.05 .00 -.10 .05 .24 -.01 .01 .01 -.05 -.07 .00

KBSS-Pair .73 .73 .84 .40 .43 .62 .15 .07 .50 .21 .47 .20 .76 [.25] .19 .03 .77 .33 .33

KBSS-Tri .69 .68 .84 .40 .48 .62 .08 .09 .41 .25 .45 .23 .72 [.25] .23 .05 .82 .32 .33

KBSS-NO .70 .69 .84 .32 .49 .61 .15 .09 .43 .23 .51 .19 .69 .14 .14 .04 .81 [.41] .32

KBSS-NR .75 .65 .82 .38 .50 .62 .11 .07 .40 .25 .44 .26 [.78] .18 .23 [.09] .82 .19 .32

KBSS-NS .73 .72 .84 .44 .48 .64 .11 .08 [.54] .25 .48 [.29] .70 .20 [.26] .07 [.83] .29 .34

KBSS-NC .73 .72 .82 .45 .52 .65 .16 .10 .32 [.28] .54 .22 .70 .23 .19 .01 [.83] .40 .33

KBSS [.76] [.75] [.85] [.49] .51 [.67] [.23] [.11] .48 .25 .50 .25 .71 .22 .25 .06 [.83] [.41] [.36]

M
A

E

CNN-F .69 .71 .51 1.02 .70 .73 .57 .36 .67 .09 .27 .31 .31 .17 .46 .18 .50 .58 .37

CNN-P .62 .78 .57 .96 .70 .73 .47 .26 .95 [.07] .30 .21 .32 [.09] .23 [.07] .65 .51 .34

CNN-K .62 .69 .51 1.06 .72 .72 [.38] [.15] .89 .17 .39 [.15] .41 .66 [.22] .34 .91 .71 .45

KBSS-Pair .65 .75 .51 1.12 .90 .79 .78 .53 .69 .07 .28 .21 .30 .13 .53 .21 .56 .51 .40

KBSS-Tri .62 .76 .52 .96 [.63] .70 .55 .51 .76 .16 .30 .24 .34 .18 .38 .18 .48 .43 .38

KBSS-NO .64 .70 .53 1.03 .69 .72 .78 .65 .95 .12 .31 .32 .46 .33 .82 .68 .47 .55 .54

KBSS-NR .61 .68 .51 [.93] .76 .70 1.01 .84 1.20 .11 .39 .19 [.27] .21 .44 .33 .47 .61 .51

KBSS-NS .62 .76 .49 1.04 .75 .73 .77 .60 .65 .10 .42 .20 .35 .21 .42 .29 .45 .44 .41

KBSS-NC .65 .79 [.48] 1.03 .66 .72 .86 .52 .90 [.07] [.26] .23 .37 .15 .64 .39 [.38] .46 .44

KBSS [.56] [.65] [.48] .98 [.63] [.66] .48 .49 [.57] .08 [.26] .22 .33 .15 .44 .22 .43 [.36] [.33]

compare to KBSS-Pair and KBSS-Tri. KBSS-Pair uses

pairwise relationships (Eq. 7) instead of high-order relation-

ships (Eq .8). KBSS-Tri uses triplets instead of 5-element

tuples. (ii) We compare our method to the state-of-the-art

AU intensity estimation methods. CNN [6] was proposed

for AU intensity estimation in FERA 2015. CCNN-IT [42]

uses CRF to capture relationships between continuous vari-

ables for AU intensity estimation. In [42], CCNN-IT(*)

combines multiple databases for training while CCNN-IT

uses one database. For fair comparison, we compare to

CCNN-IT. 2DC [40] combines variational auto-encoder

and Gaussian Process for AU intensity estimation. OR-

CNN [25] transforms an ordinal regression problem to a

series of binary classification sub-problems for age estima-

tion, which can also be used for AU intensity estimation.

We also adapt VGG16 [38] for AU intensity estimation

by fine-tuning the last 3 layers of the pre-trained model.

(iii) We compare our method to the state-of-the-art semi-

supervised methods, including Ladder [27] , RSTP [32],

and LBA [7]. Though they are originally proposed for im-

age recognition, we apply them to AU intensity estimation.

4.2. Results

Our method vs. baseline methods The results are shown

in Table 2. A visual example of our method is shown in

Fig. 6. Results are analyzed as follows. Firstly, compared

to methods with dropping one type of knowledge, KBSS

0 50 100 150 200 250

3

2

1

0

4

5

AU6
AU10 
AU12 
AU14 
AU17

Figure 6. Prediction of each AU in a sequence of FERA 2015

achieves better performance. It demonstrates that each type

of knowledge contributes. The results show that relative

appearance similarity and temporal intensity ordering are

more important than the other two types of knowledge.

Secondly, compared to CNN-P, our method is much bet-

ter. CNN-P uses only peak and valley frames, which tends

to overfit these samples. It generalizes poorly to the test-

ing samples. Besides labeled frames, our method also uses

unlabeled frames through the knowledge, which ensures its

generalization ability. Thirdly, CNN-K that uses only the

knowledge achieves poor performance. This shows the im-

portance of the limited annotations. Fourthly, compared

to CNN-F, surprisingly, our method even outperforms it in

both ICC and MAE though CNN-F uses much more an-

notations. We attribute the improvement to the usage of

the knowledge on AU intensity and the relationships among

multiple frames. We explicitly use the knowledge as su-

pervision with considering relationships among multiple
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Table 3. Comparison to the state-of-the-art AU intensity estimation methods. Only our method is a semi-supervised method.

FERA 2015 DISFA

AU 6 10 12 14 17 avr. 1 2 4 5 6 9 12 15 17 20 25 26 avr.

IC
C

(3
,1

)

CCNN-IT [42]* .75 .69 [.86] .40 .45 .63 .20 .12 .46 .08 .48 .44 .73 .29 [.45] [.21] .60 .46 .38

2DC [40]* [.76] .71 .85 .45 [.53] .66 [.70] [.55] [.69] .05 [.59] [.57] [.88] [.32] .10 .08 [.90] .50 [.50]

CNN [6] .72 .64 .82 .22 .52 .58 .07 .03 .39 .11 .49 .30 .76 .20 .20 .12 .74 .41 .32

VGG [38] .68 .63 .75 .35 .37 .56 .31 .29 .40 .13 .39 .13 .58 .02 .16 .03 .63 .22 .27

OR-CNN [25] .74 .70 .85 .34 .51 .63 -.01 .02 .21 .10 .47 .30 .76 .14 .21 .07 .84 [.59] .31

KBSS (ours) [.76] [.75] .85 [.49] .51 [.67] .23 .11 .48 [.25] .50 .25 .71 .22 .25 .05 .82 .41 .36

M
A

E

CCNN-IT [42]* 1.17 1.43 .97 1.65 1.08 1.26 .73 .72 1.03 .21 .72 .51 .72 .43 .50 .44 1.16 .79 .66

2DC [40]* – – – – – – – – – – – – – – – – – – –

CNN [6] .66 .84 .56 1.12 .65 .77 .40 .41 .56 .10 .27 .20 .30 .13 [.36] .16 .60 .45 .33

VGG [38] .63 .80 .66 [.91] [.61] .72 [.24] [.22] [.51] [.04] .27 [.13] .37 [.10] .41 .17 .63 .47 [.30]

OR-CNN [25] [.56] .72 .49 .95 .69 .68 .48 .45 .95 [.04] .28 .23 [.27] .12 .47 [.12] [.40] [.32] .34

KBSS (ours) [.56] [.65] [.48] .98 .63 [.66] .48 .49 .57 .08 [.26] .22 .33 .15 .44 .22 .43 .36 .33

Table 4. Comparison to the state-of-the-art semi-supervised methods.

FERA 2015 DISFA

AU 6 10 12 14 17 avr. 1 2 4 5 6 9 12 15 17 20 25 26 avr.

IC
C

(3
,1

) Ladder [27] .65 .63 .79 .24 .45 .55 -.01 .03 .16 .01 .50 .10 .64 -.01 .06 .00 .57 .22 .19

RSTP [32] .68 .63 .77 .24 .48 .56 .00 .05 .20 .05 .42 .11 .59 .09 .13 .05 .68 .38 .23

LBA [7] .71 .65 .80 .28 .50 .59 .04 .06 .39 .01 .41 .12 .73 .13 .27 .10 .82 .43 .29

KBSS (ours) .76 .75 .85 .49 .51 .67 .23 .11 .48 .25 .50 .25 .71 .22 .25 .05 .82 .41 .36

M
A

E

Ladder [27] .72 .82 .62 1.15 .66 .79 .68 .39 .94 .14 .26 .29 .34 .17 .26 .13 .78 .52 .41

RSTP [32] .73 .93 .70 1.24 .61 .84 1.17 .80 1.23 .25 .34 .38 .42 .23 .66 .39 .59 .39 .57

LBA [7] .63 .79 .60 1.07 .62 .74 .43 .29 .51 .10 .30 .19 .30 .11 .31 .14 .40 .38 .29

KBSS (ours) .56 .65 .48 .98 .63 .66 .48 .49 .57 .08 .26 .22 .33 .15 .44 .22 .43 .36 .33

frames while CNN-F treats each frame independently. Fi-

nally, our method outperforms KBSS-Pair and KBSS-Tri. It

further shows that the effectiveness of high-order relation-

ships within tuples. The study of increasing annotations and

detailed comparison to CNN-F are shown in the supplemen-

tary material.

Our method vs. AU intensity estimation methods The

results are shown in Table 3. (*) means that the results of

CCNN-IT and 2DC are adapted from [42] and [40]. As

shown in Table 3, though using limited annotations, our

semi-supervised method achieves comparable or even better

performance than the state-of-the-art fully supervised meth-

ods. On FERA 2015, our method achieves the best per-

formance in both ICC and MAE on average. On DISFA,

our method outperforms CNN, VGG, and OR-CNN in ICC

and achieves close performance to them in MAE. Compared

to the reported performance of CCNN-IT, our method is

close to CCNN-IT in ICC and much better in MAE. These

supervised methods treat frames independently while our

method consider relationships among multiple frames on

both AU intensity and image representation. The results

further demonstrate the effectiveness of the proposed semi-

supervised method.

Our method vs. the semi-supervised methods. As shown

in Table 4, our method achieves the best performance on

FERA 2015. On DISFA, our method achieves the best per-

formance in ICC and the second best in MAE. LBA tends to

predict the intensity to be 0 which is the majority AU inten-

sity (see Fig. 5b). It can achieves good MAE performance,

but its ICC is much worse than ours. Ladder and RSTP

treat each frame independently and use unlabeled samples

by denoising or permutation. LBA uses unlabeled samples

by walking from a labeled sample to a unlabeled one and

then walking back. Differently, our method considers high-

order relationships among multiple frames on both intensity

and representation. The results show the effectiveness of the

domain knowledge incorporated in our model.

5. Conclusion

We propose a knowledge-based semi-supervised deep

CNN for AU intensity estimation. The proposed method

requires only the annotations of peak and valley frames

in training sequences, which significantly reduces the re-

quirement of annotations for training CNN. We identify

four types of knowledge and encode them to provide addi-

tional supervision. Particularly, the designed losses for rel-

ative appearance similarity and temporal intensity ordering

consider high-order relationships among multiple frames in

training tuples. Evaluations on FERA 2015 and DISFA

demonstrate that though using around 1% or 2% of inten-

sity annotations in the training set, our method can achieve

comparable or even better to the state-of-the-art methods

that use 100% of intensity annotations.
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