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Abstract

Pose variation is one key challenge in face recognition.

As opposed to current techniques for pose invariant face

recognition, which either directly extract pose invariant fea-

tures for recognition, or first normalize profile face images

to frontal pose before feature extraction, we argue that it

is more desirable to perform both tasks jointly to allow

them to benefit from each other. To this end, we propose

a Pose Invariant Model (PIM) for face recognition in the

wild, with three distinct novelties. First, PIM is a novel

and unified deep architecture, containing a Face Frontaliza-

tion sub-Net (FFN) and a Discriminative Learning sub-Net

(DLN), which are jointly learned from end to end. Second,

FFN is a well-designed dual-path Generative Adversar-

ial Network (GAN) which simultaneously perceives global

structures and local details, incorporated with an unsuper-

vised cross-domain adversarial training and a “learning

to learn” strategy for high-fidelity and identity-preserving

frontal view synthesis. Third, DLN is a generic Convo-

lutional Neural Network (CNN) for face recognition with

our enforced cross-entropy optimization strategy for learn-

ing discriminative yet generalized feature representation.

Qualitative and quantitative experiments on both controlled

and in-the-wild benchmarks demonstrate the superiority of

the proposed model over the state-of-the-arts.

1. Introduction

Face recognition has been a key problem in computer

vision for decades. Even though (near-) frontal1 face recog-

nition seems to be solved under constrained conditions, the

more general problem of face recognition in the wild still

needs more studies, desiderated by many practical applica-

∗Homepage: https://zhaoj9014.github.io/.
†Work done in part during an internship at Panasonic R&D Center Sin-

gapore.
1 “Near frontal” faces are almost equally visible for both sides and their

yaw angles are within 10◦ from frontal view.

Figure 1: Pose invariant face recognition in the wild. Col. 1 & 6:

distinct identities under different poses with other unconstrained

factors (different expressions and lighting conditions); Col. 2 & 5:

recovered frontal faces with our proposed PIM model; Col. 3 & 4:

learned facial representations with our proposed PIM model. PIM

can learn pose-invariant representations and recover photorealistic

frontal faces effectively. The representations are extracted from

the penultimate layer of PIM.

tions. For example, in surveillance scenarios, free-walking

people would not always keep their faces frontal to the cam-

eras. Most face images captured in the wild are contam-

inated by unconstrained factors like extreme pose, bad il-

lumination, large expression, etc. Among them, the one

that harms face recognition performance arguably the most

is pose variation. The performance of most face recogni-

tion models degrades by over 10% from frontal-frontal to

frontal-profile verification [24]. In contrast, human can rec-

ognize faces with large pose variance without significant ac-

curacy drop. In this work, we aim to mitigate such a gap

between human performance and automatic models for rec-

ognizing unconstrained faces with large pose variations.

Recent studies [10, 19] discovered that human brain has

a face-processing neural system that consists of several con-

nected regions. The neurons in some of these regions per-

form face normalization (i.e., profile to frontal) and others
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are tuned to identify the synthesized frontal faces, making

face recognition robust to pose variation. This intriguing

function of primate brain inspires us to develop a novel

and unified deep neural network, termed as Pose Invari-

ant Model (PIM), which jointly learns face frontalization

and discriminative representation end-to-end that mutually

boost each other to achieve pose-invariant face recognition.

PIM takes face images of arbitrary poses with other poten-

tial distracting factors (e.g., bad illuminations or different

expressions) as inputs. It outputs facial representations in-

variant to pose variation and meanwhile preserves discrim-

inativeness across different identities. As shown in Fig. 1,

our proposed PIM can learn pose-invariant representations

and effectively recover frontal faces.

In particular, PIM includes a Face Frontalization sub-

Net (FFN) and a Discriminative Learning sub-Net (DLN)

to learn the representations. The FFN contains a care-

fully designed dual-path Generative Adversarial Network

(GAN) that simultaneously recovers global facial struc-

tures and local details. Besides, FFN introduces unsuper-

vised cross-domain adversarial training and a “learning to

learn” strategy with the siamese discriminator for achiev-

ing stronger generalizability and high-fidelity, identity-

preserving frontal face generation. Cross-domain adversar-

ial training is applied during training the generator to pro-

mote features that are indistinguishable w.r.t. the shift be-

tween source (training) and target (test) domains. In this

way, the generalizability of FFN can be significantly im-

proved even in case of only a few training samples from tar-

get domains. The discriminator in FFN introduces dynamic

convolution to implement “learning to learn” for more effi-

cient adaption and a siamese architecture featuring a pair-

wise training scheme to encourage the generator to pro-

duce photorealistic frontal faces without identify informa-

tion loss. We introduce the other branch to the discriminator

as the “learner”, which predicts the dynamic convolutional

parameters of the first branch from a single sample. DLN

is a generic Convolutional Neural Network (CNN) for face

recognition with our proposed enforced cross-entropy op-

timization strategy. Such a strategy reduces the intra-class

distance while increasing the inter-class distance, so that the

learned facial representations are discriminative yet gener-

alizable.

We conduct extensive qualitative and quantitative exper-

iments on various benchmarks, including both controlled

and in-the-wild datasets. The results demonstrate the effec-

tiveness of PIM on recognizing faces with extreme poses

and the superiority over the state-of-the-arts consistently on

all the benchmarks.

Our contributions are summarized as follows.

• We present a deep architecture unifying face frontal-

ization and recognition in a mutual boosting way. It in-

herits the merits of existing pose invariant face recog-

nition methods.

• We design a novel face frontalization network for pho-

torealistic face frontalization that can generalize well

across multiple domains and fast adapt to new applica-

tion samples.

• We develop effective and novel training strategies for

the frontalization network, the recognition network,

and the whole deep architecture, which generate pow-

erful face representations.

• Our deep architecture for pose invariant face recogni-

tion significantly outperforms the state-of-the-arts on

three large benchmarks.

2. Related Work

Face Frontalization Face frontalization or normalization

is a challenging task due to its ill-posed nature. Tradi-

tional methods address this problem through 2D/3D local

texture warping [14, 38], statistical modeling [21], and deep

learning based methods [18, 37]. For instance, Hassner et

al. [14] used a single and unmodified 3D surface to approx-

imate the shape of all the input faces, which is shown ef-

fective for face frontalization, but suffers big performance

drop for profile and near-profile2 faces due to severe texture

loss and artifacts. Sagonas et al. [21] proposed to perform

joint frontal view reconstruction and landmark detection by

solving a constrained low-rank minimization problem. Kan

et al. [18] used Stacked Progressive Auto-Encoders (SPAE)

to rotate a profile face to frontal. Though with encourag-

ing results, the synthesized faces lack fine details and tend

to be blurry and unreal under a large pose. The quality of

synthesized images with current methods is still far from

satisfactory for recognizing faces with large pose variation.

Pose Invariant Representation Learning Conventional

approaches often leverage robust local descriptors [8, 2, 7]

and metric learning [4, 33] to tackle pose variance. In

contrast, deep learning methods often handle pose vari-

ance through a single pose-agnostic or several pose-specific

models with pooling operation and specific loss func-

tions [6, 34]. For instance, the VGG-Face model [20] adopts

the VGG architecture [27]. The DeepFace [30, 31] model

uses a deep CNN coupled with 3D alignment. FaceNet [23]

utilizes the inception architecture. The DeepID2+ [29] and

DeepID3 [28] extend the FaceNet [23] model by includ-

ing joint Bayesian metric learning and multi-task learning.

However, such data-driven methods heavily rely on well an-

notated data. Collecting labeled data covering all variations

is expensive and even impractical.

Our proposed PIM presents a similar idea with Two-

Pathway GAN (TP-GAN) [17] and Disentangled Represen-

tation learning GAN (DR-GAN) [32]. TP-GAN considers

photorealistic and identity preserving frontal view synthesis

2Faces with yaw angle greater than 60◦.
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and DR-GAN considers both face frontalization and rep-

resentation learning in a unified network. Our proposed

model differs from them in following aspects: 1) PIM aims

to jointly learn face frontalization and pose invariant rep-

resentations end-to-end to allow them to mutually boost

each other for addressing large pose variance issue in un-

constrained face recognition, whereas TP-GAN only tries

to recover a frontal view from profile face images; 2) TP-

GAN [17] and DR-GAN [32] suffer from poor generaliz-

ability and great optimization difficulties which limit their

effectiveness in unconstrained face recognition, while our

PIM architecture effectively overcomes these issues by in-

troducing unsupervised cross-domain adversarial training, a

“learning to learn” strategy using the siamese discriminator

with dynamic convolution, and an enforced cross-entropy

optimization strategy. Detailed experimental comparisons

are provided in Sec. 4.

3. Pose Invariant Model

As shown in Fig. 2 (a), the proposed Pose Invariant

Model (PIM) consists of a Face Frontalization sub-Net

(FFN) and a Discriminative Learning sub-Net (DLN) that

jointly normalize faces and learn face representation end-

to-end. We now present each component in details.

3.1. Face Frontalization Sub­Net

3.1.1 Domain Invariant Dual-Path Generator

A photorealistic frontal face image is important for repre-

senting a face identity. A natural scheme is thus to gener-

ate this reference face from face images of arbitrary poses.

Since the convolutional filters are usually shared across all

the spatial locations, merely using a single-path genera-

tor cannot learn filters that are powerful enough for both

sketching a rotated face structure and precisely recovering

local textures. To address this issue, we propose a dual-path

generator, as inspired by [17, 38], where one path aims to

infer the global sketch and the other to attend to local facial

details, as shown in Fig. 2 (b).

In particular, the global path generator Gθg (with learn-

able parameters θg) consists of a transition-down encoder

Gθg
E

and a transition-up decoder Gθg
D

. The local path gen-

eratorGθl also has an auto-encoder architecture, which con-

tains four identical sub-networks that learn separately to

frontalize the following four center-cropped local patches:

left eye, right eye, nose and mouth. These patches are ac-

quired by an off-the-shelf landmark detection model. Given

an input face image I , to effectively integrate information

from the global and local paths, we first align the feature

maps f l predicted by Gθl to a single feature map according

to a pre-estimated landmark location template, which is fur-

ther concatenated with the feature map fg from the global

path and then fed to following convolution layers to gener-

ate the final frontalized face image I ′. We also concatenate

a Gaussian random noise z at the bottleneck layer of the

dual-path generator to model variations of other factors be-

sides pose, which may also help recover invisible details.

Formally, let the input profile face image with four land-

mark patches be collectively denoted as Itr. Then the pre-

dicted face is I ′ = Gθ(Itr). The key requirements for the

FFN include two aspects. 1) The recovered frontal face im-

age I ′ should visually resemble a real one and preserve the

identity information as well as local textures. 2) It should

be hardly possible for an algorithm to identify the domain

of origin of the observation I
′

regardless of the underly-

ing gap between source domain (with ample annotated data)

and target domain (with rare annotated data).

To this end, we propose to learn the parameters {θg, θli}
(here i=1, . . ., 4 index the four local path models) by mini-

mizing the following composite losses:

LGθ
=−Ladv+λ0Lece−λ1Ldomain+λ2Lpixel+λ3Lsym+λ4LTV,

(1)

where Ladv is the adversarial loss for adding realism to

the synthetic images and alleviating artifacts, Lece is the

enforced cross-entropy loss for preserving the identity in-

formation, Ldomain is the cross-domain adversarial loss for

domain adaption and generalization capacity enhancement,

Lpixel is the pixel-wise ℓ1 loss for encouraging multi-scale

image content consistency, Lsym is the symmetry loss for

alleviating self-occlusion issue, LTV is the total variation

loss for reducing spiky artifacts and {λk}k=4
0

are weighting

parameters among different losses.

In order to enhance generalizability of the FFN and

reduce over-fitting that hinders the practical application

of most previous GAN-based models [17, 32], we adopt

Ldomain to promote the emergence of features encoded by

Gθg and Gθli that are indistinguishable w.r.t. the shift be-

tween the source (training, Itr) and target (testing, Ite) do-

mains. Let Ii denote the images from both source and target

domains, yi ∈ {0, 1} indicate which domain Ii is from, and

ri = GθE (Ii) denote the representations. The cross-domain

adversarial loss is defined as follows:

Ldomain =
1

N

∑

i

−yi log[Cφ(ri)]− (1− yi) log[1− Cφ(ri)],

(2)

where φ denotes the learnable parameters for the domain

classifier. Minimizing Ldomain can reduce the domain

discrepancy and help the generator achieve similar face

frontalization performance across different domains, even if

training samples from the target domain are limited. Such

adapted representations are provided by augmenting the en-

coders of Gθg and Gθli with a few standard layers as the

domain classifier Cφ, and a new gradient reversal layer to

reverse the gradient during optimizing the encoders (i.e.,

gradient update as in Fig. 2 (b)), as inspired by [11].

Lpixel is introduced to enforce the multi-scale content
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(a) Overview of the proposed PIM framework.

(b) Dual-path generator architecture of the FFN.

Figure 2: Pose Invariant Model (PIM) for face recognition in the wild. The PIM contains an Face Frontalization sub-Net (FFN) and a

Discriminative Learning sub-Net (DLN) that jointly learn end-to-end. FFN is a dual-path (i.e., simultaneously perceiving global structures

and local details) GAN augmented by (1) unsupervised cross-domain (i.e., Itr and Ite) adversarial training and (2) a siamese discriminator

with a “learning to learn” strategy — convolutional parameters (i.e., Wd) dynamically predicted by the “learner” DL of the discriminator

and transferred to DM . DLN is a generic Convolutional Neural Network (CNN) for face recognition optimized by the proposed enforced

cross-entropy optimization. It takes in the frontalized face images from FFN and outputs learned pose invariant facial representations.

consistency between the final frontalized face and cor-

responding ground truths, defined as Lpixel = ‖I ′ −
IGT ‖/|IGT | where |IGT | is the size of IGT . Since sym-

metry is an inherent feature of human faces, Lsym is intro-

duced within the Laplacian space to exploit this prior infor-

mation and impose the symmetry constraint on the recov-

ered frontal view for alleviating self-occlusion issue:

Lsym =
1

W/2×H

W/2
∑

i

H
∑

j

|I ′i,j − I ′W−(i−1),j |, (3)

where W , H denote the width and height of the final recov-

ered frontal face image I ′, respectively.

The standard LTV is introduced as a regularization term

on the synthesized results to reduce spiky artifacts:

LTV =
W
∑

i

H
∑

j

√

(I ′i,j+1 − I ′i,j)
2 + (I ′i+1,j − I ′i,j)

2. (4)

3.1.2 Dynamic Convolutional Discriminator

To increase realism of the synthesized images to benefit face

recognition, we need to narrow the gap between the distri-

butions of the synthetic and real images. Ideally, the genera-

tor should be able to generate images indistinguishable from
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real ones for a sufficiently powerful discriminator. Mean-

while, since the training sample size in this scenario is usu-

ally small, we need to develop a sample-efficient discrimi-

nator. To this end, we propose a “learning to learn” strategy

using a siamese adversarial pixel-wise discriminator with

dynamic convolution, as shown in Fig. 2 (a). This siamese

architecture implements a pair-wise training scheme where

each sample from the generator consists of two frontalized

faces with the same identity and the corresponding real sam-

ple consists of two distinct frontal faces of the same person.

Different from conventional CNN based discriminators,

we construct the second branch of the discriminator as the

“learner” DL that dynamically predicts the suitable con-

volutional parameters of the first branch DM from a sin-

gle sample. Formally, consider a particular convolutional

layer in DM . Given an input tensor (i.e., feature maps from

the previous layer) xin ∈ R
w×h×cin and kernel weights

W ∈ R
k×k×cin×cout where k is the kernel size, the output

xout ∈ R
w′×h′×cout of the convolutional layer can be com-

puted as xout = W ∗ xin, where ∗ denotes the convolution

operation.

Inspired by [3], we perform the following factoriza-

tion, which is analogous to Singular Value Decomposition

(SVD),

xout = U ′ ∗ (Wd) ∗cin U ∗ xin, (5)

where U ∈ R
1×1×cin×cin , U ′ ∈ R

1×1×cin×cout , Wd ∈
R
k×k×cin is the dynamic convolution kernel predicted by

DL and ∗cin denotes independent filtering of cin chan-

nels. Under the factorization of Eqn. (5), the number of

parameters to learn by DL is significantly decreased from

k × k × cin × cout to k × k × cin, allowing them to grow

only linearly with the number of input feature map chan-

nels.

We leverage the same architecture of global-path en-

coder as DM and DL, learning separately without weight

sharing, while two generator blocks in Fig. 2 (a) share their

weights. The feature maps from DM and DL are further

concatenated and fed into a fully connected bottleneck layer

to compute Ladv, which serves as a supervision to push the

synthesized image to reside in the manifold of photoreal-

istic frontal view images, prevent blur effect, and produce

visually pleasing results. In particular, Ladv is defined as

Ladv =
1

N

∑

i

− yi log[DM←L(IM , IL)]

− (1− yi) log[1−DM←L(IM, IL)],

(6)

where DM←L denotes the siamese discriminator with dy-

namic convolution, (IM , IL) denotes the pair of face im-

ages fed to DM←L and y is the binary label indicating the

pair is synthesized or real.

3.2. Discriminative Learning Sub­Net

The DLN is a generic CNN for face recognition trained

by our proposed enforced cross-entropy optimization strat-

egy for learning discriminative yet generalizable facial rep-

resentations. This strategy reduces the intra-class distance

while increasing the inter-class distance. Moreover, it helps

improve the rubustness of the learned representations and

address the potential over-fitting issue.

DLN takes the frontalized face images I ′ from the FFN

as input, and outputs the learned pose invariant facial repre-

sentations f = Mψ(I
′), which are further utilized for face

verification and identification. Here Mψ denotes the DLN

model parameterized by ψ. We define every column vector

of the weights of the last fully connected layer of DLN as an

anchor vector a which represents the center of each identity

in the feature space. Thus, the decision boundary can be

derived when the feature vector has the same distance (co-

sine metric) to several anchor vectors (cluster centers), i.e.,

a⊤i f = a⊤j f .

However, in such cases, the samples close to the deci-

sion boundary can be wrongly classified with a high confi-

dence. A simple yet effective solution is to reduce the intra-

class distance while increasing the inter-class distance of

the feature vectors, through which the hard samples will be

adjusted and re-allocated in the correct decision area. To

achieve this goal, we propose to impose a selective attenua-

tion factor as a regularization term to the confidence scores

(predictions) of the genuine samples:

pi =
exp[τt · (a

⊤
i f)]

∑

j exp[τt · (a
⊤
j f)]

, (7)

where pi denotes the predicted confidence score w.r.t. the

ith identity, τt denotes the selective attenuation factor, a and

f are ℓ2 normalized to achieve boundary equilibrium during

network training. In particular, τt in Eqn. (7) is updated by

τt+1 = τt
(

1− n
B

)α
, where n denotes the batch index, B

denotes the total batch number and α is the diversity ratio.

Selective attenuation on the confidence scores of genuine

samples in turn increases the corresponding classification

losses, which narrows the decision boundary and controls

the intra-class affinity and inter-class distance.

The predictions of Eqn. (7) are used to compute the

multi-class cross-entropy objective function for updating

network parameters (i.e., gradient update as in Fig. 2 (a)),

which is an enforced optimization scheme:

Lece =
1

N

∑

i

−li log(p)− (1− li) log(1− p), (8)

where li is the face identity ground truth.

4. Experiments

We evaluate PIM qualitatively and quantitatively under

both controlled and in-the-wild settings for pose-invariant
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face recognition. For qualitative evaluation, we show visu-

alized results of face frontalization on Multi-PIE [12] and

LFW [16] benchmark datasets. For quantitative evalua-

tion, we evaluate face recognition performance using the

learned facial representations with a cosine distance metric

on Multi-PIE [12] and CFP [24] benchmark datasets.

Implementation Details Throughout the experiments,

the size of the RGB face images from training domain

(Itr), testing domain (Ite), and the FFN prediction (I ′) is

fixed as 128×128; the sizes of the four RGB local patches

(i.e., left/right eye, nose and mouth) are fixed as 40×40,

40×40, 32×40 and 48×32, respectively; the dimensional-

ity of the Gaussian random noise z is fixed as 100; the diver-

sity ratio α and the constraint factors λi, i ∈ {0, 13, 2, 3, 4}
are empirically fixed as 0.9, 5×10−3, 0.1, 0.3, 5×10−2 and

5×10−4, respectively; the dropout ratio is fixed as 0.7;

the weight decay, batch size and learning rate are fixed as

5×10−4, 10 and 2×10−4, respectively. We use off-the-shelf

OpenPose [25] for landmark detection4. We initialize the

DLN with ResNet-50 [15] and Light CNN-29 [35] archi-

tectures as our two baselines, which are pre-trained on MS-

Celeb-1M [13] and fine-tuned on the target dataset. We ini-

tializeDM andDL with the same architecture as the global-

path encoder and pre-train DL on MS-Celeb-1M [13]. The

proposed network is implemented based on the publicly

available TensorFlow [1] platform, which is trained using

Adam (β1=0.5) on three NVIDIA GeForce GTX TITAN X

GPUs with 12G memory.

4.1. Evaluations on the Multi­PIE Benchmark

The CMU Multi-PIE [12] dataset is the largest multi-

view face recognition benchmark, which contains 754,204
images of 337 identities from 15 view points and 20 illu-

mination conditions. We conduct experiments under two

settings: Setting-1 concentrates on pose, illumination and

minor expression variations. It only uses the images in ses-

sion one, which contains 250 identities. The images with

11 poses within ±90◦ and 20 illumination levels of the first

150 identities are used for training. For testing, one frontal

view with neutral expression and illumination (i.e., ID07)

is used as the gallery image for each of the remaining 100
identities and other images are used as probes. Setting-2

concentrates on pose, illumination and session variations. It

uses the images with neutral expression from all four ses-

sions, which contains 337 identities. The images with 11
poses within ±90◦ and 20 illumination levels of the first

200 identities are used for training. For testing, one frontal

view with neural illumination is used as the gallery image

3Cross-domain adversarial training is an option, if there is no need to

do domain adaptation, simply set λ1=0.
4For profile face images with large yaw angles, OpenPose [25] may

fail to locate both eyes. In such cases, we use the detected eye after center

cropping as the input left/right eye patch.

Table 1: Component analysis: rank-1 recognition rates (%) under

Multi-PIE [12] Setting-1. b1 and b2 denote ResNet-50 [15] and

Light CNN-29 [35], respectively. PIM1 and PIM2 use ResNet-

50 [15] and Light CNN-29 [35] as backbone architectures, respec-

tively.
Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

b1 18.80 63.80 92.20 98.30 99.20 99.40

b2 33.00 76.10 95.20 97.90 99.20 99.80

w/o Lpixel 60.60 82.30 89.60 93.70 98.50 98.60

w/o G
θl
i

66.80 89.30 95.60 98.20 99.30 99.80

w/o Dϕ 66.90 90.00 96.50 98.00 99.20 99.80

w/o dyn conv 69.80 90.70 96.80 98.10 99.40 99.80

w/o Ldomain 71.10 90.80 97.10 98.30 99.30 99.80

w/o Lsym 72.30 90.40 96.80 98.20 99.30 99.80

PIM1 71.60 92.50 97.00 98.60 99.30 99.40

PIM2 75.00 91.20 97.70 98.30 99.40 99.80

for each of the remaining 137 identities and other images

are used as probes.

4.1.1 Component Analysis

We first investigate different architectures and loss function

combinations of PIM to see their respective roles in pose in-

variant face recognition. We compare eight variants of PIM,

i.e., different DLN architectures (ResNet-50 [15] vs. Light

CNN-29 [35]), w/o Lpixel, w/o local-path generator Gθli ,
w/o siamese discriminator Dϕ (DL is removed), w/o dy-

namic convolution (siamese discriminator without sharing

weights), w/o cross-domain adversarial training Ldomain

and w/o Lsym, in each case.

Averaged rank-1 recognition rates are compared in

Setting-1 in Tab. 1. The results on the profile images serve

as our baselines (i.e., b1 and b2). The results of the mid-

dle panel variations are all based on Light CNN-29 [35].

By comparing the results from the top and bottom panels,

we observe that our PIM is not restricted to the DLN ar-

chitecture used, since similar improvements (e.g. 52.80%
v.s. 42.00% under ±90◦) can be achieved with our joint

face frontalization and discriminative representation learn-

ing framework. The pixel loss, dual-path generator and the

“learning to learn” strategy using the siamese discriminator

with dynamic convolution of the FFN contribute the most

to improving the face recognition performance, especially

for large pose cases. Although not apparent, the cross-

domain adversarial training and symmetry loss also help

improve the recognition performance. Cross-domain ad-

versarial training is crucial for enhancing the generalization

capacity of PIM on Multi-PIE [12] as well as other bench-

mark datasets. Fig. 3 illustrates the perceptual performance

of these variants. As expected, the inference result with-

out pixel loss, local-path generator or “learning to learn”

strategy using the siamese discriminator with dynamic con-

volution deviates from the true appearance seriously. The

synthesis without cross-domain adversarial training tends to

present inferior generalizability while that without symme-

try loss sometimes shows factitious asymmetrical effect.

4.1.2 Intermediate Results Visualization

Most previous works on face frontalization and pose invari-

ant representation learning are dedicated to address prob-
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Figure 3: Component analysis. Synthesized results of PIM and

its variants.

Table 2: Rank-1 recognition rates (%) across views, minor ex-

pressions and illuminations under Multi-PIE [12] Setting-1. “-

” means the result is not reported. b1 and b2 denote ResNet-

50 [15] and Light CNN-29 [35], respectively. PIM1 and PIM2

use ResNet-50 [15] and Light CNN-29 [35] as backbone architec-

tures, respectively.
Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

b1 18.80 63.80 92.20 98.30 99.20 99.40

b2 33.00 76.10 95.20 97.90 99.20 99.80

CPF [37] - - - 71.65 81.05 89.45

Hassner [14] - - 44.81 74.68 89.59 96.78

FV [26] 24.53 45.51 68.71 80.33 87.21 93.30

HPN [9] 29.82 47.57 61.24 72.77 78.26 84.23

FIP 40 [39] 31.37 49.10 69.75 85.54 92.98 96.30

c-CNN [36] 47.26 60.66 74.38 89.02 94.05 96.97

TP-GAN [17] 64.03 84.10 92.93 98.58 99.85 99.78

PIM1 71.60 92.50 97.00 98.60 99.30 99.40

PIM2 75.00 91.20 97.70 98.30 99.40 99.80

lems within a pose range of ±60◦, since it is commonly

believed with a pose larger than 60◦, it is difficult for a

model to generate faithful frontal images or learn discrimi-

native yet generative facial representations. However, with

enough training data and proper architecture and objective

function design of the proposed PIM, it is in fact feasible

to recover high-fidelity and identity-preserving frontal faces

under very large poses and learn pose invariant representa-

tions for face recognition in the wild.

The intermediate results of recovered face images in the

frontal view and learned facial representations are visual-

ized in Fig. 1. We observe that the frontalized faces present

compelling perceptual quality across poses larger than 60◦,
and the learned representations are discriminative and pose

invariant.

4.1.3 Face Recognition Comparison

Tab. 2 shows the face recognition performance comparison

of our PIM with two baselines and other state-of-the-arts

in Setting-1. Regardless of the adopted DLN architecture,

PIM consistently achieves the best performance across all

poses (except comparable with TP-GAN [17] under ±30◦),
especially for large yaw angles. In particular, PIM (Light

CNN-29 [35]) outperforms TP-GAN [17] and c-CNN For-

Table 3: Rank-1 recognition rates (%) across views, illuminations

and sessions under Multi-PIE [12] Setting-2. “-” means the result

is not reported. b1 and b2 denote ResNet-50 [15] and Light CNN-

29 [35], respectively. PIM1 and PIM2 use ResNet-50 [15] and

Light CNN-29 [35] as backbone architectures, respectively.
Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

b1 15.50 55.10 85.90 97.10 98.40 98.60

b2 27.10 68.70 91.40 97.70 98.60 99.10

FIP [39] - - 45.90 64.10 80.70 90.70

MVP [40] - - 60.10 72.90 83.70 92.80

CPF [37] - - 61.90 79.90 88.50 95.00

DR-GAN [32] - - 83.20 86.20 90.10 94.00

TP-GAN [17] 64.64 77.43 87.72 95.38 98.06 98.68

PIM1 81.30 92.70 96.60 97.30 98.40 98.80

PIM2 86.50 95.00 98.10 98.50 99.00 99.30

est [36] by 10.97% and 27.74% under ±90◦, respectively.

Note that TP-GAN [17] adopts Light CNN-29 [35] as the

feature extractor which has the same architecture as our

DLN and c-CNN Forest [36] is an ensemble of three mod-

els, while our PIM has a more effective and efficient joint

training scheme and a much simpler network architecture.

Tab. 3 shows the face recognition comparison of our PIM

with two baselines and other state-of-the-arts in Setting-2.

Similar to the observation under Setting-1, PIM consistently

achieves the best performance across all poses. In partic-

ular, PIM (Light CNN-29 [35]) outperforms TP-GAN [17]

by 21.86% under ±90◦, and outperforms TP-GAN [17] and

DR-GAN [32] by 10.38% and 14.90% under ±60◦, respec-

tively. This well verifies the superiority of our proposed

cross-domain adversarial training, the “learning to learn”

strategy using the siamese discriminator with dynamic con-

volution and the enforced cross-entropy optimization strat-

egy in improving the overall recognition performance.

4.2. Evaluations on the CFP Benchmark

The CFP [24] dataset aims to evaluate the strength of

face verification approaches across pose, more specifically,

between frontal view (yaw angle<10◦) and profile view

(yaw angle>60◦). CFP contains 7,000 images of 500 sub-

jects, where each subject has 10 frontal and 4 profile face

images. The data are randomly organized into 10 splits,

each containing an equal number of frontal-frontal and

frontal-profile pairs, with 350 genuine and 350 imposter

ones, respectively. Evaluation systems report the mean and

standard deviation of accuracy, Equal Error Rate (EER) and

Area Under Curve (AUC) over the 10 splits for both frontal-

frontal and frontal-profile face verification settings.

Tab. 4 compares the face recognition performance of our

PIM (Light CNN-29 [35]) with other state-of-the-arts on the

CFP [24] benchmark dataset. The results on the original im-

ages serve as our baseline. PIM achieves comparable per-

formance as human under fontal-profile setting and outper-

forms human performance under frontal-frontal setting. In

particular, for frontal-frontal cases, PIM gives stably similar

saturated performance with b (Light CNN-29 [35]), both of

which reduce the EER of human performance by around
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Table 4: Face recognition performance (%) comparison on CFP [24]. The results are averaged over 10 testing splits.

Method
Frontal-Profile Frontal-Frontal

Acc EER AUC Acc EER AUC

FV+DML [24] 58.47±3.51 38.54±1.59 65.74±2.02 91.18±1.34 8.62±1.19 97.25±0.60

LBP+Sub-SML [24] 70.02±2.14 29.60±2.11 77.98±1.86 83.54±2.40 16.00±1.74 91.70±1.55

HoG+Sub-SML [24] 77.31±1.61 22.20±1.18 85.97±1.03 88.34±1.33 11.45±1.35 94.83±0.80

FV+Sub-SML [24] 80.63±2.12 19.28±1.60 88.53±1.58 91.30±0.85 8.85±0.74 96.87±0.39

Deep Features [24] 84.91±1.82 14.97±1.98 93.00±1.55 96.40±0.69 3.48±0.67 99.43±0.31

Triplet Embedding [22] 89.17±2.35 8.85±0.99 97.00±0.53 96.93±0.61 2.51±0.81 99.68±0.16

Chen et al. [5] 91.97±1.70 8.00±1.68 97.70±0.82 98.41±0.45 1.54±0.43 99.89±0.06

Light CNN-29 [35] 92.47±1.44 8.71±1.80 97.77±0.76 99.64±0.32 0.57±0.40 99.92±0.15

PIM (Light CNN-29 [35]) 93.10±1.01 7.69±1.29 97.65±0.62 99.44±0.36 0.86±0.49 99.92±0.10

Human 94.57±1.10 5.02±1.07 98.92±0.46 96.24±0.67 5.34±1.79 98.19±1.13

5.00%. For more challenging frontal-profile cases, PIM

consistently outperforms the baseline and other state-of-the-

arts. In particular, PIM reduces the EER by 1.02% com-

pared with b (Light CNN-29 [35]) and improves the accu-

racy by 1.13% over the 2nd-best. This shows that the facial

representations learned by PIM are discriminative and ro-

bust even at extreme pose variations.

4.3. Evaluations on the LFW Benchmark

LFW [16] contains 13,233 face images of 5,749 iden-

tities. The images were obtained by trawling the Internet

followed by face centering, scaling and cropping based on

bounding boxes provided by an automatic face locator. The

LFW data have large in-the-wild variabilities, e.g., in-plane

rotations, non-frontal poses, low resolution, non-frontal il-

lumination, varying expressions and imperfect localization.

As a demonstration of our model’s superior generaliz-

ability to in-the-wild face images, we qualitatively com-

pare the intermediate face frontalization results of our PIM

(Light CNN-29 [35]) with TP-GAN [17], DR-GAN [32],

and the approach from Hassner et al. [14], which are the

state-of-the-arts aiming to generate photorealistic and iden-

tity preserving frontal view from profiles. As in Fig. 4,

the predictions of TP-GAN [17] suffer severe texture loss

and involved artifacts, and the predictions of DR-GAN [32]

and the method by Hassner et al. [14] deviate from true ap-

pearance seriously, for both near-frontal (the top two rows)

and profile (the bottom three rows) cases. Comparatively,

PIM can faithfully recover high fidelity frontal view face

images with finer local details and global face shapes. This

well verifies that the unsupervised cross-domain adversarial

training can effectively advance generalizability and reduce

over-fitting, and that the “learning to learn” strategy us-

ing a siamese discriminator with dynamic convolution con-

tributes to the synthesized perceptually natural and photore-

alistic results. Moreover, the joint learning scheme of face

frontalization and discriminative representation also helps,

since the two sub-nets leverage each other during end-to-

end training to achieve a final win-win outcome.

5. Conclusion

We proposed a novel Pose Invariant Model (PIM) to ad-

dress the challenging face recognition with large pose vari-

LFW PIM (Ours) TP-GAN DR-GAN Hassner et al.

Figure 4: Comparison of face frontalization on LFW [16].

ations. PIM unifies a Face Frontalization sub-Net (FFN)

and a Discriminative Learning sub-Net (DLN) for pose

invariant recognition in an end-to-end deep architecture.

The FFN introduces unsupervised cross-domain adversarial

training and a “learning to learn” strategy to provide high-

fidelity frontal reference face image for effective learning

face representation from DLN. Comprehensive experiments

demonstrate the superiority of PIM over the state-of-the-

arts. We plan to apply PIM for other domain adaption and

transfer learning applications in the future.
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