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Abstract

There has been significant progresses for image object

detection in recent years. Nevertheless, video object detec-

tion has received little attention, although it is more chal-

lenging and more important in practical scenarios.

Built upon the recent works [37, 36], this work proposes

a unified approach based on the principle of multi-frame

end-to-end learning of features and cross-frame motion.

Our approach extends prior works with three new tech-

niques and steadily pushes forward the performance enve-

lope (speed-accuracy tradeoff), towards high performance

video object detection.

1. Introduction

Recent years have witnessed significant progress in ob-

ject detection [17] in still images. However, directly apply-

ing these detectors to videos faces new challenges. First,

applying the deep networks on all video frames introduces

unaffordable computational cost. Second, recognition ac-

curacy suffers from deteriorated appearances in videos that

are seldom observed in still images, such as motion blur,

video defocus, rare poses, etc.

There has been few works on video object detection. The

recent works [37, 36] suggest that principled multi-frame

end-to-end learning is effective towards addressing above

challenges. Specifically, data redundancy between consecu-

tive frames is exploited in [37] to reduce the expensive fea-

ture computation on most frames and improve the speed.

Temporal feature aggregation is performed in [36] to im-

prove the feature quality and recognition accuracy. These

works are the foundation of the ImageNet Video Object De-

tection Challenge 2017 winner [6].

The two works focus on different aspects and presents

their own drawbacks. Sparse feature propagation (see

Eq. (1)) is used in [37] to save expensive feature compu-

tation on most frames. Features on these frames are propa-
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gated from sparse key frames cheaply. The propagated fea-

tures, however, are only approximated and error-prone, thus

hurting the recognition accuracy. Multi-frame dense feature

aggregation (see Eq. (2)) is performed in [36] to improve

feature quality on all frames and detection accuracy as well.

Nevertheless, it is much slower due to repeated motion es-

timation, feature propagation and aggregation.

The two works are complementary in nature. They also

share the same principles: motion estimation module is built

into the network architecture and end-to-end learning of all

modules is performed over multiple frames.

Built on these progresses and principles, this work

presents a unified approach that is faster, more accurate, and

more flexible. Specifically, three new techniques are pro-

posed. First, sparsely recursive feature aggregation is used

to retain the feature quality from aggregation but as well

reduce the computational cost by operating only on sparse

key frames. This technique combines the merits of both

works [37, 36] and performs better than both.

Second, spatially-adaptive partial feature updating is in-

troduced to recompute features on non-key frames wherever

propagated features have bad quality. The feature quality is

learnt via a novel formulation in the end-to-end training.

This technique further improves the recognition accuracy.

Last, temporally-adaptive key frame scheduling replaces

the previous fixed key frame scheduling. It predicts the us-

age of a key frame accordingly to the predicted feature qual-

ity above. It makes the key frame usage more efficient.

The proposed techniques are unified with the prior

works [37, 36] under a unified viewpoint. Comprehensive

experiments show that the three techniques steadily pushes

forward the performance (speed-accuracy trade-off) enve-

lope, towards high performance video object detection. For

example, we achieve 77.8% mAP score at speed of 15.22

frame per second. It establishes the new state-of-the-art.

2. From Image to Video Object Detection

Object detection in static images has achieved significant

progress in recent years using deep CNN [17]. State-of-

the-art detectors share the similar methodology and network
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architecture, consisting of two conceptual steps.

First step extracts a set of convolutional feature maps F
over the whole input image I via a fully convolutional back-

bone network [31, 33, 14, 32, 34, 16, 2, 15, 35]. The back-

bone network is usually pre-trained on the ImageNet clas-

sification task and fine-tuned later. In this work, it is called

feature network, Nfeat(I) = F . It is usually deep and slow.

Computing it on all video frames is unaffordable.

Second step generates detection result y upon the feature

maps F , by performing region classification and bounding

box regression over either sparse object proposals [10, 13,

9, 29, 4, 24, 12, 5] or dense sliding windows [26, 27, 28, 25],

via a multi-branched sub-network. It is called detection net-

work in this work, Ndet(F ) = y. It is randomly initialized

and jointly trained with Nfeat. It is usually shallow and fast.

2.1. Revisiting Two Baseline Methods on Video

Sparse Feature Propagation [37]. It introduces the con-

cept of key frame for video object detection, for the first

time. The motivation is that similar appearance among adja-

cent frames usually results in similar features. It is therefore

unnecessary to compute features on all frames.

During inference, the expensive feature network Nfeat is

applied only on sparse key frames (e.g., every 10th). The

feature maps on any non-key frame i are propagated from

its preceding key frame k by per-pixel feature value warp-

ing and bilinear interpolation. The between frame pixel-

wise motion is recorded in a two dimensional motion field

Mi→k
1. The propagation from key frame k to frame i is

denoted as

Fk→i = W(Fk,Mi→k), (1)

where W represents the feature warping function. Then the

detection network Ndet works on Fk→i, the approximation

to the real feature Fi, instead of computing Fi from Nfeat.

The motion field is estimated by a lightweight flow net-

work, Nflow(Ik, Ii) = Mi→k [7], which takes two frames

Ik, Ii as input. End-to-end training of all modules, in-

cluding Nflow, greatly boosts the detection accuracy and

makes up for the inaccuracy caused by feature approxima-

tion. Compared to the single frame detector, because the

computation of Nflow and Eq. (1) is much cheaper (dozens,

see Table 2 in [37]) than feature extraction in Nfeat, method

in [37] is much faster (up to 10×) with small accuracy drop

(up to a few mAP points) (see, Figure 3 in [37]).

Dense Feature Aggregation [36]. It introduces the con-

cept of temporal feature aggregation for video object detec-

tion, for the first time. The motivation is that the deep fea-

tures would be impaired by deteriorated appearance (e.g.,

1Since the warping W from frame k to i adopts backward warping, we

directly estimate and use backward motion field Mi→k for convenience.

motion blur, occlusion) on certain frames, but could be im-

proved by aggregation from nearby frames.

During inference, feature network Nfeat is densely eval-

uated on all frames. For any frame i, the feature maps

of all the frames within a temporal window [i − r, i + r]
(r = 2 ∼ 12 frames) are firstly warped onto the frame

i in the same way to [37] (see Eq. (1)), forming a set of

feature maps {Fk→i|k ∈ [i − r, i + r]}. Different from

sparse feature propagation [37], the propagation occurs at

every frame instead of key frame only. In other words, every

frame is viewed as key frame.

The aggregated feature maps F̄i at frame i is then ob-

tained as the weighted average of all such feature maps,

F̄i(p) =
∑

k∈[i−r,i+r]

Wk→i(p) · Fk→i(p), ∀p, (2)

where the weight Wk→i is adaptively computed as the sim-

ilarity between the propagated feature maps Fk→i and the

real feature maps Fi. Instead, the feature F is projected

into an embedding feature F e for similarity measure, and

the projection can be implemented by a tiny fully convolu-

tional network (see Section 3.4 in [36]).

Wk→i(p) = exp

(

F e
k→i(p) · F

e
i (p)

|F e
k→i(p)| · |F

e
i (p)|

)

, ∀p. (3)

Note that both Eq. (2) and (3) are in a position-wise man-

ner, as indicated by enumerating the location p. The

weight is normalized at every location p over nearby frames,
∑

k∈[i−r,i+r] Wk→i(p) = 1.

Similarly as [37], all modules including the flow net-

work and aggregation weight, etc., are jointly trained. Com-

pared to the single frame detector, the aggregation in Eq. (2)

greatly enhances the features and improves the detection ac-

curacy (about 3 mAP points), especially for the fast moving

objects (about 6 mAP points) (see Table 1 in [36]). How-

ever, runtime is about 3 times slower due to the repeated

flow estimation and feature aggregation over dense consec-

utive frames.

3. High Performance Video Object Detection

The difference between the above two methods is appar-

ent. [37] reduces feature computation by feature approx-

imation, which decreases accuracy. [36] improves feature

quality by adaptive aggregation, which increases computa-

tion. They are naturally complementary.

On the other hand, they are based on the same two

principles: 1) motion estimation module is indispensable

for effective feature level communication between frames;

2) end-to-end learning over multiple frames of all mod-

ules is crucial for detection accuracy, as repeatedly verified

in [37, 36].
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Figure 1. Illustration of the two baseline methods in [37, 36] and

three new techniques presented in Section 3.

Based on the same underlying principles, this paper

presents a common framework for high performance video

object detection, as summarized in Section 3.4. It pro-

poses three novel techniques. The first (Section 3.1) ex-

ploits the complementary property and integrates the meth-

ods in [37, 36]. It is both accurate and fast. The second

(Section 3.2) extends the idea of adaptive feature computa-

tion from temporal domain to spatial domain, resulting in

spatially-adaptive feature computation that is more effec-

tive. The third (Section 3.3) proposes adaptive key frame

scheduling that further improves the efficiency of feature

computation.

These techniques are simple and intuitive. They natu-

rally extend the previous works. Each one is built upon

the previous one(s) and steadily pushes forward the perfor-

mance (runtime-accuracy trade off) envelope, as verified by

extensive experiments in Section 5.

The two baseline methods and the three new techniques

are illustrated in Figure 1.

3.1. Sparsely Recursive Feature Aggregation

Although Dense Feature Aggregation [36] achieves sig-

nificant improvement on detection accuracy, it is quite slow.

On one hand, it densely evaluates feature network Nfeat on

all frames, however that is unnecessary due to the similar

appearance among adjacent frames. One the other hand,

feature aggregation is performed on multiple feature maps

and thus multiple flow fields are needed to be estimated,

which largely slow down the detector.

Here we propose Sparsely Recursive Feature Aggrega-

tion, which both evaluates feature network Nfeat and applies

recursive feature aggregation only on sparse key frames.

Given two succeeding key frames k and k′, the aggregated

feature at frame k′ is computed by

F̄k′ = Wk→k′ ⊙ F̄k→k′ +Wk′→k′ ⊙ Fk′ , (4)

where F̄k→k′ = W(F̄k,Mk′→k), and ⊙ denotes element-

wise multiplication. The weight is correspondingly normal-

ized by Wk→k′(p) +Wk′→k′(p) = 1 at every location p.

This is a recursive version of Eq. (2), and the aggregation

only happens at sparse key frames. In principle, the aggre-

gated key frame feature F̄k aggregates the rich information

from all history key frames, and is then propagated to the

next key frame k′ for aggregating the original feature Fk′ .

3.2. Spatially­adaptive Partial Feature Updating

Although Sparse Feature Propagation [37] achieves re-

markable speedup by approximating the real feature Fi, the

propagated feature map Fk→i is error-prone due to some

parts with changing appearance among adjacent frames.

For non-key frames, we want to use the idea of feature

propagation for efficient computation, however Eq. (1) is

subject to the quality of propagation. To quantify whether

the propagated feature Fk→i is a good approximation of Fi,

a feature temporal consistency Qk→i is introduced. We add

a sibling branch on the flow network Nflow for predicting

Qk→i, together with motion field Mi→k, as

{Mi→k, Qk→i} = Nflow(Ik, Ii). (5)

If Qk→i(p) ≤ τ , the propagated feature Fk→i(p) is incon-

sistent with the real feature Fi(p). That is to say, Fk→i(p)
is a bad approximation, which suggests updating with real

feature Fi(p).
We develop an economic way to partially update the fea-

tures on non-key frames layer-by-layer. Supposing Nfeat has

N layers, features at frame i are updated by

F̂
(n)
i = Uk→i⊙N

(n)
feat (F̂

(n−1)
i )+(1−Uk→i)⊙F

(n)
k→i, (6)

where F̂
(0)
i = Ii, F̂

(n)
i and F

(n)
k→i are the partially updated

features and propagated features at layer n, respectively,

and N
(n)
feat is the network operation (e.g. convolution) on

layer n. Because the resolution of feature maps in different

layers is different, we use nearest neighbor interpolation to

update the mask Uk→i to have the same spatial resolution

as F
(n)
k→i. Thus, F̂i = F̂

(N)
i is the final partially updated

feature.

Following [3], we use a straight-through estimator for

the gradient
∂Uk→i(p)
∂Qk→i(p)

= −1, if |Qk→i(p) − τ | ≤ 1,

∂Uk→i(p)
∂Qk→i(p)

= 0, otherwise. Thus it is fully differentiable.
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We can regard Qk→i(p) − τ as a new valuable for the es-

timation of Qk→i(p), since τ can be viewed as the bias of

Qk→i(p), which takes no effect to the estimate Qk→i(p).
For simplicity, we directly set τ = 0 in this paper.

To further improve the feature quality for non-key

frames, feature aggregation is also utilized as similar as

Eq. 4:

F̄i = Wk→i ⊙ F̄k→i +Wi→i ⊙ F̂i, (7)

where the weight is normalized by Wk→i(p) +Wi→i(p) =
1 at every location p.

3.3. Temporally­adaptive Key Frame Scheduling

Evaluating feature network Nfeat only on sparse key

frames is crucial for high speed. A naive key frame schedul-

ing policy picks a key frame at a pre-fixed rate, e.g., every l
frames[37]. A better key frame scheduling policy should be

adaptive to the varying dynamics in the temporal domain. It

can be designed based on the feature consistency indicator

Qk→i:

key = is key(Qk→i). (8)

Here we designed a simple heuristic is key function:

is key(Qk→i) = [
1

Np

∑

p

1(Qk→i(p) ≤ τ)] > γ (9)

where 1(·) is the indicator function, Np is the number of

all locations p. For any location p, Qk→i(p) ≤ τ indi-

cates changing appearance or large motion which will lead

to bad feature propagation quality, if the area to recompute

(Qk→i(p) ≤ τ ) is larger than a portion γ of all the pixels,

the frame is marked as key. Figure. 2 shows an example of

the area satisfied Qk→i(p) ≤ τ varying through time. Three

orange points are examples of key frame selected by our

is key function, their appearance are clearly different. Two

blue points are examples of non-key frame, their appear-

ance indeed changed slightly compared with the preceding

key frame.

To explore the potential and upper bound of key frame

scheduling, we designed an oracle scheduling policy that

exploits the ground-truth information. The experiment is

performed with our proposed method, except for key frame

scheduling policy. Given any frame i, both the detection

results of picking frame i as a key frame or non-key frame

are computed, and the two mAP scores are also computed

using ground truth. If picking it as a key frame results a

higher mAP score, frame i is marked as key.

This oracle scheduling achieves a significantly better re-

sult, i.e., 80.9% mAP score at 22.8 fps runtime speed. This

indicates the importance of key frame scheduling and sug-

gests that it is an important future working direction.

3.4. A Unified Viewpoint

All methods are summarized under a unified viewpoint.

0 10 20 30 40 50 60 70 80 90 100
0

0.05
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0.15
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i
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)
≤
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Figure 2. The area satisfying Qk→i(p) ≤ τ on video frames,

where the key frame scheduling in Eq. (9) is applied (γ = 0.2).

To efficiently compute feature maps, Spatially-adaptive

Partial Feature Updating (see Section 3.2) is utilized. Al-

though Eq. (6) is only defined for non-key frames, it can be

generalized to all frames. Given a frame i and its preceding

key frame k, Eq. (6) is utilized, and summarized as

F̂i = PartialUpdate(Ii, Fk,Mi→k, Qk→i). (10)

For key frames, Qk→i = −∞, propagated features Fk→i

are always bad approximation of real features Fi, we should

recompute feature F̂i = Nfeat(Ii). For non-key frames,

when Qk→i = +∞, propagated features Fk→i are al-

ways good approximation of true features Fi, we directly

use the propagated feature from the preceding key frame

F̂i = Fk→i.

To enhance the partially updated feature maps F̂i, fea-

ture aggregation is utilized. Although Eq. (4) only defined

Sparsely Recursive Feature Aggregation for key frames, and

Eq. (7) only defined feature aggregation for partially up-

dated non-key frames. Eq. (4) can be regarded as a de-

generated version of Eq. (7), supposing i = k′, F̂i = Fk′ .

Thus feature aggregation is always performed as Eq. (7),

and summarized as

F̄i = G(F̄k, F̂i,Mi→k), (11)

To further improves the efficiency of feature computa-

tion, Temporally-adaptive Key Frame Scheduling (see Sec-

tion 3.3) is also utilized.

Inference Algorithm 1 summarizes the unified inference

algorithm. Different settings result in different degenerated

versions, and Table 1 presents all methods from the unified

viewpoint. Our method (c3) integrates all the techniques

and works best.

If Temporally-adaptive Key Frame Scheduling is

adopted, and both options do aggr and do spatial are

set as true, then it is the online version of our proposed

method. Utilizing a naive key frame scheduling, i.e., pick a

key every l frame, and both options do aggr and do spatial
set as false, the algorithm degenerates to Sparse Fea-

ture Propagation [37] when l > 1, and the per-frame

baseline when l = 1. The algorithm would degenerate

to Dense Feature Aggregation [36] under condition that

do aggr = true, key = true, and do spatial = false
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method is key(·, ·) key frame usage do aggr do spatial accuracy↔speed

per-frame baseline (*) all frames N.A false false none

Sparse Feature Propagation [37] every l frames sparse, 1 false false l
Dense Feature Aggregation [36] all frames dense, ≥ 1 true false #key frames

our method (c1) every l frames sparse, recursive true false l
our method (c2) every l frames sparse, recursive true true l, λ
our method (c3) temporally-adaptive sparse, recursive true true λ, γ

Table 1. All methods under a unified viewpoint.

for all the frames (i.e., l = 1), and the unified feature ag-

gregation on Line 20 is replaced by the dense aggregation

in Eq. (2). Among all options in Table 1, a sparse key frame

scheduling is crucial of fast inference, do aggr = true and

do spatial = true is crucial for high accuracy.

Training All the modules in the entire architecture, in-

cluding Nflow, Nfeat and Ndet, can be jointly trained. Due

to memory limitation, in SGD, two nearby frames are ran-

domly sampled in each mini-batch. The preceding frame is

set as key, and the succeeding one is set as non-key, which

are denoted as Ik and Ii, respectively.

In the forward pass, feature network Nfeat is applied on

Ik to obtain the feature maps Fk. Next, a flow network

Nflow runs on the frames Ii, Ik to estimate the 2D flow field

Mi→k and the feature consistency indicator Qk→i. Partially

updated feature maps F̂i is computed through Eq. (6), and

then the aggregated current feature maps F̄i is calculated

through Eq. (7). Finally, the detection sub-network Ndet is

applied on F̄i to produce the result yi. Loss function is de-

fined as,

L = Ldet(yi) + λ
∑

p

Uk→i(p), (12)

where the updating mask Uk→i is defined in Eq. (6). The

first term is the loss function for object detection, following

the multi-task loss in Faster R-CNN [29], which consists

of classification loss and bounding box regression loss to-

gether. Typically, features on the current frame have better

detection accuracy. Thus, the first term encourages Uk→i to

be 1. The second term encourages Uk→i to be 0 and thus

enforces a constraint on the size of areas to be recomputed.

The parameter λ controls this speed-accuracy trade off. Us-

ing a large λ achieves high speed. By default, λ = 2 and

only less than 5% locations need to be updated.

During training, by default Uk→i is predicted by Nflow.

However, to encourage good performance for both cases of

propagating feature and recomputing feature from scratch,

we also randomly enforce Uk→i = 0 and Uk→i = 1 re-

spectively, i.e. given a pair of frames, Uk→i is randomly

set as Nflow prediction, 0 and 1 with equal probability 1/3.

For methods without using partial feature updating, training

does not change and Uk→i is simply ignored during infer-

ence. Thus, a unified single training strategy is used.

3.5. Network Architecture

We introduce the incarnation of different sub-networks

in our proposed model.

Flow network. We use FlowNet [7] (“simple” version).

It is pre-trained on the Flying Chairs dataset [7]. It is ap-

plied on images of half resolution and has an output stride

of 4. As the feature network has an output stride of 16

(see below), the flow field is downscaled by half to match

the resolution of the feature maps. An additional randomly

initialized 3x3 convolution is added to predict the feature

propagability indicator, which shares feature with the last

convolution of the FlowNet.

Feature network. We adopt the state-of-the-art ResNet-

101 [14] as the feature network. The ResNet-101 model is

pre-trained on ImageNet classification. We slightly modify

the nature of ResNet-101 for object detection. We remove

the ending average pooling and the fc layer, and retain the

convolution layers. To increase the feature resolution, fol-

lowing the practice in [1, 4], the effective stride of the last

block is changed from 32 to 16. Specially, at the beginning

of the last block (“conv5” for both ResNet-101), the stride

is changed from 2 to 1. To retain the receptive field size, the

dilation of the convolutional layers (with kernel size > 1)

in the last block is set as 2. Finally, a randomly initialized

3 × 3 convolution is applied on top to reduce the feature

dimension to 1024.

Detection network. We use state-of-the-art R-FCN [4]

and follow the design in [37]. On top of the 1024-d feature

maps, the RPN sub-network and the R-FCN sub-network

are applied, which connect to the first 512-d and the last

512-d features respectively. 9 anchors (3 scales and 3 aspect

ratios) are utilized in RPN, and 300 proposals are produced

on each image. The position-sensitive score maps in R-FCN

are of 7× 7 groups.

4. Related Work

Speed/accuracy trade-offs in object detection. As

summarized in [17], speed/accuracy trade-off of modern de-

tection systems can be achieved by using different feature

networks [31, 33, 14, 32, 34, 16, 2, 15, 35] and detection

networks [10, 13, 9, 29, 4, 24, 12, 5, 26, 27, 28, 25], or

varying some critical parameters such as image resolution,
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Algorithm 1 The unified flow-based inference algorithm

for video object detection.

1: input: video frames {Ii}
2: k = 0 ⊲ initialize key frame

3: F0 = Nfeat(I0)
4: y0 = Ndet(F0)
5: if do aggr then

6: F̄0 = F0

7: end if

8: for i = 1 to ∞ do

9: {Mi→k, Qk→i} = Nflow(Ik, Ii) ⊲ evaluate flow network

10: key = is key(Qk→i) ⊲ key frame scheduling

11: if key then

12: Qk→i = −∞ ⊲ need computing feature from scratch

13: else if do spatial then

14: Qk→i unchanged ⊲ need partially updating

15: else

16: Qk→i = +∞ ⊲ suppose always good quality, propagate

17: end if

18: F̂i = PartialUpdate(Ii, Fk,Mi→k, Qk→i) ⊲ partially

update

19: if do aggr then

20: F̄i = G(F̄k, F̂i,Mi→k) ⊲ recursively aggregate

21: yi = Ndet(F̄i)
22: else

23: yi = Ndet(F̂i)
24: end if

25: if key then ⊲ update the most recent key frame

26: k = i

27: end if

28: end for

29: output: detection results {yi}

box proposal number. PVANET [22] and YOLO [27] even

design specific feature networks for fast object detection.

By applying several techniques (e.g. batch normalization,

high resolution classifier, fine-grained features and multi-

scale training), YOLO9000 [28] achieves higher accuracy

meanwhile keep the high speed.

Since our proposed method only considers how to com-

pute higher quality feature faster by using temporal infor-

mation, and is not designed for any specific feature net-

works and detection networks, such techniques are also suit-

able for our proposed method.

Video object detection. Existing object detection meth-

ods incorporating temporal information in video can be sep-

arated into box-level methods [21, 20, 11, 23, 19, 8] and

feature-level methods [37, 36] (both are flow-based meth-

ods and introduced in Section 2.1).

Box-level methods usually focus on how to improve de-

tection accuracy considering temporary consistency within

a tracklet. T-CNN [20, 21] first propagates predicted bound-

ing boxes to neighboring frames according to pre-computed

optical flows, and then generates tubelets by applying track-

ing algorithms. Boxes along each tubelet will be re-scored

based on the tubelet classification result. Seq-NMS [11]

constructs sequences along nearby high-confidence bound-

ing boxes from consecutive frames. Boxes of the sequence

are re-scored to the average confidence, other boxes close

to this sequence are suppressed. MCMOT [23] formu-

lates the post-processing as a multi-object tracking problem,

and finally tracking confidence are used to re-score detec-

tion confidence. TPN [19] first generates tubelet proposals

across multiple frames (≤ 20 frames) instead of bounding

box proposals in a single frame, and then each tubelet pro-

posal is classified into different classes by a LSTM based

classifier. D&T [8] simultaneously outputs detection boxes

and regression based tracking boxes with a single convolu-

tional neural networks, and detection boxes are linked and

re-scored based on tracking boxes.

Feature-level methods usually use optical flow to get

pixel-to-pixel correspondence among nearby frames. Al-

though feature-level methods are more principle and can

further incorporate with box-level methods, they suffer

from inaccurate optical flow. Still ImageNet VID 2017

winner is powered by feature-level methods DFF [37] and

FGFA [36]. Our proposed method is also a feature-level

method, which introduces Spatially-adaptive Partial Fea-

ture Updating to fix the inaccurate feature propagation

caused by inaccurate optical flow.

5. Experiments

ImageNet VID dataset [30] is a prevalent large-scale

benchmark for video object detection. Following the pro-

tocols in [20, 23], model training and evaluation are per-

formed on the 3,862 video snippets from the training set and

the 555 snippets from the validation set, respectively. The

snippets are fully annotated, and are at frame rates of 25 or

30 fps in general. There are 30 object categories, which are

a subset of the categories in the ImageNet DET dataset.

During training, following [20, 23], both the ImageNet

VID training set and the ImageNet DET training set (only

the same 30 categories as in ImageNet VID) are utilized.

SGD training is performed. Each mini-batch samples

one image from either ImageNet VID or ImageNet DET

datasets, at 1 : 1 ratio. 120K iterations are performed on 4

GPUs, with each GPU holding one mini-batch. The learn-

ing rates are 10−3 and 10−4 in the first 80K and in the last

40K iterations, respectively. In both training and inference,

the images are resized to a shorter side of 600 pixels for the

image recognition network, and a shorter side of 300 pix-

els for the flow network. Experiments are performed on a

workstation with Intel E5-2670 v2 CPU 2.5GHz and Nvidia

K40 GPU.

5.1. Evaluation under a Unified Viewpoint

Overall comparison results are shown in Figure 3.
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Sparse Feature Propagation [37] is a degenerated version

in Algorithm 1 (see Table 1). By varying key frame duration

l from 1 to 10, it can achieve 5× speedup with moderate

accuracy loss (within 1%).

Similarly, for Dense Feature Aggregation [36], by vary-

ing the temporal window to be aggregated from ±1 to ±10
frames, it improves mAP score by 2.9% but is 3× slower

than per-frame baseline.

For our method (c1), key frames are picked once every l
frames (l = 1 ∼ 10 frames). Compared with Sparse Feature

Propagation [37], the only difference is do aggr set as true
instead of false, which leads to almost 1% improvement in

mAP score with the same speedup. It recursively aggregates

feature maps on sparse key frames, and the aggregated fea-

ture maps are propagated to non-key frames (see Eq. (4)).

Compared with Dense Feature Aggregation [36], recursive

aggregation is performed only on sparse key frames instead

of dense feature aggregation performed on every frames,

which leads to 10× speedup with 2% accuracy loss. Com-

pared with per-frame baseline, it achieves 1% higher accu-

racy and 3× faster speed.

Our method (c2) extends our method (c1) by setting

do spatial as true instead of false. It can further utilize

rich appearance information from nearby frames with neg-

ligible computation burden. Compared with Sparse Feature

Propagation [37], it improves mAP score with almost 2%
and keeps the same high speed. Compared with Dense Fea-

ture Aggregation [36], it can speed up 9× with 1% accuracy

loss. Compared with per-frame baseline, this version results

1.8% higher accuracy with 3× speedup and 1.4% higher ac-

curacy with 4× speedup.

Our method (c3) further extends our method (c2) by uti-

lizing a temporally-adaptive key frame scheduling instead

of a pre-fixed key frame duration. γ in Eq. (9) is fixed as

0.2. Compared with our method (c2), it further improves

detection accuracy with 0.5% ∼ 1% when high runtime

speed is demanded. Compared with Sparse Feature Prop-

agation [37], it improves mAP score with nearly 2% at all

runtime speed. Compared with per-frame baseline, this ver-

sion results 1% higher accuracy with 4.75× speedup.

5.2. Ablation Study

We conduct ablation study for three different options of

our method. The detailed setting is shown in Table 1. All

of three options use sparsely recursive feature aggregation

for key frame, and then propagate the aggregated features

to non-key frames, i.e., do aggr = true. The difference

among them is key-frame scheduling and whether partial

feature updating is used or not.

Our method (c1) We evaluate the effect of recursive fea-

ture aggregation compared with non-recursive aggregation

(i.e., dense aggregation) on sparse key frames. Here, we use

several variant numbers of key frames for non-recursive ag-

gregation. Results are shown in Figure 4. For non-recursive

aggregation methods, aggregating more key frames is bet-

ter when runtime speed is slow. Moreover, when aggre-

gating more than 2 key frames, accuracy descends quickly.

It is caused by feature inconsistency from propagated key

frames with large key frame duration l, which is on the de-

mand for high runtime speed. Recursive aggregation can

solve this problem well by only considering two key frames

in aggregation. More important, the aggregated feature

theoretically contains all historical information of previous

key frames. So the aggregation no longer needs more key

frames (larger than 2 frames). As we can see, recursive ag-

gregation surpasses the non-recursive aggregation at almost

all runtime speed.

Our method (c2) We evaluate the effect of partially up-

dating coefficient λ and key frame duration l, which actu-

ally controls the speed-accuracy trade-off. Figure 5 shows

the results with varying λ and fixed l. Key frame duration

l = 10 achieves the best speed-accuracy trade-off. Small l
leads to redundancy between two consecutive key frames,

which is not useful for recursive aggregation, thus results in

a little accuracy loss. Large l leads to highly diverse feature

response between two consecutive key frames, which is also

not helpful. Figure 6 shows the results with varying l and

fixed λ. Partially updating coefficient λ = 2.0 achieves the

best speed-accuracy trade-off. Small λ implies very large

recomputed area, and always gives low runtime speed re-

gardless of key frame duration. High λ implies very small

recomputed area, which does not fully exploit the strength

of partially updating.

Our method (c3) We compare our Temporally-adaptive

Key Frame Scheduling with different γ (see Eq. (9)), the re-

sults are showed in Figure 7. Different γs result almost the

same performance when runtime speed is slow. γ = 0.2 re-

sults best speed-accuracy trade off when high runtime speed

is demanded. The oracle key frame scheduling policy (de-

scribed in Section. 3.3) achieves an incredibly better results.

Different flow networks We also evaluated differ-

ent flow networks (including FlowNetS, FlowNetC and

FlowNet2 [18]) for our proposed method. Results are

showed in Figure. 8. FlowNetS results best speed-accuracy

trade-off, this is because fast inference of flow network is

the key to speedup in our proposed method. With joint

training, FlowNetS can achieve significantly better results,

which is consistent with [37, 36].

Deformable R-FCN [5] We further replace the detection

system with Deformable R-FCN, which is slightly slower

than the original R-FCN but much more accurate. Results

are showed in Figure. 9. Our proposed method works well,

and achieves 77.8% mAP score at 15.2 fps runtime speed,

better than ImageNet VID 2017 winner (76.8% mAP score

at 15.4 fps runtime speed [6]).
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Figure 3. Speed-accuracy trade-off curves for methods in Table 1.
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Figure 4. Speed-accuracy trade-off curves for our method (c1) and

its non-recursive aggregation variants.
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5.3. Comparison with State­of­the­art Methods

We further compared with several state-of-the-art meth-

ods & systems for object detection from video, with re-

ported results on ImageNet VID validation. It is worth men-
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Figure 8. Speed-accuracy trade-off curves for our method (c1)

with different flow networks. ‘FlowNetS+ft’ stands for FlowNetS

jointly trained within our proposed method. Other flow networks

are used without joint training.
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Figure 9. Speed-accuracy trade-off curves for all methods in Ta-

ble 1 combined with Deformable R-FCN.

method feature network mAP (%)
runtime (fps)

(TitanX/K40)

Ours ResNet-101+DCN
78.6 13.0 / 8.6

77.8 22.9 / 15.2

TPN [19] GoogLeNet 68.4 2.1 / -

D&T [8] ResNet-101 75.8 7.8 / -

ImageNet VID

2017 winner [6]
ResNet-101 76.8 - / 15.4

Table 2. Comparison with state-of-the-art methods.

tioning that different recognition networks, object detectors,

and post processing techniques are utilized in different ap-

proaches. Thus it is hard to draw a fair comparison.

Table 2 presents the results. For our method, we re-

ported results by picking two operational points on curve

“our method (c3)” from Figure 9. The mAP score is 78.6%

at a runtime of 13.0 / 8.6 fps on Titan X / K40. The mAP

score slightly decrease to 77.8% at a faster runtime of 22.9

/ 15.2 fps on Titan X / K40. As a comparison, TPN [19]

gets an mAP score of 68.4% at a runtime of 2.1 fps on Titan

X. In the latest paper of D&T [8], an mAP score of 75.8%

is obtained at a runtime of 7.8 fps on Titan X. Sequence

NMS [11] can be applied to D&T to further improve the

performance, which can also be applied in our approach.

We also compared with the winning entry [6] of ImageNet

VID challenge 2017, which is also based on sparse feature

propagation [37] and dense feature aggregation [36]. It gets

an mAP score of 76.8% at a runtime of 15.4 fps on Titan X.

It is heavily-engineered and the implementation details are

unreported. Our method is more principled, and achieves

better performance in terms of both accuracy and speed.
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