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Abstract

General object detectors are always evaluated on hand-
designed datasets, e.g., MS COCO and Pascal VOC, which
tend to maintain balanced data distribution over different
classes. However, it goes against the practical applica-
tions in the real world which suffer from a heavy class im-
balance problem, known as the long-tailed object detec-
tion. In this paper, we propose a novel method, named
Adaptive Hierarchical Representation Learning (AHRL),
from a metric learning perspective to address long-tailed
object detection. We visualize each learned class represen-
tation in the feature space, and observe that some classes,
especially under-represented scarce classes, are prone to
cluster with analogous ones due to the lack of discrimina-
tive representation. Inspired by this, we propose to split the
whole feature space into a hierarchical structure and elim-
inate the problem in a coarse-to-fine way. AHRL contains
a two-stage training paradigm. First, we train a normal
baseline model and construct the hierarchical structure un-
der the unsupervised clustering method. Then, we design an
AHR loss that consists of two optimization objectives. On
the one hand, AHR loss retains the hierarchical structure
and keeps representation clusters away from each other. On
the other hand, AHR loss adopts adaptive margins accord-
ing to specific class pairs in the same cluster to further opti-
mize locally. We conduct extensive experiments on the chal-
lenging LVIS dataset and AHRL outperforms all the existing
state-of-the-art methods, with 29.1% segmentation AP and
29.3% box AP on LVIS v0.5 and 27.6% segmentation AP
and 28.7% box AP on LVIS v1.0 based on ResNet-101. We
hope our simple yet effective approach will serve as a solid
baseline to help stimulate future research in long-tailed ob-
Jject detection. Code will be released soon.

1. Introduction

The emerging of convolutional neural networks (CNNs)
leads to prosperity in object detection. With effort of re-
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Figure 1. Comparisons between the state-of-the-art methods and
our AHRL on LVIS v0.5 [8]. We report different task results (ob-
ject detection and instance segmentation) on both ResNet-50(red)
and ResNet-101(blue) backbones. AP?® stands for the segmen-
tation AP, while AP’ means the box AP. Our proposed AHRL
outperforms all the existing methods.

searchers, recent advances in object detection achieve en-
couraging results in manually balanced datasets, like Pas-
cal VOC [5] and MS COCO [18]. However, in real-
ity, we always need to face long-tailed distributed data
[25], where head classes(classes with plenty of instances)
and tailed/scarce classes(classes with few instances) signifi-
cantly differ in the number of instances. Nevertheless, many
traditional detection models are hard to take care of head
classes and tailed classes in the same time, resulting in the
desire for an adaptive solution.

Different from long-tailed object recognition, an addi-
tional localization sub-task makes long-tailed object detec-
tion more challenging. Extreme imbalance of the instance
number for each class still restricts its performance. Almost
all the past works [3, 12, 15,31, 35,37] on long-tailed ob-
ject detection reach a consensus that classifier is the major
bottleneck for further improvements. As shown in Figure
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Figure 2. (a) The average variance for different frequent groups. (b) t-SNE visualization of classifier weights in Mask R-CNN. Red,

and blue points stand for the class weight/center of rare, common and frequent classes, respectively. And dotted ellipses mark some
obvious clusters. (c) Results of coarse and fine classification. The blue bar represents the standard result of Mask R-CNN on LVIS v0.5,
while bar represents the coarse result by ignoring misclassification in the same cluster.

2a, we calculate the variance of the classification weight for
each class during the model training and take average ac-
cording to their frequency groups, i.e., rare, common, and
frequent in LVIS v0.5 [8]. Head classes dominate the model
optimization due to the more diverse samples, while tailed
classes are seldom tackled because of the heavy data imbal-
ance. Thus, it always leads to unsatisfactory performance.
Following long-tailed object recognition, early attempts in
long-tailed object detection exploit data re-sampling [3, 8]
and loss re-weighting [7,14,23,29,31,35] strategies to solve
this problem. By data re-sampling, a more balanced dataset
is given to the model, preventing the bias to head classes
to some extent. Compared with directly balancing dataset,
loss re-weighting approaches elaborately modify the weight
to adapt to the long-tailed scene. However, these methods
suffer from overfitting to the limited data, and the overall
performance is always sensitive to the re-weighting or re-
sampling hyperparameters.

In this work, we present a simple yet effective method,
named Adaptive Hierarchical Representation Learning
(AHRL), from a metric learning perspective to address the
long-tailed object detection problem. As shown in Figure
2b, we take Mask R-CNN [10] as an example model to train
on LVIS v0.5 [8] dataset and utilize t-SNE [33] to visualize
each class weight. Each dot in Figure 2b stands for a spe-
cific class center, and we select 247 out of 1230 classes for
better illustration. Moreover, rare, common, and frequent
classes are marked in red, green, and blue, respectively (de-
tailed class information for those dots can be found in our
supplementary materials). We can find an interesting phe-
nomenon that some classes, especially under-represented
scarce classes, are prone to cluster with analogous ones due
to the lack of discriminative representation. Thus, these
classes tend to be misclassified and result in poor perfor-
mance. Go a step further. We adopt K-Means to group
all the class centers into 50 clusters and ignore the mis-
classification in the same cluster to re-evaluate the perfor-
mance. As depicted in Figure 2c, we distinguish this evalu-

ation method and the standard one as coarse and fine classi-
fication results, respectively, and we observe that coarse re-
sults are much better than fine results, especially for scarce
classes, which also verifies our assumption above. This dis-
covery opens up room to optimize the long-tailed object
detection performance and inspires us to handle this tough
problem in a coarse-to-fine way.

Motivated by the observation above, we resort to a
coarse-to-fine strategy to tackle this problem and design
a two-stage training procedure AHRL from a hierarchical
representation learning perspective. In the first stage, we
follow standard settings in [8,10,31] to train a typical base-
line model, i.e., Mask R-CNN. Then, we adopt unsuper-
vised clustering algorithms, i.e., K-Means, to build the hier-
archical feature space based on the classification weights
of the pre-trained model. In the second stage, we pro-
pose a novel loss function, named Adaptive Hierarchical
Representation loss (or AHR loss), to implement our
coarse-to-fine design. AHR loss involves two optimiza-
tion objectives, one for coarse-grained classification and
the other one for fine-grained classification. On the one
hand, AHR loss retains the constructed hierarchical struc-
ture and prompts all clusters to repel each other. On the
other hand, AHR loss adopts dynamic and adaptive margins
according to the specific relationship between each class
pair in the same cluster, the more similar pairs they are and
the larger margins between them are performed during the
whole training process, to make indistinguishable classes
more discriminative. We conduct extensive experiments on
LVIS dataset and achieve new state-of-the-art results with
both ResNet-50 [11] and ResNet-101 [11] backbones, as
shown in Figure 1.

To sum up, the contributions of this work are as follow:

* We delve deep into the long-tailed object detection
problem and present a strong baseline to help ease fu-
ture research, which already beats the most state-of-
the-art methods.
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Figure 3. (a) Average objectness score per instance in RPN during training. All boxes are filtered by IOU threshold and matched with
corresponding ground-truth to get their labels and frequency. Different frequency groups are marked by different colors. (b) Proposals
per instance. We monitor the average proposals per instance for different frequency groups during the model training. (c) Magnitude of
weight vectors for different classes. Different background colors stand for different frequency groups. The norms of weights are sorted in

descending order in every frequency group.

* We present a simple and effective approach, named
Adaptive  Hierarchical  Representation  Learn-
ing(AHRL), from a metric learning perspective
to eliminate long-tailed object detection in a coarse-
to-fine way. A novel AHR loss is also proposed to
make AHRL work better.

* Compared with other existing state-of-the-art methods,
our proposed method outperforms them and achieves a
new state-of-the-art performance on LVIS benchmarks
with various backbones.

2. Related Work

General Object Detection and Instance Segmenta-
tion. The rise of deep learning improves the performance
of object detection in recent years. These deep learning-
based frameworks can be divided into two categories. One-
stage approaches [17, 20, 24] chase faster inference speed,
while two-stage frameworks [6, 27] prefer a higher accu-
racy. With the appearance of Mask R-CNN [10], the gap
between object detection and instance segmentation disap-
peared by adding an extra segmentation branch upon Faster
R-CNN [27].

Long-tailed Recognition. Common methods towards
long-tailed recognition can be summarized as follows.
1) Data re-sampling. It is the most intuitive way by du-
plicating tailed samples [8, 9] or under-sampling head sam-
ples [4] to deal with the long-tailed distribution. [38] goes a
step further by changing the ratio of head and tailed classes
over time. But all of them cannot avoid under-fitting in head
classes or over-fitting in tailed classes. 2) Data augmen-
tation. Generating or synthesizing new samples is always
used to enlarge the limited dataset. Recent studies [1,2, 19]
manage to create fake samples for tailed classes to address
long-tailed distribution. However, these methods are lim-
ited to the diversity of tailed classes. 3) Loss re-weighting.

Instead of modifying input, modifying loss function directly
is also a popular way to settle down this problem. Recently,
several works [30,31,35] seek many ways to adapt the loss
weight for both head and tailed classes to prevent severe and
frequent punishment to tailed classes.

Long-tailed Object Detection. As long-tailed recogni-
tion becomes mature, researchers start to pay attention to
long-tailed detection. Meanwhile, Facebook start a long-
tailed detection challenge with dataset LVIS [8]. EQL loss
[31] easily decreases the times to suppress punishment to
tailed classes to conquer this problem. Following EQL,
ACSL [35] prevents tailed classes from suppressing of head
classes and preserves the discrimination between similar
classes. Besides focusing on loss function, some methods
deliberately design the last layer in the classifier. Forest
R-CNN [37] constructs a classification forest with differ-
ent prior knowledge to incorporates relations. BAGS [15]
uses a cascade-like softmax layer to alleviate the difference
between head classes and tailed classes in quantity. These
structures avoid the imbalance between reward and punish-
ment in a specific part of the model. Moreover, some adap-
tive methods [26, 32] provide in long-tailed classification
still have an fantastic result in long-tailed object detection.

In this paper, we tackle the long-tailed object detection
problem from the metric learning perspective. By split-
ting the whole feature space into the hierarchical struc-
ture, AHRL can handle the tough problem in a divide-and-
conquer way and achieves superior results. It should be
noted that Forest R-CNN [37] adopts an analogous hierar-
chical split method. However, it achieves this by adding a
separate classification branch to distinguish parent classes,
which results in a severe inconsistency between parent and
fine-grained classification as these two branches are pro-
jected to different feature spaces. On the contrary, our
proposed AHRL adopts unsupervised clustering algorithms
based on fine-grained classes to construct the hierarchical
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structure and optimize both coarse-grained and fine-grained
classes at the same time.

3. Proposed Method

In this section, we first introduce a strong baseline model
to help ease future research in long-tailed object detection
and further verify the effectiveness of our proposed method.
Then, we discuss our proposed method AHRL, followed by
the details of the AHR loss.

3.1. Preliminary and A Strong Baseline

In the past works, the naive Mask R-CNN [10] is in-
variably adopted as the baseline model to conduct experi-
ments and verify the superiority of their proposed methods.
However, with the development of modern deep learning
methods, some intuitive and mature techniques can boost
naive baseline performance to a certain extent. This sec-
tion delves deep into the long-tailed object detection prob-
lem and presents a strong baseline based on naive Mask R-
CNN, named baseline++ for simplicity. Baseline++ serves
as the baseline model to further verify the effectiveness of
our proposed method. Its details are described as follows.

Proposal Oversampling. As shown in Figure 3a and
Figure 3b, we observe a clear gap between tailed classes
and head classes on the average objectness score during
the model training. The proposals of tailed classes tend to
achieve lower objectness score and be filtered out before
the ROI head in Mask R-CNN. Figure 3b can well illus-
trate the phenomenon, average proposals per instance for
tailed classes are much smaller than head classes, which
results in less optimization for tailed classes. According
to these findings, we directly double the maximum num-
ber of tailed class proposals allowed to keep after non-max
suppression(NMS), bringing more foreground proposals for
tailed classes.

Cosine Similarity Classifier. Generally speaking, the
fully-connected (FC) layer is the default choice to imple-
ment classifiers in most object detectors. However, the
fully-connected layer will result in an obvious bias towards
head classes, when it comes to the long-tailed object de-
tection problem. Supposing F is the feature extractor,
We € R4%k is the final classification weight matrix, k is
the number of whole classes, and W°¢ = [w§, ws$, ..., w§],
where w{ € R? is the corresponding classification weight
vector for i-th class. When given an input sample vector
x, we can get the raw classification score s by dot-product
operation:

s¢ = F(x)T - w§ 0
= [[F (@) [lwi]| cos(6)

We can find that all things being equal, weight vectors
with larger magnitude tend to yield higher scores. As shown
in Figure 3c, we take Mask R-CNN [10] as an example and

observe that weight vectors of head classes have a much
larger magnitude comparing with tailed classes, which re-
sults in prediction preference towards head classes. Inspired
by [36], we adopt a cosine similarity classifier to replace the
original linear classifier to reduce the intra-class variance,
which is defined as follows:

F(x)T - ws
R S 2 e 2
5 = TF @) Tt @

where F(x) is the feature of a given proposal, w{ is the
weights for class ¢ and ). is the scaling factor.

Moreover, compared with weights in a fully-connected
classifier, weights from a cosine classifier, without prefer-
ence and bias, can respond to the relationship among classes
better, which can lay the foundation for subsequent excel-
lent clustering results.

Other Effective Attempts. According to our discussion
in the related work section, we adopt EQL [31] as the loss
re-weighting method and GIoU [28] is utilized to replace
the default Smooth L1 loss for more accurate bounding box
regression. Besides, we also try several simple data aug-
mentation methods to increase the data diversity. Due to the
space limit, please refer to our Appendix for more detailed
description about these attempts.

3.2. Adaptive Hierarchical Representation Learn-
ing

Motivated by our findings in Section 1, we design a
simple yet effective method, named Adaptive Hierarchical
Representation Learning (AHRL), from a metric learning
perspective. An overview of AHRL’s pipeline can be found
in Figure 4. AHRL contains a two-stage training paradigm.
In the first stage, we follow standard settings in [10] to
train a normal baseline++ model, illustrated in Section 3.1.
Then, we construct the hierarchical feature space based on
the classification nodes of pre-trained baseline++. An intu-
itive way to achieve this is with the help of modern cluster-
ing algorithms. In this section, without loss of generality,
we only cluster these classification nodes for once and di-
vide the whole classification feature space into two levels
for better illustration. Assuming we get n clusters finally,
e.g., P = {P1,Pa,..., P,}, and the cluster representation
w; is defined as the mean of each classification node w$ in
cluster P;:

Z j EP; ’LU;
p_ g
R Y )
where ||P; || equals to the number of nodes in set P;.

When it comes to clustering algorithms, there are two
typical choices we can take. One is based on unsupervised
clustering methods like K-Means to aggregate similar clas-
sification nodes, which is deemed to utilize visual informa-
tion to some extend. The other one is based on lexical infor-
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Figure 4. Overview of our adaptive hierarchical representation learning. In the first stage, we train a simple baseline model and each blue
dot in the first circle represents a specific class center. Next, clustering algorithms, i.e., K-Means, are adopted to construct the hierarchical
structure and each cluster representation (triangle in the second circle) is defined as the mean of each node in the same cluster. Finally, we
fine-tune the model and optimize it with our AHR loss. M;; is the adaptive margin between each class pair.

Table 1. Ablation for each component in our proposed strong baseline. AP, AP. and AP; denote segmentation average precision for
rare, common and frequent classes, respectively. * indicates that the reported result is based on our own implementation.

Method EQL* GIoU Proposal Oversample Data Augmentation Cosine Similarity Head ‘ AP® AP® AP, AP, APy
Mask R-CNN*[8] X X X X X | 236 242 140 242 283
v X X X X 255 259 171 271 280
Baseline-t v v X X X 258 262 178 271 285
(ours) v v v X X 261 264 177 276 284
v v v v X 265 267 178 280 286
v v v v v 267 268 179 282 287
mation, e.g., WordNet [21], to provide an intuitive hierar- loss can be defined as follows:
chical structure. However, lexical information is not always
consistent with visual characteristics. For example, seag- Lanr = Lfine + AMcoarse 4)

ull and plane are totally different classes in WordNet [21],
but they look pretty similar from visual perspectives. We
make a detailed comparison between these two methods in
Section 4.2.

Finally, in the second stage, we keep the hierarchical
structure and eliminate long-tailed object detection in a
coarse-to-fine way through the AHR loss, which is de-
scribed in the next section.

3.3. Adaptive Hierarchical Representation Loss

Adaptive Hierarchical Representation (AHR) loss con-
sists of two optimization objectives, Lcoqrse and L ine. On
the one hand, L.,4,se retains the hierarchical structure and
prompts all clusters to repel each other. On the other hand,
L tine adopts adaptive margins according to the specific re-
lationship between each class pair in the same cluster to fur-
ther optimize locally. Thus, the overall formulation of AHR

where A is the hyperparameters to balance the scale of

»Ccoarse-

More specifically, L oqrse Se€rves as a coarse-grained
classification loss to distinguish each cluster clearly, and we
adopt a simple cross-entropy loss to achieve this goal:

Lcoarse - - szlo.go-(sf) + (1 _pl)log(l - U(Sf)) (5)

where: .
Flx)t - w?
Sf =N\t (6)
POANF@)I wf ]
1, zePg
pz—{ 0 wepn (7)

where wf is the weight for cluster ¢, which is defined in
Eq. (3), m; is the cluster index corresponding to class ¢, o is
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the Sigmoid operation, ), is the scaling factor for cluster
predictions.

Lcoarse only focuses on coarse-grained cluster classifi-
cation. Thus L. is necessary for further fine-grained
classification in the single cluster. It is worth mentioning
that our proposed L ¢;y,. adopts adaptive margin mechanism
to make each class more discriminative:

L ine = = 3 (0il0g0aa(s5,,)+(1=0:) 3 log(1=0aa(s5 1))

i J
3
where:

1

Jad(si,j) = 1+€7(S§7j+Myi-,j) ©)

where y; is the ground-truth label of i-th proposal, s; ; is the
raw score of j-th class for proposal ¢ and M is a matrix mea-
suring the specific margin values between each class pair.
This paper adopts the cosine similarity between each class
pair to reflect the margin between them. As we have dis-
cussed in Section 3.1, the classifier weights of our proposed
method are all normalized. Thus the M can be directly de-
fined as follows:

07 =]
Mw{xwmﬂmwawaﬁ>i¢j (10
where )\, is a hyperparameter to control the degree of mu-
tual exclusion, which is set as 2 by default. Moreover, be-
cause the purpose of L ¢, is to optimize classification per-
formance locally in the single cluster, M is restricted to kick
in for those classes in the same cluster:

o 17 71'1':7(']'
L ; = { 0, m % (11)
M=M-1I (12)

It is noteworthy that M is calculated dynamically during the
model training until all the class nodes achieve an optimal
status.

Consequently, L4 R, the combination of L.pqrse and
L fine, works in a coarse-to-fine way to effectively address
the long-tailed object detection problem. Besides, Lapr
is easy to extend to Softmax version, and we implement
L Ag r in this paper based on Sigmoid for simplicity.

3.4. Training Objective

In the first stage, the base detector is trained with a stan-
dard Mask R-CNN [10] i.e., a typical loss L, to improve
the qualification of foreground proposals, a EQL [31] loss
and GIoU loss for box classification and box regression
respectively in ROI head. In the second stage, Ljine is

adopted to our proposed baseline++ , and it can be refor-
mulated based on [31] and Eq. (8):

Efine - - Z(inOQUad(Sf,y,;) +
7

S EG)T, (£)(1 = y)log(1 = raa(st ;)
J (13)

Finally, the overall objective function in the second stage
is as follow, and A is set as 1 by default:

L :‘ET‘[)TL + ETeg + ['AHR

(14)
:Erpn + ‘CGIOU + £fine + )\ﬁcoarse

4. Experiments
4.1. Experiment Setup

Datasets. Large Vocabulary Instance Segmentation(LVIS)
dataset,a large long-tailed vocabulary dataset in long-tailed
detection, consists of 1230 categories in v0.5 and 1203 cat-
egories in v1.0. Since LVIS is a federated dataset [8], a few
annotations are missing and few annotations are ambigu-
ous. All categories are officially divided into three groups:
frequent(more than 100 images), common(10 to 100 im-
ages), and rare(less than 10 images). Following the official
guideline, we train our model on the train set and evaluate
the result on the val set. Besides widely-used AP across
IoU threshold from 0.5 to 0.95, AP for frequent(APy),
common(AP,), rare(AP,) groups will be reported respec-
tively for both object detection and instance segmentation
results.

Implementation Details. We use Mask R-CNN [10] as our
base detector and ResNet-50 [11] with a Feature Pyramid
Network [16] as the backbone. We use 8 GPUs with a batch
size 16 for training. Our model is trained using stochas-
tic gradient descent(SGD) with momentum 0.9 and weight
decay 0.0001 for 90k steps, with an initial learning rate of
0.02, which is decay to 0.002 and 0.0002 at 60k and 80k re-
spectively. We adopt a class-specific branch for both mask
and bounding box regression. The threshold of the predic-
tion score is set to be 0.05. We follow [36] to set A\, and
Ap as 20 in our experiments, respectively. We set A to 1 to
balance the scale of the losses. Following [31], A, is set to
be 1.76 x 1073.

4.2. Ablation Studies

In this section, we take Mask R-CNN [10] based on
ResNet-50 [11] as the baseline model to perform ablation
studies on LVIS v0.5 [8] unless otherwise specified.

Ablation for each component in Baseline++. We fol-
low standard settings in [8, 15, 31, 37] and adopt [8]
equipped with the Repeat Factor Sampling (RFS) method
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Table 2. Performance comparisons with the state-of-the-art methods on LVIS v0.5 [8]. ResNet-50 and ResNet-101 are adopted as the
backbones respectively for fair comparisons. * indicates the reported result is based on its official implementation under Pytorch [22]

framework.

Method ‘ Conference Backbone ‘ APY AP AP, AP. APy
Class-balanced Loss [3] CVPR 2019 ResNet-50-FPN | 21.0 209 82 212 257
Focal Loss [17] ICCV 2017 ResNet-50-FPN | 219 21.0 93 21.0 258
EQL [31] CVPR 2020 ResNet-50-FPN | 23.3 228 113 247 25.1
RFS [8] CVPR 2019 ResNet-50-FPN - 244 145 243 284
LST [13] CVPR 2020 ResNet-50-FPN - 23.0 - - -

SimCal [34] ECCV 2020 ResNet-50-FPN - 234 164 225 272
Forest R-CNN [37] ACMMM 2020 | ResNet-50-FPN | 259 25.6 183 264 27.6
BAGS [15] CVPR 2020 ResNet-50-FPN | 25.8 263 18.0 269 28.7
BALMS* [26] NeurIPS 2020 | ResNet-50-FPN | 264 27.0 17.3 28.1 295
DropLoss [12] AAAI 2021 ResNet-50-FPN | 25.1 255 132 279 273
ACSL [35] CVPR 2021 ResNet-50-FPN - 264 18.6 264 294
EQL [31] CVPR 2020 ResNet-101-FPN | 252 24.8 14.6 267 264
Forest R-CNN [37] ACMMM 2020 | ResNet-101-FPN | 27.5 269 20.1 279 283
DropLoss [12] AAAI 2021 ResNet-101-FPN | 26.8 269 14.8 29.7 2823
ACSL [35] CVPR 2021 ResNet-101-FPN - 27.5 193 27.6 30.7
AHRL(ours) N/A ResNet-50-FPN | 274 273 17.5 29.0 29.1
AHRL (ours) N/A ResNet-101-FPN | 29.3 29.1 213 30.7 30.3

Table 3. Comparisons between various clustering strategies.

Method | Clusters | AP* AP AP, AP. AP
WordNet | 108 | 267 269 167 283 292
K-Means | 108 | 269 270 169 286 289
K-Means | 200 | 274 273 175 290 29.1
K-Means | 400 | 27.1 268 16.1 285 293

Table 4. Comparisons between our proposed method and the base-
line Mask R-CNN based on various backbones.

Method ‘ Backbone ‘ APY APs AP, AP, APy
Mask R-CNN [10] ResNet-50-FPN | 23.6 242 140 242 283
AHRL(ours) ResNet-50-FPN | 274 273 175 29.0 29.1
Mask R-CNN [10] | ResNet-101-FPN | 26.0 26.2 18.0 263 294
AHRL(ours) ResNet-101-FPN | 29.3 29.2 213 30.7 30.3

as our baseline model. In Section 3.1, we propose an ef-
fective strong baseline baseline++ and Table 1 shows that
each component of baseline++ can effectively promote the
overall performance.

General object detectors always suffer from heavy class
imbalance in long-tailed object detection problem, and
EQL [31] alleviates this by ignoring the suppression to
tails when they act as the negative samples. Finally, it can
achieve around 1.9% segmentation Average Precision (AP)
and 2.0% box AP gains in our implementation. GIoU [28],
a more advanced IoU-based regression loss, achieves about

0.3% segmentation AP and 0.3% box AP gains against the
default Smooth L1 loss in our settings. Unlike the common
data sampling methods [3, 8], our proposed proposal over-
sampling for rare classes can eliminate the class imbalance
problem more intrinsically, and it achieves 0.2% segmenta-
tion AP and 0.3% box AP improvements, respectively.

As we all know, it is almost common sense to perform
data augmentation on scarce classes to ease class imbal-
ance. In this paper, we try several simple data augmentation
methods and find random cropping and color jitter can con-
tribute to the performance, which achieves 0.3 % segmenta-
tion AP and 0.4% box AP improvements, respectively. In
addition, we replace the final fully-connected layer with the
cosine similarity head for the classification and it achieves
about 0.2% box AP and 0.1% segmentation gains, which
keeps consistent with our discussion about the magnitude
of weight vectors in Section 3.1. In summary, our proposed
strong baseline achieves about 2.8% segmentation AP and
2.2% box AP improvements comparing with the original
baseline in [8].

Effectiveness of our proposed method. We adopt two
typical backbones, i.e., ResNet-50 [11] and ResNet-101
[11], to implement AHRL based on Mask-RCNN [10] to
verify the effectiveness of our method. Table 4 shows the
detailed comparisons. We can find that AHRL outperforms
the baseline model by a large margin, whether it is based
on ResNet-50 or ResNet-101. Concretely, AHRL achieves
about 3.1% segmentation AP and 3.8 % box AP gains with
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Table 5. Comparisons between different training strategies.

Method | Backbone | AP® AP® AP, AP. APy

Table 6. Performance comparisons with the state-of-the-art meth-
ods on LVIS v1.0 [8].

Baseline++ | ResNet-S0-FPN | 26.7 268 179 282 287 Method | Backbone | AP® AP*
Baseline++' | ResNet-50-FPN | 26.8 27.0 154 29.0 29.2 Mask R-CNN [10] | ResNet-50-FPN | 20.0 19.2
EQL [31] ResNet-50-FPN | 22.5 21.6
BAGS [15] ResNet-50-FPN | 23.7  23.1

ResNet-50, while it also achieves about 3.0% segmenta-
tion AP and 3.3% box AP gains with ResNet-101. This
experiment proves that AHRL can work very well with vari-
ous backbones and achieve promising results. We randomly
sample several images from LVIS v0.5 to intuitively depict
the effect of our AHRL, visualization results can be found
in our appendix.

Different clustering strategies. Clustering algorithms
play an important role in our proposed AHRL. In this sec-
tion, we conduct extensive experiments on unsupervised K-
Means and WordNet [21]. As shown in Table 3, we fol-
low WordNet settings in [37] and group all the classification
nodes into 108 clusters. We can find that the overall perfor-
mance of K-Means is slightly better than WordNet under the
same settings, which keeps consistent with our discussion
in Section 3.2. Moreover, AHRL achieves optimal results
when we group all the classes into 200 clusters. We have to
emphasize that we do not pay much attention to fine-tuning
the cluster hyperparameter otherwise we believe AHRL can
achieve further improvements.

Discussion about our training paradigm. As we have
described in Section 3.2, our proposed AHRL involves a
two-stage training paradigm. To eliminate the doubt that
whether the gain is brought by the 2x training time, in
the second stage, we follow the same settings in AHRL to
fine-tune the pre-trained model without any extra modifi-
cations, and we mark the result in Table 5 as baseline++.
We observe that baseline++' achieves comparable perfor-
mance with the pre-trained model. 2x training time leads to
even worse prediction bias towards head classes. It is note-
worthy that we strictly share the same settings between the
two-stage training paradigm, e.g., learning rate, batch size,
etc. Thus, we attribute it to the influence of different ini-
tial statuses.So far, we can conclude that the improvements
brought by AHRL benefit from our novel design instead of
the training time.

4.3. Comparisons with State-of-the-art Methods

As shown in Table 2 and Table 6, we compare our pro-
posed method with all the published state-of-the-art meth-
ods. It is obvious that AHRL achieves superior perfor-
mance and sets up a new state-of-the-art record on both
LVIS v0.5 [8] and LVIS v1.0 [8] dataset. Moreover, it is
worth mentioning that our proposed AHRL is free to boost
long-tailed object detection performance without any extra
inference cost. Due to the space limit, detailed results of

DropLoss [12]
Mask R-CNN [10]

ResNet-50-FPN | 229 223
ResNet-101-FPN | 21.7 20.8

EQL [31] ResNet-101-FPN | 24.2 229
BAGS [15] ResNet-101-FPN | 26.5 25.8
AHRL(ours) ResNet-50-FPN | 264  25.7
AHRL (ours) ResNet-101-FPN | 28.7 27.6

LVIS v1.0 for each sub-category are reported in our supple-
mentary materials.

5. Conclusions

In this paper, we propose a novel yet effective method
from a metric learning perspective to address the long-tailed
object detection problem. Our proposed AHRL splits the
whole classification feature space into a hierarchical struc-
ture and eliminates this tough problem in a coarse-to-fine
way. More specifically, AHRL builds the hierarchical struc-
ture based on the classification weights of the pre-trained
model in the first stage, then AHR loss retains the hierarchi-
cal structure and prompts all clusters to repel each other. In
addition, according to the relationship between each class
pair, an adaptive and dynamic margin mechanism is de-
signed to make similar classes more discriminative. We
conduct extensive experiments to verify the effectiveness of
our proposed method, and we achieve a new state-of-the-
art result on the challenging LVIS dataset based on various
backbones without bells and whistles.

6. Broad Impact

Our contributions focus on the hierarchical representa-
tion learning for long-tailed object detection, which can be
extended to other computer vision tasks. Also, it may pro-
vide new ideas for follow-up research. It therefore has the
potential to advance both the beneficial and harmful appli-
cations of object detectors, such as autonomous vehicles,
intelligent video surveillance, robotics and so on. As for
ethical aspects and future societal consequences, this tech-
nology can bring harmful or beneficial effects to the society,
which depends on the citizens who have evil or pure moti-
vation and who can make good use of this technological
progress.
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