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Abstract

Unsupervised domain adaptation (UDA) for semantic

segmentation aims at improving the model performance

on the unlabeled target domain by leveraging a labeled

source domain. Existing approaches have achieved im-

pressive progress by utilizing pseudo-labels on the unla-

beled target-domain images. Yet the low-quality pseudo-

labels, arising from the domain discrepancy, inevitably hin-

der the adaptation. This calls for effective and accurate ap-

proaches to estimating the reliability of the pseudo-labels,

in order to rectify them. In this paper, we propose to esti-

mate the rectification values of the predicted pseudo-labels

with implicit neural representations. We view the rectifi-

cation value as a signal defined over the continuous spa-

tial domain. Taking an image coordinate and the nearby

deep features as inputs, the rectification value at a given

coordinate is predicted as an output. This allows us to

achieve high-resolution and detailed rectification values es-

timation, important for accurate pseudo-label generation

at mask boundaries in particular. The rectified pseudo-

labels are then leveraged in our rectification-aware mixture

model (RMM) to be learned end-to-end and help the adap-

tation. We demonstrate the effectiveness of our approach on

different UDA benchmarks, including synthetic-to-real and

day-to-night. Our approach achieves superior results com-

pared to state-of-the-art. The implementation is available

at https://github.com/ETHRuiGong/IR2F.

1. Introduction

Semantic segmentation, aiming at assigning the seman-
tic label to each pixel in an image, is a fundamental prob-
lem in computer vision. Driven by the availability of
large-scale datasets and the advancements in deep neural
networks (DNNs), the state-of-the-art boundary has been
pushed rapidly in the last decade [9, 35, 38, 51, 59, 70, 78].
However, the DNNs trained on a source domain, e.g. day
images, generalize poorly to a different target domain, e.g.

night images, due to the distribution shift between the do-
mains. One straightforward idea to circumvent the issue
is to annotate the images from the target domain, and then
retrain the model. However, annotations for semantic seg-
mentation are particularly costly and labor-intensive to pro-
duce, since each pixel has to be labeled. To this end,
some recent works [18,21,61,63,77] resort to unsupervised
domain adaptation (UDA), where the model is trained on
the labeled source domain and an unlabeled target domain
dataset, reducing the annotation burden.

Different from the predominant UDA methods that ex-
plicitly align the source and target distributions on the
image-level [18, 21, 33, 73] or the feature-level [61–63],
pseudo-labeling or self-training [23,24,60,76,82,83] has re-
cently emerged as a simple yet effective approach for UDA.
Pseudo-labeling approaches typically first generate pseudo-
labels on the unlabeled target domain using the current
model. The model is then fine-tuned with target pseudo-
labels in an iterative manner. However, some pseudo-labels
are inevitably incorrect because of the domain shift. There-
fore, pseudo-label correction, or rectification, is critical for
the adaptation process. This is typically implemented in
the literature by removing [82, 83] or assigning a smaller
weight [24,67,76,79] to pixels with low-quality and poten-
tially incorrect pseudo-labels. The key problem is thus to
formulate a rectification function that estimates the pseudo-

label quality. We identify two important issues with current
approaches.

First, most existing methods use hard-coded heuristics

as the rectification function, e.g. hard thresholding of the
softmax confidence [82, 83], prediction variances of differ-
ent learners [79], or distance to prototypes [67, 76]. These
heuristic rectification functions assume on strong correla-
tions between the function and the pseudo-label quality,
which may not be the case. For example, the rectification
function that uses the variance of multiple learners [79] to
suppress disagreement on the pseudo-labels can be sensitive
to small objects in the adaptation [24].

The second issue is that the existing works [24] typically
model the rectification function in a discrete spatial grid
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Figure 1. Discrete vs. Continuous Rectification Function Modeling. Discrete modeling suffers from the convolutional pixel-wise
decoding in the fixed-grid, where some coordinates are missing (see dashed circle in (a)). Thus, the rectification values corresponding to
these coordinates can only be obtained by upsampling/interpolation, which is constrained by the blurring effect and induces the inaccurate
rectification values estimation in some areas, e.g. mask boundaries. In contrast, our continuous modeling decodes the features – in the
continuous coordinate space – into rectification values, which can be generalized to arbitrary resolution and preserve finer details. (The
coordinate space and rectification values are shown in 1-D axis just for better viewing.)

(see Fig.1a). Rectification values are predicted by the pixel-
wise decoding from the fixed-grid feature space, which is
constrained by the limited resolution. This is especially
harmful when the objects in the test images are of a differ-
ent scale than in the training, since the rectification function
cannot generalize well on these unseen scales (see Fig.1a).
Existing approaches also lose vital high-frequency informa-
tion through down-/up-sampling operations [24, 25, 40, 56],
which may lead to poorer pseudo-labels, in particular close
to mask boundaries.

To address these two issues, we propose a novel contin-
uous rectification-aware mixture model (RMM). First, in-
stead of formulating the rectification function with heuris-
tics and priors, we propose a principled mixture model rep-
resentation, i.e. rectification-aware mixture model (RMM),
ensuring a probabilistic end-to-end learnable formulation.
Second, the rectification function in RMM is represented
by our proposed implicit rectification-representative func-
tion (IR2F), to model the pixel-wise rectification of pseudo-
labels in continuous spatial coordinates, i.e. continuous

RMM. The primary idea of IR2F is to learn pixel-wise rec-
tification values as latent codes, which are decoded at arbi-
trary continuous spatial coordinates. Given a queried coor-
dinate, our IR2F inputs latent codes around the given coor-
dinate from the different learners (e.g. high-/low-resolution
decoder in [24] and primary/auxiliary classifier in [79])
along with their spatial coordinates. IR2F then predicts the
rectification value at the queried coordinate. Our principled

formulation is a general plug-in module, compatible with
different rectification-aware UDA architectures.

We thoroughly analyze our continuous RMM on differ-

ent UDA benchmarks, including synthetic-to-real and day-

to-night settings. Extensive experimental results demon-
strate the effectiveness of continuous RMM, outperform-
ing the previous state-of-the-art (SOTA) methods by a
large margin, including on SYNTHIA!Cityscapes (+1.9%
mIoU), Cityscapes!Dark Zurich (+3.0% mIoU) and
ACDC-Night (+3.4% mIoU). Overall, continuous RMM
reveals the significant potential of modeling pseudo-labels
rectification for UDA in the learnable and continuous man-
ner, inspiring further research in this field.

2. Related Work
Unsupervised Domain Adaptation (UDA). UDA for se-
mantic segmentation aims at adapting the model from the
labeled source domain to the unlabeled target domain.
To this end, different strategies are proposed, which can
be generally categorized into two classes: 1) adversarial

learning based algorithms make use of domain discrimi-
nator to align the domain distributions on the images in-
puts space [14, 43, 48], features space [22] and outputs
space [39, 61, 64]; 2) pseudo-labeling (or self-training)

based algorithms typically generate pseudo-labels on the
unlabeled target domain. To avoid the error accumulation
caused by noisy pseudo-label drift, different approaches
have been developed for pseudo-label rectification, e.g. con-
fidence thresholding [82,83], uncertainty estimation [67,79]
and pseudo-label prototypes [67, 76]. These methods for-
mulate the pseudo-label rectification function as hard-coded
heuristics, while our method formulates the rectification
function in the end-to-end learnable manner.
Implicit Neural Representations (INR). Implicit neural
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representations are originally proposed for 3D reconstruc-
tion, where object shapes [2, 11, 19, 45, 74], scene sur-
faces [27,47,58,75] and structure appearances [3,41,42,80]
are represented as a multi-layer perceptron (MLP). The core
idea is to map coordinates to signals with MLP. Very re-
cently, the vast success of implicit neural representations
in 3D reconstruction motivates the further exploration in
2D tasks, e.g. image representations [11, 57], image super-
resolution [10, 72], and feature alignment [25]. Different
from previous methods that explore the in-domain learning,
we focus on leveraging implicit neural representations to
rectify pseudo-labels to help the cross-domain adaptation.

3. Method
3.1. Preliminary

In UDA problem, we are given the well-labeled source
domain, Ds = {(xs

i
,ys

i
)}ns

i=1, and the unlabeled target do-
main, Dt = {xt

i
}nt
i=1, where xs,xt 2 RH⇥W⇥3 are RGB

images while ys 2 {0, 1}H⇥W⇥C is the C-class semantic
label map associated with xs. The goal of UDA is to train
the semantic segmentation model F✓ on Ds,Dt and evalu-
ate F✓ on the target domain testing data.

Since the ground truth label yt corresponding to xt is
not available, the pseudo-labeling (or self-training) strat-
egy for UDA generates pseudo-labels by, ŷt(i,j,c) = [c =
argmaxF✓(xt)(i,j)], where (i, j, c) represents (row, col-
umn, class) index and [·] is the Iverson bracket. Then F✓

is trained by, Lce = CE(F✓(xt), ŷt) + CE(F✓(xs),ys),
where CE(·) denotes the cross-entropy loss. As pseudo la-
bels ŷt are not necessarily correct, different schemes are
advocated to rectify pseudo labels, where the rectification
function is denoted as H(·). Most existing pseudo-label rec-
tifying methods can be categorized into one of the following
three types, 1) weighting pseudo-label based cross-entropy
loss with the estimated rectification values H(xt) [79], i.e.
Lt

ce
= H(xt)�CE(F✓(xt), ŷt); 2) weighting soft pseudo-

labels with the estimated rectification values H(xt) [67,76],
i.e. ŷt(i,j,c) = [c = argmax(H(xt)(i,j) � F✓(xt)(i,j))]; 3)
averaging pseudo-labels from multiple K learners (e.g. de-
coders) [4, 26, 66] to rectify pseudo labels of each single
learner, i.e. ŷt(i,j) = 1

K

P
K

k=1 F✓k(xt)(i,j), where � de-
notes the element-wise multiplication.

In general, such pseudo-labeling-based approaches can
be categorized into non-ensemble (type 1 and 2) and ensem-

ble based solutions (type 3). In the domain adaptation and
generalization field, numerous empirical and theoretic com-
parisons [1,6,26,34,39,81] between these two classes have
been conducted before and after the deep learning revolu-
tion. The consensus is that ensembles can take advantage of
different ensemble members (e.g. different data augmenta-
tion, different resolutions image and different level features
as shown in Fig. 2a) to adaptively filter pseudo-label noise,

and have the potential to overcome the problem of mode
collapse/overfitting [6,28,50,66] in non-ensemble methods.
Thus, the ensemble method is particularly remarkable and
taken as the test-bed in this work.

3.2. Rectification-Aware Mixture Model
The key is how to formulate a rectification function to

estimate the pseudo-labels quality. Instead of utilizing
hard-coded heuristics and priors as the rectification func-
tion, we propose a principled end-to-end learnable formu-
lation. Based on the fact that existing methods make use
of multiple members (auxiliary classifiers/decoders, proto-
types, different images resolutions/augmentations) to rec-
tify the models [24, 79], we reformulate the pseudo-labels
rectification problem in principled manner as learning a
rectification-aware mixture model (RMM), drawing inspi-
ration from mixture density networks (MDN) [5] and deep
ensembles [29, 44]. In RMM, each mixture member is
weighted by the rectification function, which is the mea-
surement of pseudo-labels quality of the corresponding
member, formulated as,

p(ŷt|xt) =
KX

k=1

rk�k(ŷ
t|✓k,xt) , (1)

where K is the number of mixture members, �k(·|✓k) de-
notes an arbitrary parametric distribution conditioned on
parameters ✓k, and rk = H(xt) are the estimated rectifi-
cation values by the rectification function H(·), satisfyingP

K

k=1 rk = 1. Specifically, the primary/auxiliary decoders
in [79], the high-resolution/low-resolution image decoders
in [24] and the different data augmentation techniques in [1]
can be seen as �(·|✓k) in Eq. (1), as shown in Fig. 2a. Ben-
efiting from RMM, the rectification function H(·) can be
learned in the end-to-end way.

3.3. Implicit Rectification-Representative Function
In this section, we first introduce how to model the rec-

tification function continuously with implicit neural repre-
sentations, and then leverage the continuous rectification
function in RMM to obtain the continuous RMM.
Continuous Rectification Function Modeling with IR2F.
Representing rectification function H(·) is the core part of
building a rectification-aware mixture model. Current ap-
proaches essentially model rectification function in a dis-

crete way. They compute rectification values on a pre-
defined discrete grid, often using convolutional decoders
and disregarding intermediate locations. For example, as
shown in Fig. 2b, [24] introduces an additional convolu-
tional decoder, as H(·), to predict rk on the discrete fixed-
grid. However, this leads to coarse and over-smoothed out-
puts due to the low resolution and up/down-sampling stages
in the decoder. On the other had, spatially detailed rectifi-
cation values are important in order to achieve high-quality
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Figure 2. Rectification-Aware Mixture Model (RMM) and Different Rectification Function Modeling. Our rectification function
is learned end-to-end by our proposed RMM as shown in (a), without relying on the predefined heuristics in (b) and (c). Moreover,
rectification function in our RMM is modeled in the continuous manner, by the proposed implicit rectification-representative function
(IR2F) in (e), to overcome the resolution limitation of the fixed-grid discrete modeling in (d).

pseudo labels, especially at mask boundaries [7, 24]. To
overcome the problems and get spatially accurate rectifica-
tion values, the key idea of this work is to employ the con-

tinuous rectification function modeling mechanism, which
is learnable and then decoded at continuous spatial coordi-
nates in arbitrary resolution.

To this end, our proposed implicit rectification-
representative function (IR2F) views the pixel-wise rec-
tification value rk as a continuous signal in the 2D co-
ordinate space. Inspired by implicit neural representa-
tions [42, 58] for 3D shape reconstruction and 2D im-
age super-resolution [10, 72], our implicit rectification-
representative function (IR2F) aims at learning the implicit
function f✓0 to decode the feature map G(xt) into the pixel-
wise rectification values rk. That is, H(·) in Sec. 3.2 is
represented by f✓0 . rk is continuously decoded in the 2D
coordinate space O, formulated as,

roq = (r
oq

k
)K
k=1 = f✓0(G(xt)⇤,oq � o⇤), (2)

where oq 2 O is a queried 2D coordinate in the continuous
coordinate space O, and (r

oq

k
)K
k=1 = (r

oq

1 , . . . , r
oq

K
) is the

predicted rectification values for all ensamble members at
location oq . f✓0 is parameterized by ✓0 as a multi-layer per-
ceptron (MLP). G(xt)⇤ is the nearest feature vector from oq

in G(xt), and o⇤ is the 2D coordinate of G(xt)⇤ in O. IR2F
can be seen as the mapping from the coordinate space to the
rectification value space, i.e. f✓0(G(xt), ·) : O ! R.
Spatial Encoding. As noticed by previous works [57, 72],
directly inputting the spatial coordinates to an MLP of
the implicit neural representation leads to a loss of high-
frequency content. However, the high-frequency infor-
mation, e.g. the edge information between the objects, is
crucial to UDA for semantic segmentation as pointed out
in [7, 24, 36]. In order to overcome this shortcoming, fol-
lowing [25,72], we employ a spatial encoding of the spatial
coordinates, before it is fed into the MLP of our IR2F in

Eq. (2). We use a sinusodal positional encoding,

 (o) = (sin(!1o), cos(!1o), . . . , sin(!no), cos(!no)), (3)
roq = f✓0(G(xt)⇤, (oq � o⇤),oq � o⇤). (4)

where the frequencies !1,!2, . . . ,!n are learnable during
training and n is the spatial encoding dimension.
Continuous RMM based on IR2F. Benefiting from the
continuous rectification function modeling with IR2F in
Sec. 3.3, rectification values of our proposed RMM in
Sec. 3.2 are predicted in the continuous coordinate space,
and can be generalizable to arbitrary resolution. Moreover,
to take advantage of multiple learners in our RMM, the in-
put representation G(xt) in Eq. (4) is obtained by stacking
the feature information from different ensemble members,

G(xt) = Concat(G1(x
t),G2(x

t), . . . ,GK(xt)), (5)

Then rectification values for RMM are obtained by substi-
tuting Eq. (5) into Eq. (4). Therefore, considering Eq. (4)
and Eq. (1), the continuous RMM can be formulated as,

p(ŷt|xt,oq) =
KX

k=1

r
oq

k
�k(ŷ

t|✓k,xt). (6)

Here, p(ŷt|xt,oq) is the predicted class distribution at spa-
tial location oq . The rectification values r

oq

k
can thus be

queried at any pixel coordinate, by the continuous implicit
neural representations f✓0 .

3.4. IR2F-RMM Rectified Self-Training
Our proposed continuous RMM based on IR2F can

be used as a plug-in strategy, to promote and rectify the
pseudo-labels used for self-training in UDA. In this section,
we introduce how our continuous RMM can be plugged into
two popular UDA frameworks.
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Figure 3. Plugging continuous RMM into HRDA.

HRDA. HRDA [24] is a multi-resolution inputs framework
for UDA semantic segmentation, fusing the predictions of
low-/high-resolution (LR/HR) inputs to capture both the
long-range context from LR and the detailed knowledge
from HR. Our continuous RMM module can be plugged
into the HRDA framework by considering the two resolu-
tion branches as two mixture members, as shown in Fig. 3.
Rectified pseudo-labels ŷt can then be formally written as,

roq = f✓0(Concat(Glr(x
t),Ghr(x

t))⇤, (oq�o⇤),oq�o⇤),

ỹt

lr
= �1(ŷ

t|✓k,xt), ỹt

hr
= �2(ŷ

t|✓k,xt),

ỹt = rỹt

lr
+ (1� r)ỹt

hr
,

ŷt(i,j,c) = [c = argmax ỹt(i,j)], (7)

where ỹt

lr
, ỹt

hr
are soft pseudo-labels predicted by low-

/high-resolutions branches, resp. Glr(xt),Ghr(xt) are
feature maps from low-/high-resolutions branches, resp.
Concat is realized by firstly up-sampling with bi-linear in-
terpolation, and then pixel-wise concatenation. (i, j, c) are
the (row, column, class) index, and [·] is the Iverson bracket.
MRNet. MRNet [79] is a rectification-aware UDA frame-
work, where there are primary and auxiliary classifiers. In
MRNet, the variances between the primary and auxiliary
classifiers are used as the rectification values. Our continu-
ous RMM can be used to replace this rule and instead learn
the rectification. By inserting the continuous RMM into
MRNet, the pseudo-labels ŷt can be written as,

roq = f✓0(Concat(Gpr(x
t),Gaux(x

t))⇤, (oq�o⇤),oq�o⇤),

ỹt

pr
= �1(ŷ

t|✓k,xt), ỹt

aux
= �2(ŷ

t|✓k,xt),

ỹt = rỹt

pr
+ (1� r)ỹt

aux
,

ŷt(i,j,c) = [c = argmax ỹt(i,j)], (8)

where ỹt

pr
, ỹt

aux
are the soft pseudo-labels from the primary

and auxiliary classifiers, resp. Gpr(xt),Gaux(xt) are fea-
ture maps from primary and auxiliary classifiers, resp.
Rectified Pseudo-Labels based Self-Training Loss. With
pseudo-labels ŷt rectified by our continuous RMM, the
semantic segmentation network F✓ and our implicit neu-
ral representations f✓0 are trained jointly in the end-to-end
manner, through the standard cross-entropy loss written as,

L = CE(F✓(x
t), ŷt). (9)

4. Experiments
In this section, we demonstrate the effectiveness of our

continuous RMM for UDA semantic segmentation on dif-
ferent benchmarks, synthetic-to-real and day-to-night. We
compare our continuous RMM to other heuristics-based
and/or discrete rectification modeling methods, to show the
benefits of our learnable and continuous rectification func-
tion modeling based on RMM and IR2F.

4.1. Experimental Setup
Datasets. We use the conventional notation A!B do
describe the domain adaptation task, where A is the la-
beled source domain and B is the unlabeled target do-
main. We consider four different tasks in two categories.
Syntheic-to-Real: There are two settings, GTA [49] !
Cityscapes [12] and SYNTHIA [52] ! Cityscapes [12].
Day-to-Night: There are also two tasks, Cityscapes [12] !
Dark Zurich [54] and Cityscapes [12] ! ACDC-Night [55].
Details of different datasets are put in the supplementary.
Implementation Details. Framework and Backbone: Our
default framework is based on HRDA [24] with the MiT-
B5 [70] backbone. In addition, the method is also evaluated
with other backbones such as MRNet [79] (in Table 4), and
ResNet-101 [20] (in Table 3). For all experiments, we sim-
ply insert our IR2F based continuous RMM into the decoder
without modifying the backbone architecture. Implicit Neu-

ral Representations: f 0
✓

in IR2F is implemented with 4-layer
MLP, with ReLU activation and hidden dimension as 256.
Training Details: By default, we follow the training details
of HRDA. In Table 4, we follow the training details of MR-
Net. The framework is implemented with PyTorch [46], and
all the experiments are conducted on a TITAN RTX GPU.

4.2. Experimental Results
Comparison with SOTA UDA Methods. In Table 1 and
Table 2, we compare our proposed IR2F-based continu-
ous RMM with other existing UDA semantic segmenta-
tion methods, under the synthetic-to-real and day-to-night
benchmarks, respectively. As observed in Table 1, our
IR2F-based continuous RMM outperforms other SOTA
methods for UDA semantic segmentation on the synthetic-
to-real benchmark, especially by 1.9% mIoU under SYN-
THIA ! Cityscapes setting. As shown in Table 2, on the
challenging day-to-night benchmark with a larger domain
gap, our IR2F-based continuous RMM shows a stronger
performance improvement over existing SOTA methods for
UDA nighttime segmentation, by 3.0% and 3.4% mIoU
over the previous state-of-the-art under the Cityscapes !
Dark Zurich and Cityscapes ! ACDC-Night settings, re-
spectively. Note that, the existing SOTA methods for UDA
nighttime segmentation always require the day images in
the target domain as the reference for adaptation (see Ta-
ble 2). Instead, our IR2F-based continuous RMM method
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Method Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Car Truck Bus Train MC Bike mIoU

GTA ! Cityscapes

CBST [82] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
MRNet [79] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
DACS [60] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
TACS [17] 93.0 55.9 87.9 38.2 38.8 40.4 42.1 54.5 87.5 46.7 87.8 66.3 33.7 90.2 47.5 54.2 0.0 41.2 53.3 55.8
CorDA [65] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
BAPA [36] 94.4 61.0 88.0 26.8 39.9 38.3 46.1 55.3 87.8 46.1 89.4 68.8 40.0 90.2 60.4 59.0 0.0 45.1 54.2 57.4
ProDA [76] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
EHTD [31] 95.4 68.8 88.1 37.1 41.4 42.5 45.7 60.4 87.3 42.6 86.8 67.4 38.6 90.5 66.7 61.4 0.3 39.4 56.1 58.8
UndoUDA [37] 92.9 52.7 87.2 39.4 41.3 43.9 55.0 52.9 89.3 48.2 91.2 71.4 36.0 90.2 67.9 59.8 0.0 48.5 59.3 59.3
CPSL [32] 92.3 59.9 84.9 45.7 29.7 52.8 61.5 59.5 87.9 41.5 85.0 73.0 35.5 90.4 48.7 73.9 26.3 53.8 53.9 60.8
DDB [8] 95.3 67.4 89.3 44.4 45.7 38.7 54.7 55.7 88.1 40.7 90.7 70.7 43.1 92.2 60.8 67.6 34.2 48.7 63.7 62.7
DAFormer [23] 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
HRDA [24] 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8

IR2F-RMM (Ours) 97.5 80.0 91.0 60.0 53.3 56.2 63.9 72.4 91.7 51.0 94.2 79.0 51.1 94.3 84.7 86.7 75.9 62.6 67.8 74.4

SYNTHIA ! Cityscapes

CBST [82] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 – 78.3 60.6 28.3 81.6 – 23.5 – 18.8 39.8 42.6
MRNet [79] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 – 80.6 63.0 21.8 86.2 – 40.7 – 23.6 53.1 47.9
DACS [60] 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 – 90.8 67.6 38.3 82.9 – 38.9 – 28.5 47.6 48.3
TACS [17] 91.5 60.4 82.5 21.8 1.5 31.7 31.6 28.0 84.7 – 89.0 66.7 35.8 81.0 – 42.8 – 28.5 45.9 51.5
BAPA [36] 91.7 53.8 83.9 22.4 0.8 34.9 30.5 42.8 86.6 – 88.2 66.0 34.1 86.6 – 51.3 – 29.4 50.5 53.3
CorDA [65] 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 – 90.4 69.7 41.8 85.6 – 38.4 – 32.6 53.9 55.0
ProDA [76] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 – 84.4 74.2 24.3 88.2 – 51.1 – 40.5 45.6 55.5
UndoUDA [37] 82.5 37.2 81.1 23.8 0.0 45.7 57.2 47.6 87.7 – 85.8 74.1 28.6 88.4 – 66.0 – 47.0 55.3 56.7
EHTD [31] 93.0 69.8 84.0 36.6 9.1 39.7 42.2 43.8 88.2 – 88.1 68.3 29.0 85.5 – 54.1 – 37.1 56.3 57.8
CPSL [32] 87.2 43.9 85.5 33.6 0.3 47.7 57.4 37.2 87.8 – 88.5 79.0 32.0 90.6 – 49.4 – 50.8 59.8 57.9
DAFormer [23] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 – 89.8 73.2 48.2 87.2 – 53.2 – 53.9 61.7 60.9
HRDA [24] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 – 92.9 79.4 52.8 89.0 – 64.7 – 63.9 64.9 65.8

IR2F-RMM (Ours) 90.4 54.9 89.4 48.0 7.4 59.0 65.5 63.2 87.8 – 94.1 80.5 55.8 90.0 – 65.9 – 64.5 66.8 67.7

Table 1. Synthetic-to-Real: GTA ! Cityscapes, SYNTHIA ! Cityscapes. Best results are denoted in bold.

(a) Source (b) Target (c) Visual Ref. (d) HRDA (e) Ours

Figure 4. Qualitative Comparisons for UDA Semantic Segmen-
tation, under Cityscapes ! Dark Zurich. (a) shows the example
of Cityscapes images. (b) includes the Dark Zurich images. (c)
covers the day images corresponding to the night images in (b)
for better visual references. Note that, the day images in (c) are
only used for visualization references, but are not used for training
and testing. (d) and (e) are the segmentation results for (b) from
HRDA [24] and our method, respectively.

does not need these auxiliary data, and still outperforms the
SOTA methods by a large margin. It verifies the strong gen-
eralization ability of our proposed IR2F-based continuous
RMM compared to the existing SOTA UDA semantic seg-
mentation methods, under different scenarios.
Different Backbones. Besides the experimental results in
Table 1 and Table 2, we show more quantitative compar-
isons between our method and the existing SOTA UDA
method HRDA in Table 3, with the ResNet101 [20] back-
bone, to further verify the advantage of modeling rectifica-
tion function in a continuous manner. As reported in Ta-
ble 3, by simply plugging our proposed learnable continu-

ous rectification model, our method outperforms HRDA in
the GTA, SYNTHIA ! Cityscapes benchmarks. Moreover,
as the reference, the highest performance with ResNet-101
backbone, other than HRDA and our method, for GTA,
SYNTHIA ! Cityscapes are 62.7% in [8] and 57.9%
in [32], resp. It means both HRDA and our IR2F, learn-

able rectification function modeling methods, outperform
other heuristics-based rectification function modeling meth-
ods under the ResNet-101 backbone, and supporting the va-
lidity and rationality of modeling the rectification function
in the learnable manner as done by our RMM in Sec. 3.2.
Insertion of IR2F-based Continuous RMM into MRNet.
Our proposed IR2F-based continuous RMM is in princi-
ple a plug-in module, which can be inserted into different
UDA frameworks. In order to prove its compatibility with
other UDA frameworks, we insert our IR2F-based continu-
ous RMM into MRNet [79]. In MRNet, pseudo-labels are
originally rectified by the uncertainty measurement, which
is formulated as prediction variances between the primary
and auxiliary classifiers. The inputs into the primary and
auxiliary classifiers are different-level features. In Table 4,
it is shown that our IR2F-RMM improves MRNet by 2.0%
and 1.8% under GTA, SYNTHIA ! Cityscapes, resp.
Ablation Study. In order to prove the effectiveness of
different components in our proposed IR2F-based contin-
uous RMM, we conduct a set of ablation studies under the
synthetic-to-real benchmarks. In Table 5, we ablate dif-
ferent ways of estimating rectification values rk in Eq. (1),
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Method Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Car Truck Bus Train MC Bike mIoU

Cityscapes ! Dark Zurich

ADVENT [63] 85.8 37.9 55.5 27.7 14.5 23.1 14.0 21.1 32.1 8.7 2.0 39.9 16.6 64.0 13.8 0.0 58.8 28.5 20.7 29.7
AdaptSeg [61] 86.1 44.2 55.1 22.2 4.8 21.1 5.6 16.7 37.2 8.4 1.2 35.9 26.7 68.2 45.1 0.0 50.1 33.9 15.6 30.4
BDL [33] 85.3 41.1 61.9 32.7 17.4 20.6 11.4 21.3 29.4 8.9 1.1 37.4 22.1 63.2 28.2 0.0 47.7 39.4 15.7 30.8
DMAda [13]⇤ 75.5 29.1 48.6 21.3 14.3 34.3 36.8 29.9 49.4 13.8 0.4 43.3 50.2 69.4 18.4 0.0 27.6 34.9 11.9 32.1
DACS [60] 83.1 49.1 67.4 33.2 16.6 42.9 20.7 35.6 31.7 5.1 6.5 41.7 18.2 68.8 76.4 0.0 61.6 27.7 10.7 36.7
GCMA [53]⇤ 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0
MGCDA [54]⇤ 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5
CDAda [71]⇤ 90.5 60.6 67.9 37.0 19.3 42.9 36.4 35.3 66.9 24.4 79.8 45.4 42.9 70.8 51.7 0.0 29.7 27.7 26.2 45.0
DANNet [68]⇤ 90.4 60.1 71.0 33.6 22.9 30.6 34.3 33.7 70.5 31.8 80.2 45.7 41.6 67.4 16.8 0.0 73.0 31.6 22.9 45.2
GLASS [30]⇤ 91.6 63.1 71.2 34.7 26.7 41.4 39.7 38.4 68.6 34.8 83.7 41.3 40.8 69.6 21.5 0.0 63.5 32.1 19.4 46.4
DANIA [69]⇤ 91.5 62.7 73.9 39.9 25.7 36.5 35.7 36.2 71.4 35.3 82.2 48.0 44.9 73.7 11.3 0.1 64.3 36.7 22.7 47.0
CCDistill [16]⇤ 89.6 58.1 70.6 36.6 22.5 33.0 27.0 30.5 68.3 33.0 80.9 42.3 40.1 69.4 58.1 0.1 72.6 47.7 21.3 47.5
DAFormer [23] 93.5 65.5 73.3 39.4 19.2 53.3 44.1 44.0 59.5 34.5 66.6 53.4 52.7 82.1 52.7 9.5 89.3 50.5 38.5 53.8
HRDA [24] 90.4 56.3 72.0 39.5 19.5 57.8 52.7 43.1 59.3 29.1 70.5 60.0 58.6 84.0 75.5 11.2 90.5 51.6 40.9 55.9

IR2F-RMM (Ours) 94.7 75.1 73.2 44.4 25.7 60.6 39.0 47.4 70.2 41.6 77.3 62.4 55.5 86.4 55.5 20.0 92.0 55.3 42.8 58.9

Cityscapes ! ACDC-Night

DMAda [13]⇤ 74.7 29.5 49.4 17.1 12.6 31.0 38.2 30.0 48.0 22.8 0.2 47.0 25.4 63.8 12.8 46.1 23.1 24.7 24.6 32.7
MGCDA [54]⇤ 74.5 52.5 69.4 7.7 10.8 38.4 40.2 43.3 61.5 36.3 37.6 55.3 25.6 71.2 10.9 46.4 32.6 27.3 33.8 40.8
GCMA [53]⇤ 78.6 45.9 58.5 17.7 18.6 37.5 43.6 43.5 58.7 39.2 22.5 57.9 29.9 72.1 21.5 56.3 41.8 35.7 35.4 42.9
DANNet [68]⇤ 90.7 61.2 75.6 35.9 28.8 26.6 31.4 30.6 70.8 39.4 78.7 49.9 28.8 65.9 24.7 44.1 61.1 25.9 34.5 47.6
DANIA [69]⇤ 91.0 60.9 77.7 40.3 30.7 34.3 37.9 34.5 70.0 37.2 79.6 45.7 32.6 66.4 11.1 37.0 60.7 32.6 37.9 48.3
GALSS [30]⇤ 91.8 65.0 76.4 38.1 30.0 35.8 38.5 37.6 69.2 41.4 79.8 45.8 31.2 69.6 38.0 59.9 45.7 24.9 37.2 50.3
HRDA [24] 87.3 46.2 76.0 35.7 17.5 52.0 50.3 53.6 53.1 44.0 41.7 64.8 40.9 76.3 49.1 64.8 83.1 36.0 51.5 53.9

IR2F-RMM (Ours) 92.8 64.8 74.5 42.4 15.0 51.7 36.7 52.4 66.6 46.7 62.7 64.1 36.3 80.3 59.8 72.1 87.7 32.0 50.5 57.3

Table 2. Day-to-Night: Cityscapes ! Dark Zurich, Cityscapes ! ACDC-Night. ⇤ indicates auxiliary daytime/ twilight images corre-
sponding to night images on the target domain are needed for training. But our IR2F-RMM does not need. Best results are denoted in bold.

Method GTA ! Cityscapes SYNTHIA ! Cityscapes

HRDA-ResNet 64.6 60.0
IR2F-ResNet (Ours) 65.4 61.4

Table 3. Comparisons to HRDA, with ResNet-101 backbone.
As the reference, the highest performance with ResNet-101 back-
bone, other than HRDA and our method, for GTA, SYNTHIA !
Cityscapes are 62.7% in [8] and 57.9% in [32], respectively.

Method GTA ! Cityscapes SYNTHIA ! Cityscapes

MRNet 50.3 47.9
IR2F-RMM (Ours) 52.3 49.7

Table 4. Combination with MRNet. Our IR2F-based continuous
RMM is inserted into MRNet, to replace the original uncertainty
based pseudo-labels rectification adopted by MRNet.

under the HRDA [24] framework. In our proposed IR2F, rk
is learned by the INR from the features of different mixture
members. Other ways to estimate rk can be, 1) AVE: set-
ting rk = 1/K, i.e. average ensemble; 2) Conv: replacing
IR2F with 5 convolutional blocks without using the coordi-
nate information; 3) IRE: taking the last-layer output (be-
fore softmax) instead of features from each mixture mem-
ber as input to the IR2F. Besides, in Table 5, we compare to
another alternative, “IFA”, which leverages the INR-based
segmentation decoder head as done in [25]. It is shown that
“IFA” does not bring obvious benefits to UDA compared
to HRDA [24], 73.1%, 65.5% vs. 73.8%, 65.8%, verifying
the necessity and importance of rectifying incorrect pseudo-
labels for UDA compared to a stronger decoder.
Comparisons to Heuristics-based/ Discrete Rectification

Method GTA ! Cityscapes SYNTHIA ! Cityscapes

HRDA 73.8 65.8

w/o. IR2F w. AVE 71.0 61.9
w/o. IR2F w. Conv 72.9 65.6
w/o. IR2F w. IRE 73.3 66.3

IFA [25] 73.1 65.5
Ours 74.4 67.7

Table 5. Ablation Study. “AVE” means the average ensem-
ble in Eq. (7). “Conv” means to replace the MLP structure of
IR2F with the convolutional neural networks. “IRE” means en-
semble of the last-layer outputs instead of features from differ-
ent mixture members with implicit neural representations, i.e.
Glr(x

t) = ỹt
lr,Ghr(x

t) = ỹt
hr in Eq.( 7). “IFA” leverages the

INR-based semantic segmentation decoder head, as done in [25].

Function Modeling. In order to showcase the advantage of
our learnable and continuous rectification function model-
ing over the heuristics-based/ discrete one, we employ dif-
ferent heuristics-based/ discrete rectification function mod-
eling methods under the HRDA framework as the baselines.
As shown in Table 6, we compare our continuous IR2F to
different rectification function modeling methods, including
the heuristics-based method, 1) prediction variances [79]
of ỹt

lr
and ỹt

hr
in Eq. (7), 2) Monte Carlo Dropout (MC-

Dropout) [15], activating dropout function during inference
to obtain different predictions for ensemble, and the discrete

method, 3) an additional convolutional decoder is exploited
to estimate rectification value as done in HRDA [24]. It
is shown that our learnable and continuous rectification
function modeling method, IR2F-RMM, outperforms all
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(a) RGB (b) GT (c) HR (d) LR (e) Discrete (f) Continuous (Ours)

Figure 5. Qualitative Comparisons between Discrete and Continuous Rectification Function Modeling. (a) and (b) are the RGB
inputs and corresponding ground truth semantic segmentation maps, respectively. (c) and (d) are the outputs of the HR, LR branches (see
Sec. 3.4), i.e. argmax ỹt

hr, argmax ỹt
lr in Eq. (7), respectively. (e) and (f) are the estimated rectification values, i.e. r in Eq. (7), by

discrete modeling method (i.e. additional decoder in HRDA [24]) and our continuous modeling method, IR2F. In (e) and (f), the brighter
the part is, the ensemble result in RMM relies more on HR branch result in (c). It is shown that our continuous modeling method can
rectify some areas, which are ignored by the discrete modeling method (see orange dashed boxes), and other areas, where the the discrete
modeling method is affected by the blurring effect and does not perform well (see red dashed boxes). The red dashed boxes are enlarged
to red solid boxes for better visualization, especially the red circle parts. Best viewed with zooming.

Method GTA ! Cityscapes SYNTHIA ! Cityscapes

AVE + Variance 73.7 65.1
AVE + MC-Dropout 71.8 63.9
Additional Conv Decoder 73.8 65.8
IR2F 74.4 67.7

Table 6. Comparisons to Heuristics-based/ Discrete Rectifi-
cation Modeling. “AVE” represents the average the ensemble.
Heuristics-based modeling methods include, (1) “Variance”: pre-
diction variances are used to rectify pseudo-labels as done in [79],
(2) “MC-Dropout”: dropout is enabled during inference to get
different predictions for ensemble [15], and discrete modeling
method has (3) “Additional Decoder”: an additional convolutional
decoder is utilized to decode the rectification value as done in [24].

heuristics-based and discrete modeling methods by a large
margin. Furthermore, we provide the qualitative compar-
isons for the discrete and continuous rectification function
modeling in Fig. 5. Benefiting from continuous modeling,
the rectification values of IR2F are more accurate and in-
sensitive to the blurring effect of down-/up-sampling opera-
tions in DNNs (see Sec. 3.3), especially at mask boundaries.
Spatial Encoding Study. As analyzed in Sec. 3.3, the
implicit neural representations are insensitive to the high-
frequency signal in the image, e.g. boundaries in the image.
To overcome the shortcomings, we introduce the spatial en-
coding in Eq. (3), where the combination of sin and cos is
adopted as encoding basis. To study the effectiveness of
spatial encoding with both sin and cos, we compare to dif-
ferent encoding bases in Fig. 6, including without spatial
encoding, leakyReLU, sigmoid, pure sin and pure cos. It

w/o ReLU sigmoid sin cos sin + cos
Spatial Encoding Bases

65

65.5

66

66.5

67

67.5

68

m
Io

U
 (%

)

Figure 6. Spatial Encoding Study. Different spatial encoding
bases are compared, and the combination of sin and cos reaches
the highest performance.

is observed that all the spatial encoding bases outperform
the one without spatial encoding, proving the effectiveness
of the spatial encoding. Among different spatial encoding
bases, the combination of sin and cos reaches the highest
performance, taken as the spatial encoding basis in IR2F.

5. Conclusion
In this work, we presented continuous rectification-

aware mixture model (RMM) based on implicit neural rep-
resentations, which rectifies pseudo-labels for UDA in a
learnable, continuous and end-to-end manner. As a prin-
cipled and plug-in module, continuous RMM can be com-
bined with different UDA frameworks, boosting the quality
of pseudo-labels. Overall, our proposed continuous RMM
achieves superior results compared to state-of-the-art, on
synthetic-to-real and day-to-night UDA benchmarks.
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