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Abstract

The development of vision models for real-world ap-
plications is hindered by the challenge of annotated data
scarcity, which has necessitated the adoption of data-
efficient visual learning techniques such as semi-supervised
learning. Unfortunately, the prevalent cross-entropy super-
vision is limited by its focus on category discrimination
while disregarding the semantic connection between con-
cepts, which ultimately results in the suboptimal exploita-
tion of scarce labeled data. To address this issue, this paper
presents a novel approach that seeks to leverage linguis-
tic knowledge for data-efficient visual learning. The pro-
posed approach, BorLan, Borrows knowledge from off-the-
shelf pretrained Language models that are already endowed
with rich semantics extracted from large corpora, to com-
pensate the semantic deficiency due to limited annotation in
visual training. Specifically, we design a distribution align-
ment objective, which guides the vision model to learn both
semantic-aware and domain-agnostic representations for
the task through linguistic knowledge. One significant ad-
vantage of this paradigm is its flexibility in combining vari-
ous visual and linguistic models. Extensive experiments on
semi-supervised learning, single domain generalization and
few-shot learning validate its effectiveness. Code is avail-
able at https://github.com/BIT-DA/BorLan.

1. Introduction
The tremendous accomplishment of deep learning in

computer vision is mostly supported by large-scale labeled
datasets [13, 46]. Nevertheless, in real-world scenarios, the
acquisition of extensive labeled data through manual anno-
tation for each specific task is a time-consuming and labor-
exhaustive endeavor [11, 70]. As such, the development of
data-efficient learning methods has become an imperative
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Figure 1: Illustration of BorLan. In both domains of lan-
guage and vision, we can easily have access to various off-
the-shelf models that are pretrained on large datasets in their
respective modalities. This paper proposes a data-efficient
visual learning paradigm (black arrows), aiming to im-
prove various vision models on challenging data-scarce vi-
sion tasks by borrowing linguistic knowledge from frozen
pretrained language models. In this way, we successfully
leverage the rich semantics embedded in language modality
to enhance data-efficiency in visual learning.

research direction aimed at enhancing the feasibility and
practicality of deep neural networks [53, 61].

To mitigate the requirement for labeled data, techniques
leveraging supplementary visual knowledge have been ex-
tensively investigated in vision community. For instance,
transfer learning [63, 60, 27, 64] employs models pre-
trained on a large image dataset as the initialization, semi-
supervised learning [26, 3, 44] exploits unlabeled data via
self-training, and out-of-domain generalization [68, 58, 55]
incorporates visual prior knowledge in the training using
methods such as data augmentation [12]. However, their
commonly adopted cross-entropy supervision mainly em-
phasizes category discrimination, while overlooking the se-
mantic relevance between visual concepts. As a result, the
learned image feature space may become distorted [25], and
the inter-class relationships inferred by the model can be-
come ambiguous, as shown in Fig 5. This observation mo-
tivates us to explore an additional form of supervision that
can capture semantic information from image annotations
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prior to their conversion into one-hot labels.
In this paper, we propose a novel approach to address the

challenge of annotated data scarcity in vision tasks by lever-
aging off-the-shelf pretrained language models (PLMs),
such as BERT [21] and GPT [41], to provide explicit se-
mantic guidance that is generalizable to various data-
scarce scenarios. PLMs are known to possess semanti-
cally rich embedding spaces, since they are pretrained on
large corpora. Therefore, we borrow the general linguistic
knowledge embedded within these models to enhance the
data-efficiency of visual learning.

Particularly, vision models will benefit from two merits
that the text embedding space of PLM possesses: (1) the
semantic relationship between concepts could be reflected
through text embedding similarities, i.e., concept “cat” is
more similar to “tiger” than “airplane”; (2) the concepts
expressed in language are more domain-agnostic, which
means they are less affected by styles of varying visual do-
mains, i.e., description “a photo of a cat” can be applied
indiscriminately to cats in different kinds of environments.
Therefore, by aligning image feature space towards the text
embedding space, vision model can learn semantic relation-
ships between concepts and domain-invariant knowledge
for the given task.

More specifically, we combine a set of predetermined
prompts with task-specific concepts to create the input sen-
tences, and obtain text embeddings through the PLM. To
capture all possible variants of each concept, we estimate
the text embedding distribution of each concept using the
generated embeddings. Finally, a distribution-aware knowl-
edge transfer objective is optimized in its upper bound form
to guide the vision model align its image representations
with the text distribution. The framework is shown in Fig. 1.

Recently, motivated by the strong feature transferability
and open-set recognition ability of the pretrained vision-
language models (VLM) like CLIP [40] and ALIGN [20],
a series of subsequent works adopt VLM to improve few-
shot learning performance on data-scarce tasks [72, 71, 33,
15, 69, 19]. These VLM-based tuning methods such as
CoOp [72] and Tip-Adapter [69] inherit and leverage the
vision-language semantic connection established through
joint pre-training on massive image-text pairs to efficiently
adapt the model to specific tasks with few labeled samples.
Different from them, our framework is designed to be more
flexible, enabling knowledge transfer between various inde-
pendently pretrained vision and language models and is also
applicable on jointly pre-trained vision-language models.

We evaluate our method in three representative data-
efficient learning scenarios: semi-supervised learning
(SSL), single domain generalization (SDG), and few-shot
learning (FSL). All scenarios pose serious challenges to vi-
sion models as they need to capture the high-level seman-
tics within the training data instead of merely memorizing

them. We empirically validate that our method consistently
improves the performances of data-efficient training on a
variety of benchmarks for these tasks, and we demonstrate
that our method can promote vision models of different ar-
chitectures and sizes, ranging from ResNet-50 [17] to Swin-
Base [30], with the guidance knowledge obtained from a
various choice of PLMs like BERT [21] and GPT [41].

We summarize our contributions in this work as follows:

• We present a novel data-efficient visual learning
paradigm, named BorLan, that borrows lingnguistic
knowledge from PLMs for explicit semantic guidance
and as a complement to scarce visual data.

• We propose text embedding distribution-aware objec-
tive, enabling flexible combination of various indepen-
dently or jointly pretrained vision and language mod-
els, and full parameter fine-tuning on specific visual
tasks for better adaptation performance.

• Extensive experiments on three scenarios and various
benchmarks are conducted to thoroughly validate our
method and gain empirical insights.

2. Related Work
Data-efficient visual learning. It is demanding to learn

a well-performed model on the given task when the anno-
tated data is limited. To complement the inadequate la-
beled data, approaches in data-efficient visual learning seek
additional knowledge from other sources. Transfer learn-
ing [63, 60, 27, 64] transfers the knowledge from models
pretrained on large-scale database to the data-scarce tasks.
However, the tuned model may bias towards the limited la-
beled data in the new task [53] and results in feature dis-
tortion of the original smooth model [25]. Semi-supervised
learning [26, 48, 44, 67, 2] utilizes unlabeled data to ex-
plore the intrinsic data structure [56], in which pseudo-
labeling technique is widely adopted [26, 42]. However,
pseudo-labels are inevitably noisy and the inaccurate la-
bels lead to confirmation bias [6] hence limiting the model
performance. Out-of-domain generalization [58, 34] lever-
age visual knowledge priors to construct image augmen-
tations, and help the model to learn domain-invariant [1]
or causal [29, 34] features to generalize beyond the lim-
ited training data. Nevertheless, most popular augmenta-
tion techniques such as color jittering [8] and mixup [68]
can hardly reflect inter-class semantic relationships.

In addition to the pros and cons of each of these tech-
nologies, the visual supervision unanimously adopted by
them, such as cross-entropy loss, may overlook the seman-
tic information of the concepts by turning class names into
one-hot labels. By contrast, linguistic supervision naturally
contains rich semantics and is thus potentially more ben-
eficial to serve as visual training guidance in data insuffi-
cient tasks. Our method takes a step toward this direction by
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constructing additional supervision through pretrained lan-
guage models. Besides its own effectiveness, our method
can be regarded as an orthogonal complement to those vi-
sual knowledge-based data-efficient learning methods.

Enhance vision models by language. Recently, im-
proving the visual model with the power of language is
shown to be effective and promising. The vision-language
model (VLM) pretraining based on contrastive learning [40,
20] demonstrates strong feature transferability and open-
set recognition ability. These methods focus on learning
general representations that can quickly adapt to different
downstream tasks. However, they require massive amounts
of image-text pairs to establish the connection between im-
age and language semantics. To improve the data efficiency
in this paradigm, DeCLIP [28] explores the data correlation
both within and across modalities, LiT [66], Frozen [49]
and either leverage pretrained image or language models as
improved starting points.

Apart from improving the pretraining strategy, a stream
of researches [72, 71, 33, 15, 69, 19] is conducted to en-
hance the few-shot learning performance using pretrained
VLMs, which shares similar goals to this article and is re-
ferred as VLM-based efficient tuning methods. These ap-
proaches leverage the image-text connection learned by a
pair of vision and language models, and adapt to down-
stream tasks efficiently through adjusting a small set of pa-
rameters such as text prompts [72, 33] or image keys [69].
However, they have two common limitations. First, these
methods rely on coupled or jointly pretrained vision-
language models to form a retrieval-based classification
head, thus cannot be naturally extended to individually pre-
trained image models. Second, they keep the visual encoder
frozen during model adaptation, thus restrict the model po-
tential of improvement compared to end-to-end fine-tuning.
Different from the VLM-based efficient tuning methods,
our method decouples the pretrained vision and language
models and enables the parameter within the vision back-
bone to be updated, therefore enjoys more flexibility in
model selection for both modalities and possesses greater
potential in model adaptation for downstream tasks.

There are other methods leveraging linguistic knowledge
with different purposes: K-LITE [43] focuses on external
knowledge utilization, LocTex [32] stresses localization and
VisualGPT [7] targets at image captioning. Our proposed
BorLan focuses on exploiting the semantic richness of the
language feature space for visual learning guidance.

3. Method
In real-world applications, training a deep vision model

to achieve satisfying performance could be challenging due
to the scarcity of label supervision. Therefore, data-efficient
training strategies are essential in practical scenarios. We
consider semi-supervised learning (SSL), single domain

generalization (SDG) and few-shot learning (FSL) as typ-
ical scenarios that demand for data-efficient training tech-
niques. In SSL, the training data includes labeled data
{(xi, yi)}nl

i=1 ∈ X ×Y and unlabeled data {(ui)}nu
i=1 ∈ X ,

where usually the labeled data set size nl is much smaller
than unlabeled set size nu. For FSL, only a class-balanced
labeled set {(xi, yi)}

nf×K
i=1 is provided where nf indicates

number of shots and K is the total category number. While
the test data are sampled from the same distribution as the
training data in both scenarios, they are not in the SDG set-
ting. In SDG, all the training data are sampled from a single
source domain: {(xi, yi)}ns

i=1 ∈ Xs × Y , but the test data
are expected from arbitrary unseen target domain Xt × Y
that shares the same category space.

A vision model could generally be regard as a classifica-
tion head G on top of a feature extractor F , and has a basic
optimization objective of minimizing empirical risk:

Lemp =
1

n

n∑
i=1

ℓ(G(F (xi)), yi), (1)

where ℓ(·, ·) typically takes the form of cross-entropy loss
in classification tasks. On this basis, data-efficient train-
ing methods generally involve additional training objectives
likeLu(u) orLaug(x, y;α), leveraging unlabeled data u or
certain data augmentation technique α, respectively.

This section will first introduce the construction of a
new form of objective Ltext(x, y;T ) by gathering knowl-
edge from a frozen pretrained language model T such as
BERT [21]. Then, it specifies the application of the pro-
posed objective on the three data-scarce scenarios.

3.1. Beneficial Supervision from Language Models

We would like to borrow knowledge from language
modality to complement the supervision insufficiency in
data-scarce vision tasks. Vision-language pretraining set a
nice example by learning from web-scaled image-text pairs,
but it is a laborious and inflexible approach that has to train
a pair of vision-and-language models with a great amount
of paired data. Instead, we seek for a more friendly solution
that acquires knowledge from pretrained language models.

PLMs like BERT [21] and GPT [41] have shown great
success in natural language processing. They learn con-
textualized word embeddings from large corpus, and cap-
ture rich linguistic knowledge within their pretrained model
weights [62]. Given that a variety of powerful and off-the-
shelf PLM publicly available, it is our interest to investigate
how to extract from them the linguistic knowledge benefi-
cial to vision model training.

Normally, to calculate the loss ℓ in Eq. (1), category la-
bels y are turned into one-hot vectors. This common prac-
tice encourages the model to discriminate each concept, yet
inevitably loses the semantic relationship between them. As
a consequence, it is difficult for the vision model to learn the
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Figure 2: Illustration of the proposed Language embedding space supervision framework. Given a specific vision task with
limited labeled data, before training the vision model, we insert category names of into the predetermined prompts to construct
input sentences, which are then passed through a frozen pretrained language model (PLM). The generated text embeddings
t are utilized to estimate category-wise embedding distributions (as shown in dashed ellipses) in the text embedding space.
During training, the language-guided alignment loss Ltext is computed besides the standard cross-entropy loss to transfer the
linguistic knowledge from PLM to the vision model.

connection between concepts of the task, especially when
labeled data is scarce. In contrast, the text embedding space
generated by PLM contains rich semantics that have two fa-
vorable properties: (i) semantic relationship between con-
cepts are reflected through text embedding similarities, (ii)
concepts expressed in language are more domain-agnostic.
Therefore, we propose to align the feature distribution of
the vision model towards the text embedding distribution to
help it capture semantics omitted in original visual training.

Given the category names of a specific task {Wk}Kk=1

where K is the total category number, we use a set of pre-
determined prompts (e.g., ‘This is a photo of a { }’) to com-
plete the input sentences. Specifically, assuming the prompt
set has size m, then we can totally obtain mK sentence em-
beddings by feeding the inputs into a frozen pretrained lan-
guage model T . These embeddings are then normalized and
are denoted as {t(k)1 , t

(k)
2 , ..., t

(k)
m }Kk=1 ∈ Rdtext where dtext

is the dimension of the text embedding space.
To conduct feature alignment between image represen-

tations and these obtained text embeddings, we initialize
a new projector network H on top of the image encoder
to obtain the image representations. For the labeled train-
ing data (x, y), we compute its normalized representation
h = H(F (x))

||H(F (x))||2 ∈ Rdtext and utilize the contrastive loss

that regards {t(y)1 , t
(y)
2 , ..., t

(y)
m } as positive samples and

those in the rest categories as negative samples. The loss
is as follows:

Lsample
text (x, y;T )

=
1

n

n∑
i=1

1

mp

mp∑
p=1

− log
eτh

⊤
i t

(yi)
p

eτh
⊤
i t

(yi)
p +

K∑
k ̸=yi

1
mn

mn∑
q=1

eτh
⊤
i t

(k)
q

 ,

(2)

where τ is the temperature hyperparameter, and mp,mn

denotes the number of positive and negative samples, re-
spectively. Note that here we have mp= mn= m, and we
distinguish these notations only for the derivation in § 3.2.

Despite that the loss in Eq. (2) is an applicable objec-
tive, directly optimizing it creates a dilemma regarding the
number of handcrafted prompts: small m could not provide
enough supervision whereas large m requires heavy labor
on prompt engineering. Moreover, as shown in Fig. 4, a
few poorly designed prompts lead text embeddings to form
“prompt cluster” instead of “concept cluster”, making them
toxic to feature alignment and thus requires extra effort for
manually removal. To overcome these issues, we propose
an improved version of Lsample

text from a distributional per-
spective. Specifically, by viewing the text embeddings with
the same concept as samples from an underlying distribu-
tion of the concept, the image representations can directly
align to the distribution, as shown in the following.

3.2. Alignment Between Image Features and Lan-
guage Concept Distributions

Our modification begins by assuming that text embed-
dings with input sentences describing the same concept fol-
low a Gaussian distribution in the embedding space. Its
mean vector can be viewed as the prototypical embedding
of the concept whereas its variance represents the concept in
different contexts. Therefore, the parameters for the Gaus-
sian distribution N (µk,Σk) of concept k are estimated
through the handcrafted embeddings as:

µ(k) =

∑m
j=1 t

(k)
j

m
, Σ(k) =

∑m
j=1(t

(k)
j − µ(k))(t

(k)
j − µ(k))⊤

m− 1
.

(3)
Once all the concept distributions are estimated, we can

sample infinite positive and negative samples and take the
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limitation of Eq. (2) as mp and mn goes to infinity:

L∞
text = lim

mp→∞,mn→∞
Lsample

text

=
1

n

n∑
i=1

E
t(yi)∼N(yi)

− log
eτh⊤

i t(yi)

eτh⊤
i

t(yi) +
K∑

k ̸=yi

E
t(k)

[
eτh⊤

i
t(k)

]
 .

(4)

Then, following the derivation of [54], we can further ob-
tain its upper bound using Jensen’s inequality and moment
generation function (detailed derivation in supplementary):

L∞
text ≤ L̄∞

text

=
1

n

n∑
i=1

− log
eF(hi,yi)

K∑
k=1

eF(hi,k)

+
τ2

2
h⊤

i Σ
(yi)hi


def
= Ltext(x, y;µ,Σ),

(5)

where F(h, y) def
= τh⊤µ(y) + τ2h⊤Σ(y)h/2, and µ,Σ

represents all the means and covariance matrices which only
depends on the chosen language model T and the concepts
W and will not be updated during training. To this end,
we obtain the actual objective for our linguistic knowledge
transfer, which can be seamlessly integrated with various
data-scarce scenarios. Fig. 2 illustrates the whole process.

3.3. Application on three scenarios

Our method supports flexible training of vision models
on a variety of real-world applications.

In SSL, we calculate Ltext using both labeled and unla-
beled data besides Lemp. To incorporate unlabeled data u,
we assign pseudo label ŷ based on network prediction. The
objective is summarized as follows:

Lssl = λsLemp(x, y) + λxLtext(x, y) + λuLtext(u, ŷ).
(6)

As in both SDG and FSL, we simply compute Ltext on all
labeled data available and combine it with Lemp as follows:

Lsdg = Lfsl = λsLemp(x, y) + λxLtext(x, y). (7)

Our method can also be applied to other data-efficient
scenarios by simply adding Ltext to labeled data or com-
bining it with other techniques. We present here a general
applicable algorithm (see Alg. 1), please refer to the supple-
mentary for a more detailed algorithm.

4. Experiments
In this section, we evaluate our method on several bench-

marks and make comprehensive analysis under three rep-
resentative data-efficient learning settings: semi-supervised
learning (SSL), single domain generalization (SDG) and

Algorithm 1: Language Guided Vision Training

Input: Data {(xi, yi)}ni=1; Concepts {Wk}Kk=1;
Prompt set {Pq}mq=1; Vision Backbone F ;
Pre-trained Language Model T .

Output: Language augmented Model for the Task:
G ◦ F (G is the task-specific head).

// Obtain text embeddings.
1 Combine P withW to obtain complete input texts
{P1Wk,P2Wk, ...,PmWk}Kk=1, then obtain from
T the output text embeddings {t(k)1 , ..., t

(k)
m }Kk=1;

2 for k = 1, 2, · · · ,K do
3 Estimate µk, Σk for conceptWk using Eq. (3);
4 end

// Train the vision model.
5 Initialize classifier G and projector H;
6 for iter = 1, 2, · · · , I do
7 f i ← F (xi);
8 pi ← G(f i), hi ← normalize(H(f i));
9 Compute Lemp(pi, yi) by Eq. (1);

10 Compute Ltext(hi, yi) by Eq. (5);
11 L ← Lemp + λLtext;
12 Update model F,G,H by L;
13 end

few-shot learning (FSL). For SSL, following [53], we adopt
CIFAR-100 [24], FGVC Aircraft [35], Stanford Cars [23]
and CUB-200-2011 [52] to cover from general to fine-
grained classification tasks. For SDG, following [22], we
evaluate our method on small-sized Office-Home [51] and
large-scaled DomainNet [39]. As for FSL, we follow [72]
and conduct experiments on Caltech101 [14], FGVC Air-
craft, DTD [37], EuroSAT [18], Oxford Flowers [36], Ox-
ford Pets [38], Stanford Cars, Food-101 [4], SUN397 [57]
and UCF101 [45].

Implementation Details. We use 80 handcrafted
prompts proposed in CLIP [40] to obtain text embeddings.
We set all λs, λx and λu as 1.0 in SSL and FSL while set-
ting λs as 0.3 in SDG. Temperature τ is fixed as 1

0.07 . SGD
with a momentum of 0.9 is adopted as the optimizer. The
learning rate is set as 1e-3 for the visual backbone in most
experiments and a 10× larger value is applied for the clas-
sifier and projector in SSL and SDG. The projector is an
MLP consists of “FC-ReLU-BN-FC”, where the output di-
mension depends on the text embedding dimension dtext.
More details can be found in the supplementary.

4.1. Semi-supervised Learning

Our baselines include two type of methods. Vanilla fine-
tuning, co-tuning [64] and LP-FT [25] use only the labeled
data provided. Five semi-supervised methods [26, 44, 9, 53,
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Table 1: Classification accuracy (%) of our method and various baselines on three fine-grained classification benchmarks
(backbone: ResNet-50 pretrained on ImageNet-1k). Our method is denoted as BorLan-[language model]-[vision model].

Method
FGVC Aircraft Stanford Cars CUB-200

15% 30% 50% 65% 80% 15% 30% 50% 65% 80% 15% 30% 50% 65% 80%

Fine-tuning (supervised baseline) 39.57 57.46 67.93 71.31 76.89 36.77 60.63 75.10 79.01 81.07 45.25 59.68 70.12 71.18 71.84
Co-Tuning [64] (NeurIPS’20) 44.09 61.65 72.73 – – 46.02 69.09 80.66 – – 52.58 66.47 74.64 – –
LP-FT [25] (ICLR’22) 43.51 59.13 68.35 71.88 77.61 40.79 62.54 76.38 80.22 83.64 46.18 59.13 71.86 71.99 72.20

Pseudo-Labeling [26] (ICML’13) 46.83 62.77 73.21 – – 40.93 67.02 78.71 – – 45.33 62.02 72.30 – –
FixMatch [44] (NeurIPS’20) 55.53 71.35 78.34 – – 49.86 77.54 84.78 – – 44.06 63.54 75.96 – –
SimCLRv2 [9] (NeurIPS’20) 40.78 59.03 68.54 – – 45.74 61.70 77.49 – – 45.74 62.70 71.07 – –
Self-Tuning [53] (ICML’21) 64.11 76.03 81.22 86.98 88.33 72.50 83.58 88.11 90.77 90.82 64.17 75.13 80.22 80.69 81.34
DebiasMatch [59] (CVPR’22) 59.54 71.23 77.10 79.31 81.19 75.39 86.10 89.98 90.55 91.27 64.67 75.05 77.73 78.11 79.28
BorLan-Bert-L-ResNet-50 71.05 83.41 87.22 88.81 90.19 79.34 88.78 91.46 92.30 92.38 65.96 75.70 80.91 81.86 82.79

Table 2: Classification accuracy (%) on CIFAR-100 pro-
vided with only 400 labels, 2, 500 labels and 10, 000 labels.

Method 400 2.5k 10k

FixMatch [44] (NeurIPS’20) 42.03 70.01 78.31
ReMixMatch [2] (ICLR’20) 46.85 68.56 79.09
Co-Tuning [64](NeurIPS’20) 42.42 69.06 77.78
FlexMatch [67] (NeurIPS’21) 43.11 69.87 77.30
Self-Tuning [53] (ICML’21) 52.83 75.84 82.43
BorLan-Bert-L-EfficientNet-B2 55.18 76.93 83.44

59] leverage both labeled and unlabeled data. All methods
including our BorLan use vision models (such as ResNet-
50 [17]) pretrained on ImageNet-1k [13] as backbone. As
for the language model, we adopt the representative pre-
trained Bert-Large [21] to produce text embeddings. In the
rest of this section, we denote our configuration in a unified
format of “BorLan-[language model]-[vision model]” (i.e.,
BorLan-Bert-L-ResNet-50).

Results on Three Fine-grained Datasets. We evaluate
BorLan’s performances using labeled dataset of proportion
ranging from 15% to 80%. The results are shown in table 1.
Our method achieves the best performances on all tasks on
the three benchmarks. More significant improvements can
be observed when the proportion of labeled data is smaller:
we surpass Self-Tuning [53] by 6.94%, 6.84% and 1.79%
on three benchmarks under 15% labeled data setting. Mean-
while, FixMatch [44] and DebiasMatch [59] are representa-
tive semi-supervised baselines that utilizes both strong and
weak augmentations to achieve better exploitation of the un-
labeled data. Our method, through transferring the linguis-
tic knowledge to the vision model, outperforms the two op-
ponents without using any strong augmentation techniques.
Moreover, our method surpasses SimCLRv2 [9], which dis-
tills visual knowledge from a teacher vision model. Differ-
ent from SimCLRv2, we distill knowledge from a language
model that learns rich semantics through large corpus and
achieves better results.

Results on CIFAR100. Following [53], we adopt the
pretrained EfficientNet-B2 [47] model as backbone. We re-
port the results in table 2, including several representative

Table 3: Classification accuracy (%) on two fine-grained
classification benchmarks using different pre-training meth-
ods. The method of pre-training is written in brackets.

Dataset Method
Labeling Ratio

15% 30% 50%

FGVC
Aircraft

Pseudo-Labeling [26] (ICML’13) 46.83 62.77 73.21
FixMatch [44] (NeurIPS’20) 55.53 71.35 78.34
BorLan-Bert-L-RN-50 (Supervised) 71.05 83.41 87.22
BorLan-Bert-L-RN-50 (MoCov2 [10]) 74.26 86.11 88.25

Stanford
Cars

Pseudo-Labeling [26] (ICML’13) 40.93 67.02 78.71
FixMatch [44] (NeurIPS’20) 49.86 77.54 84.78
BorLan-Bert-L-RN-50 (Supervised) 79.34 88.78 91.46
BorLan-Bert-L-ViT-B (MAE [16]) 76.79 87.31 91.58

semi-supervised learning methods [44, 67, 2, 53] as base-
lines. Similar conclusion can be drawn from the table: our
method surpasses all the baselines on all three tasks, and
gets the most performance boost on the task with the least
data available (400 labels only). In addition, it shows that
our method can be applied to various pure image pretrained
backbones (ResNet and EfficientNet), which is a major ad-
vantage compared to VLM-based methods like CoOp [72].

Experiments with Self-supervised Pre-trained Vision
Models. Our method is effective not only on image models
pre-trained in supervised manner, but also on those mod-
els pre-trained in prevalent self-supervised manner. Ta-
ble 3 shows the results of our method with backbones
using vanilla supervised pre-training, MoCov2 [10] and
MAE [16] respectively. We can observe that both MoCov2
pre-trained model and MAE pre-trained model achieves
competitive results to supervised pre-trained model. We
think the reason why MAE pre-trained backbone performs
a little worse than the other variant is that ViT-B, with its
more powerful learning capabilities, is more likely to be in-
fluenced by noisy pseudo labels in the early stage, which
suggests that our method could be integrated with more ad-
vanced pseudo-labeling strategies to achieve higher results.
This is left for future exploration.

4.2. Single Source Domain Generalization

In single domain generalization, the vision model is
trained on only one domain and is tested on multiple tar-
get domains. Hence, this setting is more difficult than the
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Table 4: Target domain accuracy (%) for single domain generalization on Office-Home. Backbone ResNet-50 and ConvNext-
S are pretrained on ImageNet-1k, and Swin-B is pretrained on ImageNet-22k. † denotes our implementation.

Image Model Method
Source:Ar Source:Cl Source:Pr Source:Rw

Avg.
Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr

ResNet-50
#Param: 23M

ERM† 43.71 67.60 73.78 51.03 60.90 63.32 52.73 38.81 72.21 64.80 44.17 76.89 59.16
ERM [22](ECCV’22) 46.80 64.40 71.20 52.50 62.50 63.60 49.50 42.50 72.30 66.10 49.00 77.20 58.40
FACT† [58](CVPR’21) 49.12 64.63 73.30 54.80 62.53 64.60 52.08 45.22 72.34 67.12 48.41 78.08 61.02
CIRL† [34](CVPR’22) 50.61 64.79 72.80 55.79 63.03 65.02 52.41 46.76 71.88 65.22 54.71 77.09 61.68
BorLan-Bert-L-ResNet-50 47.97 70.49 76.54 57.85 66.91 69.22 57.15 44.01 76.11 68.64 48.82 79.68 63.62

ConvNext-S
#Param: 49M

ERM† 54.08 75.86 79.96 66.66 74.26 75.14 64.44 51.30 78.56 71.61 53.14 81.63 68.89
ERM [22](ECCV’22) 53.40 72.70 78.60 67.50 72.90 75.40 61.80 49.00 80.00 72.20 52.70 80.90 67.90
CIRL† [34](CVPR’22) 60.85 76.57 80.95 69.03 74.45 75.17 66.58 58.58 82.40 73.40 59.17 83.10 71.69
BorLan-Bert-L-ConvNext-S 59.54 80.11 84.48 71.57 79.09 81.04 70.13 56.54 83.82 75.90 57.07 85.51 73.73

Swin-B
#Param: 86M

ERM† 69.32 83.97 87.99 81.52 84.91 86.68 79.21 66.59 87.56 82.80 67.05 89.15 80.56
ERM [22](ECCV’22) 70.70 86.10 88.50 80.60 84.30 86.70 77.90 66.10 88.30 82.60 69.10 90.40 81.00
CIRL† [34](CVPR’22) 71.93 84.17 87.02 79.32 84.40 86.75 78.54 67.60 88.68 82.74 72.13 89.60 81.07
BorLan-Bert-L-Swin-B 73.26 86.75 90.34 85.21 88.24 89.92 82.82 70.49 90.96 84.38 70.31 90.27 83.58

Figure 3: Few-shot learning accuracy (%) on ten datasets compared with VLM-based efficient tuning methods (vision back-
bone: CLIP ViT-B/16). ProDA is reported using our implementation results based on the official code.

classical domain generalization where multiple source do-
mains are available, but it is also more common in realis-
tic data-scarce scenarios. To validate the effectiveness of
our method, we set three baselines: ERM refers to train-
ing the model with vanilla cross-entropy loss on all labeled
data, FACT [58] and CIRL [34] are strong algorithms in
DG. In addition, since recent discovery shows that network
architecture and pretraining dataset have large impacts on
domain transfer tasks [22], we also examine our method
on ConvNext-Small (S) [31] and Swin-Transformer-Base
(B) [30] pretrained on ImageNet-1k and -22k, respectively.

Results on Office-Home. The result is shown in ta-
ble 4. When using ResNet-50 as backbone, BorLan out-
performs ERM and CIRL by an average accuracy of 5.22%
and 1.94%, respectively. After changing the network ar-
chitecture and pretraining dataset, our method continues to
improve on these vision models, achieving an average per-
formance boost of 5.83% on ConvNext-S and 2.58% on
Swin-B. These improvements prove that linguistic knowl-
edge from pretrained language models could serve as ideal
complement in enhancing visual feature transferability, and
our method is applicable to various vision models.

Results on DomainNet. We show results on more chal-
lenging DomainNet benchmark in table 5. Each column

Table 5: Target domain average accuracy (%) ↑ for SDG on
large-scaled benchmark DomainNet. Backbone ResNet-50
and ConvNext-S are pretrained on ImageNet-1k, and Swin-
B on ImageNet-22k. †denotes our implementation results.
Image Model Method clp inf pnt qdr rel skt Avg.

ResNet-101
#Param: 42M

ERM [22](ECCV’22) 38.98 12.92 30.98 9.08 41.44 32.90 27.72
ERM† 38.88 14.79 32.16 8.42 43.98 31.05 28.31
CIRL† [34](CVPR’22) 39.96 13.05 31.20 9.54 41.56 31.28 27.77
BorLan-Bert-L-ResNet-101 40.21 15.62 33.09 9.28 44.27 32.17 29.11

ConvNext-S
#Param: 49M

ERM [22](ECCV’22) 48.34 16.20 38.78 9.50 52.18 39.36 34.06
ERM† 46.00 17.55 40.02 8.82 54.44 37.07 33.98
CIRL† [34](CVPR’22) 48.58 16.66 41.00 10.56 52.34 37.26 34.40
BorLan-Bert-L-ConvNext-S 47.69 18.54 41.89 9.39 56.10 39.50 35.52

Swin-B
#Param: 86M

ERM [22](ECCV’22) 56.74 21.48 45.80 12.42 60.22 45.50 40.36
ERM† 55.24 21.62 47.89 10.48 61.68 44.07 40.16
CIRL† [34](CVPR’22) 58.43 22.70 46.51 13.38 64.01 46.16 41.87
BorLan-Bert-L-Swin-B 59.82 25.61 52.31 13.43 67.91 49.04 44.69

reports the average accuracy of five results, with their com-
mon target/test domain as the column’s title. For exam-
ple, the number under clp is the average performance of
five models trained on inf, pnt, qdr, rel and skt respectively.
Compare to vanilla ERM, BorLan improves the generaliza-
tion performance on all three vision models: ResNet, Con-
vNext and Swin-Transformer, which indicates the flexibil-
ity and the scalability of leveraging linguistic knowledge
from PLM. The results also demonstrate that our method is
equally effective on large-scaled dataset. Full results can be
found in supplementary.
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Figure 4: T-SNE visualization
of the Bert-L text embeddings
spaces on Office-Home. Color
represents different categories.
Best viewed in color.
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Figure 5: Normalized cosine similarity between the mean text embeddings or image
embeddings of 12 selected categories in DomainNet. Category indexes are rearranged
according to their semantics to form three groups which are shown in the gray boxes in
the left. Text embedding space (left) can reflect the concept or category similarity, and
our method helps the image model (mid) learn these semantics (right).

4.3. Few-shot Learning

Vision language models (VLM) possess strong zero-shot
ability utilizing the image-text semantic connection learned
from massive image-text pairs, yet they struggle on fur-
ther improvements in few-shot learning with vanilla linear
probing [40]. Through reusing such cross-modality con-
nection, VLM-based efficient tuning methods successfully
improve the few-shot learning performance of CLIP pre-
trained model [72, 71]. Now we show that BorLan can also
enhance CLIP’s few-shot ability via the proposed seman-
tic guidance and therefore is beneficial to both pure image
pretrained model and pretrained VLM.

We compare BorLan’s few-shot learning performance on
ten standard benchmarks against CoOp [72], ProDA [33]
and Tip-Adapter [69], using CLIP ViT-B/16 as common vi-
sion backbone. The result is shown in Fig. 3, where similar
trends can be discovered on all datasets. Using 1 shot or 2
shots, BorLan achieves either comparable or a little worse
performance compared to the top-performed method. How-
ever, as the shot number increases, BorLan continues to
achieve large improvements and significantly outperforms
all baselines. We speculate on the following reasons.

On one hand, different from VLM-based efficient tuning
methods that can inherit the powerful image-text connection
obtained in the pretraining stage, our method, with a tun-
able and decoupled vision encoder plus a new classification
head, needs to establish the image-text connection from the
beginning using the limited data. As a consequence, When
the labeled data is extremely scarce, it is not enough for
BorLan to build strong cross-modality connection, and the
improvement may not be significant. It can be regarded as
a price for our method’s increased flexibility in model de-
coupling. On the other hand, BorLan’s capability of full-
parameter fine-tuning shows its advantage as the labeled
data increases. This is because CoOp and Tip-Adapter can
be viewed as language-guided linear probing methods given

that both their vision and language encoder is kept frozen to
maintain the aforementioned image-text connection.

To summarize, the observed trends in Fig. 3 reflect
the difference between the two language-guided paradigm,
while our approach BorLan has the advantage of being more
adaptable in the few-shot learning scenario.

4.4. Analytical Experiments

Ablation Study. We conduct ablation study on the two
losses as in table 6. Firstly, we replace our alignment
loss Ltext with Lsample

text in Eq. (2) and vary the value of
the prompt set size m. The results show that the perfor-
mance increases as m increases, yet it still underperforms
our method using Ltext even when m is set to 80. Sec-
ondly, we remove the cross-entropy loss Lemp (together
with the classifier), and instead use fixed text mean vec-
tors as class prototypes for prediction. The results prove
that using cross-entropy loss and a trainable classification
head makes to model significantly more adaptable and thus
cannot be replaced.

Table 6: Ablations of two losses on Aircraft (Air) and Stan-
fordCars (Car) datasets.

Lsample
text

m = 5 m = 10 m = 20 m = 40 m = 80 ∞ (Ltext)

Acc. (Air-15%) 68.42 69.11 70.51 70.56 70.66 71.05
Acc. (Car-15%) 75.71 75.96 76.54 77.20 78.02 79.34

Lemp

Air-15% Air-30% Air-50% Car-15% Car-30% Car-50%

w/o Lemp 63.10 71.86 75.07 63.84 77.61 81.95
w/ Lemp 71.05 83.41 87.22 79.34 88.78 91.46

To demonstrate the flexibility of our method, we ab-
late different PLM on two image backbones: ResNet-
50 pretrained on ImageNet-1k and Swin-B pretrained on
ImageNet-22k. We also examine effectiveness using the
text encoder in CLIP and language model (denoted as
CLIPtext). The average accuracy on Office-Home of each
combination are shown in table 7. The results validate that

18793



our method allows free combination between a variety of
pretrained image and pretrained language models.

Table 7: Vision and language model ablations on Office-
Home. Average accuracies (%) are reported.

Image ⧹ Language Model w/o CLIPtext Bert-L mT5-L GPT2-L

ResNet-50 (IN-1k) 59.16 63.37 63.62 63.64 63.77
Swin-B (IN-22k) 80.56 83.41 83.58 83.59 83.83

Visualization of the Text Embedding Space. To obtain
a more intuitive understanding of the text embedding space,
we conduct two experiments to study its properties. Fig. 4
demonstrate the t-SNE visualization results on the text em-
beddings spaces generated from Bert-L. Embeddings from
the same category are painted with the same color. We no-
tice that while most text embeddings in the same category
from compact clusters (denoted as “concept cluster”), a
few of them with the same prompt form an individual clus-
ter (denoted as “prompt cluster”), as shown in the zoomed-
in view. This is because the prompt template occasionally
have large impact on the output embedding and overshad-
ows the concepts that we fill into it. In conclusion, the vi-
sualization provides a more intuitive reason why it is nec-
essary to adopt Ltext rather than Lsample

text to mitigate their
negative influence.

Fig. 5 demonstrates the normalized cosine similarity be-
tween the means of text embedding distributions and image
embeddings of 12 selected categories in DomainNet (left).
We can observe strong correlation between cosine similar-
ity of text embeddings and the semantic relevance of con-
cepts. For instance, category “cat” is closer to “dog” than
“banana”. In contrast, original image embeddings (mid)
learned by one-hot labeled doesn’s possess this property.
Our method, by aligning image feature to text embedding,
helps the vision model learn these semantics (right).

Table 8: Clustering and transferability analysis of our
method on Office-Home (image model: ResNet-50).

Metric Method Source:Ar Source:Cl Source:Pr Source:Rw Avg.

C-H Score ↑
ERM 37.80 42.12 36.29 16.00 33.05
BorLan 58.08 52.73 47.86 24.95 45.91

LogME ↑
ERM 1.040 1.032 0.994 0.850 0.979
BorLan 1.090 1.052 1.016 0.874 1.008

Transferability Analysis. To quantitatively measure
the transferability improvement by our method, we com-
pare between the vision model trained by vanilla ERM and
our method using two standard metrics: clustering met-
ric Calinski-Harabasz Index [5] and transferability metric
LogME [65]. Specifically, we use the fixed model trained
on source domain to generate features in each target do-
main. Then we leverage the true labels of these target fea-
tures to calculate both metrics. Table 8 shows the results
on Office-Home, where each number represents the average
score on three target domains. It is obvious that our method

achieve better scores on both metrics, proving that linguistic
knowledge is beneficial to representation learning.

Figure 6: Normality test for 65 concepts in Office-Home.

Normality Test of Text Embeddings. To validate the
Gaussian assumption in our text embedding space (i.e., the
text embeddings generated from PLM are sampled from
Gaussian distribution for each concept), we conduct a nor-
mality test on each group of concept text features and the
results are shown in Fig. 6. The results demonstrate that
in the majority of concepts, features have p-values greater
than the significance level of 0.05, showing that they are
very likely to be Gaussian distributed.

Table 9: Comparison between knowledge distillation from
large vision teacher models and large language models
(Ours) on Office-Home in SDG(student model: ResNet-50).
Language teacher improves generalization more.

Teacher None ConvNext-S ConvNext-B Swin-B Bert-S [50] (Ours)

#Param – 49M 87M 86M 29M

Acc. (%) 59.16 61.12 61.28 61.31 63.57

Comparison to Knowledge Distillation. Our method
can generally be regarded as distilling knowledge from lan-
guage teacher to vision students, thus we compare it with
classical vision knowledge distillation. As shown in table 9,
transferring knowledge from language model achieves bet-
ter generalization improvements on student model, showing
that language teacher is able to transfer more semantics.

5. Conclusion
This paper proposes a generalizable data-efficient visual

learning paradigm BorLan that leverages linguistic knowl-
edge from pre-trained language model to provide explicit
semantic guidance as complementary supervision. The pro-
posed paradigm is designed to allow a flexible combination
of various visual and linguistic models, and the proposed
objective can transfer the semantic information from text
embeddings to visual feature space. Extensive experiments
on SSL, SDG and FSL are conducted to validate the effec-
tiveness of this new paradigm in data-efficient learning.
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