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Figure 1: We compare our method against GLAMR [67], the state-of-the-art method for global human motion mesh recovery. The output
of GLAMR (left) suffers from various physical implausibilities, such as floating, sliding, or terrain penetration. Our method (right) yields
a clear improvement.

Abstract

Simulation has emerged as an indispensable tool for
scaling and accelerating the development of self-driving
systems. A critical aspect of this is simulating realistic and
diverse human behavior and intent. In this work, we pro-
pose a holistic framework for learning physically plausible
human dynamics from real driving scenarios, narrowing the
gap between real and simulated human behavior in safety-
critical applications. We show that state-of-the-art meth-
ods underperform in driving scenarios where video data is
recorded from moving vehicles, and humans are frequently
partially or fully occluded. Furthermore, existing methods
often disregard the global scene where humans are situated,
resulting in various motion artifacts like foot sliding, float-
ing, or ground penetration. To address this challenge, we
propose an approach that incorporates physics with a rein-

forcement learning-based motion controller to learn human
dynamics for driving scenarios. Our framework can sim-
ulate physically plausible human dynamics that accurately
match observed human motions and infill motions for oc-
cluded body parts, while improving the physical plausibil-
ity of the entire motion sequence. Experiments on the chal-
lenging Waymo Open Dataset show that our method out-
performs state-of-the-art motion capture approaches signif-
icantly in recovering high-quality, physically plausible, and
scene-aware human dynamics.

1. Introduction

Self-driving systems have come a long way in recent
years. One major advancement that directly impacted
these systems is the widespread adoption of simulation.
While considerable attention was given to simulating traf-
fic and other vehicles (e.g., TrafficSim [59], GeoSim [3],
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STRIVE [51]), simulating pedestrian motion and behavior
received less attention in the literature. In this work, we ar-
gue that understanding human behavior and intent is a crit-
ical step towards realistic simulation, which in turn is key
to the safety of autonomous vehicles (AVs) in real-world
settings. The first step towards this goal is capturing physi-
cally plausible human dynamics of entire motion sequences
in driving scenarios.

Contrary to human motion in indoor scenes [12], motion
captured in AV scenarios presents several challenges. These
challenges include camera motion, long-term partial or full
occlusions, scale variability, and complex interactions with
the real-world environment. State-of-the-art (SOTA) ap-
proaches [69, 68, 70, 46, 34, 66, 35] for learning human
dynamics in indoor scenarios tend to focus on enhancing
physical plausibility for visible frames, neglecting several
of these obstacles, such as long-term motion occlusions and
the interplay between humans and terrains. As a result, it
is challenging to directly apply these approaches to com-
plex AV scenarios. Although recent works [67, 49] have
demonstrated progress in infilling missing motions, there
are significant limitations to using these methods for learn-
ing physically plausible human dynamics in AV scenarios,
as shown in Figure 1. Firstly, these methods consider only
physiologically inspired kinematics constraints such as joint
limits, and do not model the physical plausibility of the pose
in relation to the environment, such as when an object is
floating. Secondly, these motion generation models are usu-
ally trained on indoor datasets, and the domain gap between
indoor and driving scenarios renders them incapable of in-
filling missing motions in a plausible way.

In this paper, we present a novel holistic framework
to learn human dynamics in such challenging AV scenar-
ios. Our proposed framework distinguishes itself from prior
works by its ability to generate physically plausibility mo-
tions for long-term partially or fully missing body parts,
thus addressing an important limitation in the SOTA ap-
proaches to learn human dynamics. Firstly, we integrate
off-the-shelf motion capturing (e.g., KAMA [13]) and scene
reconstruction (e.g., Possion Surface Reconstruction [17])
methods to recover observed motions of visible humans and
recover the terrain mesh as well. Before learning human dy-
namics from the captured motions, we fix the missing ter-
rains by the observed motion trajectories, as well as filter
out frames with low-confidence estimation caused by partial
occlusion, to guarantee the simulation framework is based
on reasonable visual observation. Next, we track the cap-
tured motion on the reconstructed terrains by generating in-
filling motions for the missing frames while enforcing the
physical plausibility of the captured motions (e.g. penetra-
tion free against the ground). In contrast to GLAMR [67],
which infills a few missing frames together using the pre-
trained transformer-based model, our method generated the

motions in a stepwise fashion using a local motion con-
troller, similar to [28, 62]. This controller-style motion
generation reduces foot sliding over long-term occlusions.
We demonstrate the adaptability of our approach by show-
ing that, even though it is trained on indoor motion data,
it can generalize to in-the-wild driving scenarios by plac-
ing physical constraints on the human-scene interactions.
Specifically, we first train the conditional variational au-
toencoder [18] (cVAE) as the local motion generator whose
latent space is the action space of movement. We then train
a high-level controller to sample this latent space to per-
form infilling. Although all the motion generation models
and physics-aware imitators are trained on an indoor dataset
with flat ground, our method can easily adapt these mod-
els to uneven terrains in driving scenarios. Finally, we use
an additional joint optimization, based on the physics-based
imitator and generated motion, to match the video evidence
(e.g., 2D keypoints with high confidence) not utilized in
the previous stage. In summary, our framework is capable
of learning physically plausible human dynamics for entire
motion sequences in driving scenarios through visual obser-
vations.

We summarize our contributions as follows: 1) We pro-
pose the first framework for learning physically plausible
human dynamics in driving scenarios, which is capable of
generating physically plausible motions for partially or fully
missing body parts. 2) We adapt a reinforcement learning-
based motion generation framework trained only on indoor
motion data, but can generalize to in-the-wild driving sce-
narios, infilling physically-plausible motion for occluded
frames. 3) We achieve a significant improvement in motion
quality over our motion capture framework to learn human
dynamics, especially on partially or fully occluded frames.

2. Related Works
Kinematics-based Motion Capture: In recent times, the
research community has focused on advancing the task of
estimating 3D human keypoints directly to capture human
motion, leading to impressive outcomes [6, 38, 40, 61, 44,
39, 1, 23]. Alternatively, several works have proposed
adopting parametric human models, such as SMPL and
SMPL-X [32, 42], as templates to capture human physio-
logical motions [43, 15, 60, 2, 11, 58]. While some methods
encourage the estimated motion to match observations dur-
ing training [15, 53, 8] or fit the SMPL body through post-
optimization [14, 22, 57], others predict SMPL parameters
based on accurate keypoints [5] and apply inverse kinemat-
ics to transform the keypoint skeleton into the parametric
body space [13, 26] to enable better keypoint localization.

Recent works have also recognized the importance of
exploiting temporal information to improve motion consis-
tency [4, 19, 16, 33]. To this end, some methods, such
as VIBE [20] and humor [49], employ a variational auto-
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Figure 2: System Overview. Our approach processes each pedestrian mesh sequence in a stage-wise fashion. We first estimate motions
for visible frames Q̃ using an off-the-shelf motion capture method. We also reconstruct the ground terrain G in preparation for the physics-
based stages (Details in Section 3.1). The physics-aware motion tracking (Section 3.2) infills the motion Q̂ for the occluded frames, as well
as adapts the previously reconstructed motion to the reconstructed ground. In the last stage (Section 3.3), we optimize the entire motion Q̂
to closely match the evidence from a 2D keypoint-based system to produce the final motion Q.

encoder (VAE) to learn motion priors on large-scale motion
datasets like AMASS [36] to enhance the robustness of the
system. Similarly, GLAMR [67] introduces a transformer-
based cVAE model that leverages a data-driven approach
to smooth out captured motions and infill occluded frames.
Nevertheless, the lack of consideration for the dynamics at-
tributes of human motions, particularly in complex AV sce-
narios, may induce undesirable physical artifacts, such as
foot sliding and ground penetrations.
Dynamics-based Motion Capture: To ameliorate the
physical artifacts associated with capturing human motion
sequences, recent works have sought to leverage the physics
attributes of human dynamics. These methods can be
broadly classified into two categories. The first category
entails post-optimization during test time [50, 56, 63, 7]
on both trajectories and body poses by leveraging physics
forces and human motion dynamics equations to optimize
physical metrics or characteristics. The second category
involves reinforcement learning (RL) and motion imita-
tion [69, 68, 70, 46, 34, 66, 35], with the focus on capturing
human motion first, followed by utilizing RL and carefully-
designed policies to imitate the captured motions in a sim-
ulator environment, enforcing physical plausibility. Un-
fortunately, training RL-based models on each motion se-
quence are time-consuming, necessitating the development
of regression-based approaches to directly estimate physical
attributes and then update the captured motions to reduce
the computational time. Several recent works [55, 71, 25]
have taken this approach. However, many of these works
assume that the character is walking on flat ground or with-
out long-term occlusions and missing frames. Differently,
this work aims to tackle these challenges of learning human
dynamics in complex AV scenarios.
Occlusion-aware Motion Capture: Most of the existing
works for human motion capturing assume the target human
is fully visible in the image, and thus limit the robustness for
the strong and long-term occluded human motions. Several

recent works [49, 72, 9, 52, 21] try to address this prob-
lem but still can not handle the long-term occlusions, espe-
cially when the person of interest is obstructed completely.
GLAMR [67] is the first work to solve this problem by in-
filling the missing motions using a transformer-based cVAE
model. While this is a promising direction with many suc-
cessful applications, the domain gap between their training
dataset and the captured outdoor motions is large enough to
limit its applicability in a complex outdoor environment.
Motion Control: Our framework relies on a key compo-
nent known as the motion controller, a long-standing re-
search topic in computer graphics and robotics [65, 24, 41].
Recent character control works follow a reinforcement
learning-based pipeline [31, 29, 47, 45, 30, 69] to generate
physical motions using either reference motion or motion
prediction [10, 28, 62]. Similar to [62], our work employs
a motion controller, in conjunction with a physics mod-
ule, to generate physically plausible motions using a cVAE
model. However, we diverge from past research by using
the motion controller to recover human motion sequences in
a complex outdoor environment, from being solely trained
on indoor datasets. Our approach is the first to use motion
controllers for this task of motion recovery, generating a
more physically plausible representation of human behav-
ior in complex driving environments.

3. Method

Our framework takes as input a monocular video se-
quence I = (I1, ..., IM ) with M frames captured by a fast-
moving vehicle camera. Our goal is to obtain physically
plausible human dynamics {Qi}Ni=1 for both visible and oc-
cluded frames of N entire motion sequences in the world
coordinate system. Each person’s motion Q is defined as
(T,R,Θ) comprising the root translation T = (τs, ...., τe),
root rotation R = (rs, ..., re), and body motions Θ =
(θs, ..., θe) from the first frame s to the last frame e. We
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Figure 3: Terrain Preparation. As shown in this figure, we
first convert the reconstructed mesh to height map and extend this
height map without valid LIDAR scanning for motions. At last,
we convert the processed height map to mesh for the following
physics-aware stages.

employ the SMPL [32] model’s definition for the root trans-
lation τt ∈ R3, root orientation rt ∈ R3, and body pose
θt ∈ R23×3. To simulate the human dynamics captured
from the real world, e.g. avoiding human-scene collisions,
we also follow the definition of SMPL to estimate the body
shape parameter bi ∈ R10 for each motion sequence i for
meshes of characters in the simulator.

Our holistic framework (Figure 2) comprises three main
stages. In Stage-I (Section 3.1), we prepare the initial ob-
servation, such as motion Q̃ in visible frames and recon-
structed terrain of the ground G, for the following physics-
aware steps. In Stage-II (Section 3.2), we employ a novel
physics-aware tracking framework to address occlusion is-
sues with Q̃ and adapt visible motions to reconstructed
terrains with plausibly physical attributes, resulting in the
occlusion-free motion Q̂. In Stage-III (Section 3.3), we
apply our physics-based optimization to the generated mo-
tion Q̂ to ensure consistency between the generated motions
and observations. More details as in the following sections.

3.1. Stage I: Motion and Terrain Preparation

In our physics-aware framework, we initiate physics-
based simulation by computing initial kinematic human
motions and reconstructing terrains. However, captured
motions often have occlusions by cars and pedestrians in
AV scenarios, leading to low-quality poses unsuitable for
physics-based reasoning. Thus, we filter out occluded
frames using 2D pose confidence scores and leverage
physics-based priors to infill occluded frames later.

We also emphasize terrain reconstruction, an essential
component of our framework. We use Poisson Surface Re-
construction [17] to reconstruct the terrain mesh from point
clouds obtained from LIDAR on vehicles. However, point
cloud densities are subject to occlusions and camera motion,

leading to holes and uneven surfaces on the mesh. To obtain
a well-formed mesh for simulation, we use a two-step ap-
proach of converting the reconstructed mesh to a height map
and then infilling and expanding the height map to cover
the entire range of human motions captured, as shown in
Figure 3. By doing so, we significantly enhance the mesh
quality, enabling accurate physics-based simulations of hu-
man agents interacting with the environment. We perform
these two steps on all motions and terrains utilized in our
experiments to ensure reliable and accurate simulations.

3.2. Stage II: Physics-Aware Motion Tracking

In this section, we will simulate physics-plausible hu-
man motion based on the processed observations from the
first stage. In this section, we simulate physically plau-
sible human motion based on the observations processed
in the first stage. Our simulation aims to track the en-
tire motion sequence on the reconstructed terrains, focusing
on two aspects: 1) infilling physics-plausible human mo-
tions {Q̂t1+1, ...Q̂t2−1} for occluded/missing frames be-
tween two visible frames (Q̃t1 , Q̃t2); 2) ensuring that the
infilled entire human motion sequence Q̂ can walk on the
terrain with correct foot contact.

While previous state-of-the-art [67] attempts to infill
missing frames using a transformer-based cVAE, as shown
in Figure 1, low-quality motions persist due to the domain
gap between indoor motion data and outdoor pedestrian
data in busy city scenes. To address this issue, we design a
hierarchical control framework that is capable of generating
motions in different scenarios. This framework mainly con-
sists of a high-level latent-space controller and a lower-level
generative motion transition model. Specifically, our frame-
work begins with a low-level generative motion transition
model that can provide plausible human motion based on
sparse input. Inspired by [28, 62], we develop a controllable
latent space that will serve as the action space of our high-
level motion controller. Our high-level motion controller
can then sample latent codes based on terrain, input video
observations, and past states. In contrast to [67], our frame-
work can generate plausible motions for occluded frames
by fine-tuning our controller on each video. We then apply
a physics-aware humanoid controller that imitates the gen-
erated motion in a physics simulator on the reconstructed
terrain, to ensure the accurate physics attributes of the en-
tire generated motion.

3.2.1 Framework

Overview: Within our physics-aware motion tracking
framework, we identify three critical components: the mo-
tion model πM , the physics-aware motion imitator πD, and
the high-level controller πC , as depicted in Figure 4. The
motion model πM employs a generative transition model to
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Figure 4: Motion Tracking Framework. At time step t, our
high-level controller predicts the latent code for the motion model
πM and the residuals for the occluded motion at t + 1. Next, the
physics-aware imitator πD updates this prediction to ensure the
physical plausibility of the generated motion. If the initial motion
is visible at t + 1, our high-level controller will directly use this
captured motion rather than predict the latent code and generate
motions by πM .

compute the next pose using the previous pose and a latent
code. Meanwhile, the physics-aware motion imitator πD

takes either an occluded frame pose generated by πM or a
visible frame pose directly observed as input, thereby con-
trolling a virtual character to mimic the motion in a physics
simulator. For visible frames, we circumvent the use of πM

and provide the observed pose directly to πD. When dealing
with occluded frames, we call upon the high-level controller
πC to generate the latent code required by πM in order to
control the motion of the virtual character and infill coherent
motions between visible frames. To accomplish this infill-
ing, we train πC to address the motion tracking task, which
involves two objectives. The first goal requires driving the
virtual character to reach the same position as Q̃t2 at time
t2, starting from Q̃t1 , while ensuring the character attains a
similar pose to Q̃t2 . The second objective entails maintain-
ing compatibility with the underlying terrain G.
Motion Transition Model: We follow one of the state-
of-the-art local motion transition models [49] as πM and
use a pre-trained model from the official implementa-
tion. To infill occluded motions between two visible
frames from Q̃t1 to Q̃t2 , the initial observation of model

is S̃t1 = (τ̃t1 , r̃t1 , θ̃t1 , j̃t1 , ˜̇τ t1 , ˜̇rt1 , ˜̇jt1), corresponding to
the root translation, root orientation, body pose, joint po-
sition, the velocity of translation, velocity of rotation, and
the velocity of joints respectively. The motion Ŝg

t1+1 =

(τ̂gt1+1, r̂
g
t1+1, θ̂

g
t1+1, ĵ

g
t1+1,

̂̇τgt1+1, ̂̇rgt1+1,
̂̇jgt1+1) for the oc-

cluded frame t1 + 1 can be generated by sampling latent
code zt1 . With this model, we can generate t2 − t1 − 1 step
motions step by step for motion infilling.
Physics-Based Motion Imitator: Our physics-based mo-
tion imitator πD adapts the output motions of the generation
module to the reconstructed terrains G. Following [45, 69,

70], this model drives a simulated humanoid to imitate the
target pose, producing a physically valid motion sequence
through the simulation process. As shown in Figure 4, the
input of this imitator is the motion Ŝg

t+1 of the motion gen-
eration model, as well as the motion simulated in the previ-
ous time step Ŝt. In practice, we adjust the height of Ŝg

t+1 to
remove floating and penetration to the reconstructed terrain
G. Our πD predicts the target joint angle as at+1 for the
physics simulator. Similar to [69, 70], we use the propor-
tional derivative controllers (PD) on each non-root joint to
produce joint torques T̂t+1 and obtain the physics-plausible

motion Ŝt+1 = (τ̂t+1, r̂t+1, θ̂t+1, ĵt+1, ̂̇τ t+1, ̂̇rt+1,
̂̇jt+1)

by the simulator upon the reconstructed terrain G.
High-level Controller: The goal of our high-level con-
troller is to compute latent codes that can drive πM from
time step t to t + 1. For the visible frame at t + 1, the
motion G̃t+1 is adapted to the reconstructed terrain G by
first adjusting the height, and the high-level controller di-
rectly uses the adjusted captured motion as the imitation
target for πD, rather than predicting latent codes for πM .
For the occluded frame, our high-level controller samples
specific latent code zt+1 for πM . Basically, to ensure reach-
ing the same position of Q̃t2 at t2 from Q̃t1 , we formulate
this reaching problem as a trajectory following task, which
can guide the character to reach Q̃t2 at t2 step-by-step and
drive the character to a pose similar to Q̃t2 . We directly in-
terpolate the root translation of (τ̃t1 , τ̃t2) as the following
trajectory {xt} for these missing frames. For each time step
t ∈ (t1, t2), the input of the high-level controller consists
of the generated motion state Ŝg

t , the simulated motion Ŝt,
the future trajectories x, the reconstructed terrain G, and the
target motion Q̃t2 . In addition to the latent code zt+1, our
high-level controller additionally predicts zrt+1 as residuals
of the motion generated at t + 1, since the motion gener-
ation model πM is only trained on indoor motions on flat
ground and may have trouble producing motions on uneven
terrains. In practice, zrt+1 consists of root translation, root
orientation, and character body pose. Thus, for the missing
frame, the motion at t+ 1 can be generated as follows:

zgt+1, z
r
t+1 = πC(Ŝ

g
t , Ŝt, x,G, Q̃t2) (1)

Ŝg
t+1 = πM (Ŝg

t , z
g
t+1) + zrt+1, ât+1 = πD(Ŝt, Ŝ

g
t+1) (2)

Ŝt+1 = Sim(Ŝt, T̂t+1) = Sim(Ŝt,PD(Ŝt, ât+1)) (3)

3.2.2 Training Strategy

We follow [28] to train this high-level controller using the
standard reinforcement learning algorithm [54]. Notice that
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πM is pre-trained and frozen during this process. The re-
ward for training is as follows:

r = wp · rp + wi · ri. (4)

The reward for the trajectory following task is as

rp = exp(−αp(∥r̂xyp − xxy
p ∥)), (5)

where r̂xyp and xxy
p are the xy coordinates of the translation

of physics state Ŝt and the interpolated trajectory at time
step t. The infilling reward encourages the motion model to
generate a similar motion as S̃t2 when the character is near
to t2:

ri = γi · exp(−αi(∥Ŝt − S̃t2∥)). (6)

The weights (wp, wi) and (αt, αi) can be adjusted to fit dif-
ferent scenarios. The γi is equal to 1 if t ∈ (t2 − 15, t2).
Otherwise, we set this γi as 0 and thus the task is only tra-
jectory following.

Training such a high-level controller from scratch for dif-
ferent scenarios is time-consuming (more than 12 hours on
a single V100 GPU by IsaacGym [37] for 1000 iterations).
To mitigate the time cost and obtain a more robust controller
for different environments (e.g., trajectories and terrains),
we propose a pre-training and fine-tuning strategy for our
high-level controller. We generate diverse uneven terrains
and driving trajectories meant to simulate a range of scenar-
ios in the simulator, followed by training the high-level con-
troller on these synthetic environments for our designated
tasks. For infilling ending motion, we sample from vari-
ous motions in the AMASS [36] while performing motion-
matching tasks. Leveraging the pre-trained high-level con-
troller on synthetic data, the convergence of fine-tuning on
real data is significantly faster, as illustrated in Figure 6. We
present additional information about our pre-training strat-
egy in our supplementary materials.

3.3. Stage III: Physics-aware Motion Optimization

After we obtain the physics plausible and occlusion-
free human motions Q̂ in Section 3.2, the motion may not
align with the image evidence such as 2D keypoints per-
fectly. Additionally, in Section 3.1, we have filtered out
the whole body for some partially occluded motions, even
if they have several high-confidence estimated keypoints.
For these frames, our physics-aware motion tracking in Sec-
tion 3.2 always obtains motions by motion generation and
thus causes misalignment to the video observation.

To close these gaps, in this section, we propose a
physics-aware motion optimization method to further op-
timize Q̂. This stage mainly consists of two components.
The first is a new physics-aware imitator πK similar as πD

in Section 3.2, to maintain physics plausibility while match-
ing video evidence. Additionally, we introduce residual pa-
rameters {δRi}Ti=1 for the target motion Q̂ of the imitator

at each time step. During optimization, the imitation target
Q̂t+1 is adjusted by δRt+1 and thus encourages the imitator
to predict a consistent motion at+1 with video observation.
In practice, we introduce these residual parameters to the
root orientation and body pose of characters in the simula-
tor. After training, the updated target motion is defined as:

r̂ut+1 = r̂t+1 + δRr
t+1, θ̂

u
t+1 = θ̂t+1 + δRθ

t+1, (7)

Ŝu
t1+1 = (τ̂t+1, r̂

u
t+1, θ̂

u
t+1, ĵt+1, ̂̇τ t+1, ̂̇rt+1,

̂̇jt+1). (8)

Based on this adapted target motion, we first use the imitator
πK to predict the target joint angle as at+1 for the physics
simulator and produce joint torques T t+1 to obtain the final
result Qt+1, similar as πD.

During optimizing, we fine-tune this pre-trained imita-
tor and these residual parameters for each motion sequence.
To encourage consistency between observation and output
motion, we use the following reward function:

rproj = exp(−αp

∑
(∥Π(jt)− j̃2Dt ∥ × c̃t)), (9)

where Π is the projection function from world to image
space, j̃2Dt is the estimated 2D pose at time step t, as well as
c̃t is the corresponding confidence score. Besides, we still
use the similar reward function rim as [69, 70] used for
motion imitation to encourage correct physics attributes for
the motions with residuals. The final reward is as follows:

r = rproj · wp + rim · wim. (10)

where (wp, wim) and (αp, αim) can be adjusted to fit dif-
ferent scenarios.

4. Experiments
Dataset: We conduct our experiments on the Waymo Open
Dataset [73], currently the largest dataset recorded for au-
tonomous driving scenarios featuring point clouds repre-
senting the surrounding terrain and sparsely annotated 3D
keypoints. To evaluate the effectiveness of our proposed
method, we curate a subset of 20 sequences from the train-
ing and validation sets, each containing various scenarios,
and incorporating more than 30 different pedestrian 3D key-
point annotations, as well as high-quality terrain reconstruc-
tions. The Waymo Open Dataset captures data at a 10Hz
frame rate using a camera installed on the vehicle. As we
require a 30Hz frame rate in our physics simulator, we up-
sample the captured motions using linear interpolation.
Metric: We use both kinematics-based and physics-based
metrics for evaluation. Firstly, to quantify the generated
motions from our framework, we report the motion FID, a
standard metric for evaluating motion fidelity [27, 48]. Be-
sides, to demonstrate the reconstruction accuracy, we use

20801



Table 1: Baseline Comparison. We compare against several dif-
ferent baselines on the following metrics. GLAMR∗ means use
the same physics-aware imitator as our framework after GLAMR.
Our method achieves the significantly better result on FID, PAM-
PJPE on frames with occlusion (Occ), and physics-based metrics
(GP, FS, FL).

Method
FID ↓ PA-MPJPE ↓ PA-MPJPE ↓ GP ↓ FS ↓ FL ↓ Accel
(All) (Occ) (All) (All) (All) (All) (All)

KAMA 4.62 97.52 75.06 82.20 49.27 78.89 -
GLAMR 4.17 91.74 74.34 81.42 46.33 78.23 154.14
GLAMR∗ 4.28 93.44 76.34 17.34 38.34 15.38 138.44
Ours 1.96 86.02 74.22 12.62 7.44 13.25 105.48

Table 2: Ablation studies on the physics-aware imitator. Al-
though we have adapted the generated motion to the ground dur-
ing training, the physics-aware motion imitator still can improve
the motion quality on these physics attributes. Our∗ means the re-
sult without post-optimization.

Method GP ↓ FS ↓ FL ↓ Accel
Without πD 16.82 10.84 23.02 114.48
Ours∗ 12.92 7.05 14.08 108.59

the Procrustes-aligned mean per-joint position error (PA-
MPJPE) and 2D localization error (2D-LE) for the gener-
ated human dynamics motion. For the physical attributes,
we follow the metrics to measure jitter, foot sliding, ground
penetration, and floating as in [70, 25]. The jitter is esti-
mated by computing the acceleration (Accel). The foot slid-
ing (FS) is estimated by finding the body mesh vertices that
contact the ground in two adjacent frames and then comput-
ing their moving distance. The ground penetration (GP) is
computed as the average distance between the ground and
the mesh vertices below the ground. For floating (FL), we
compute the distance between the ground and the nearest
vertex of mesh to the ground. The unit for these metrics are
millimeters (mm), except for Accel (mm/frame2).

4.1. Implementation Details

In Section 3.2 and Section 3.3, we follow the methodol-
ogy outlined in RFC [69] to train our physics-aware motion
imitator. This imitator is trained on the flat ground using
the AMASS [36] dataset and IsaacGym [37]. We model
the SMPL agent in this simulator following [35]. In Sec-
tion 3.2, we use the official motion generation model put
forth by HuMOR [49] as our motion model πM . Regarding
our high-level controller, we pre-train this model on syn-
thetic environments for 5000 iterations before fine-tuning it
in real-world environments. For motion infilling, we opti-
mize the result for 2000 iterations with our physics-aware
motion optimization. Finally, to ensure the accuracy of our
optimization, we leverage VITPose [64] to extract precise
2D keypoints in the last stage of our framework.

4.2. Evaluation

Baselines: We conduct our method based on KAMA [13],
a strong human motion captured method for visible mo-
tions. To evaluate the quality of the generated motion

Table 3: Ablation studies on post optimization. We compare
the infilling results with and without the post-optimization after
physics-aware motion tracking.

Method
2D-LE ↓ PA-MPJPE ↓ PA-MPJPE ↓ GP ↓ FS ↓ FL ↓ Accel

(All) (Occ) (All) (All) (All) (All) (All)
Without Opt 26.41 89.84 75.48 12.92 7.05 14.08 108.59
With Opt 17.37 86.02 74.22 12.62 7.44 13.25 105.48

by our method, we compare it with the state-of-the-art
method [67], which is designed to generate missing parts
for the entire motion sequence. As [67], we also compare
with methods using linear interpolation for the infilling of
the missing frames. For fair comparisons, we adapt all the
methods and experiments by using the ground-truth camera
extrinsic and intrinsic parameters provided by the Waymo
Open Dataset.
Quantitative Results: We show our results in Table 1 to
show the quality of generated motions. To begin with, we
evaluate the quality of the motion sequences generated by
our method and compare them with our baselines using the
FID metric. Our approach produces the best performance
with substantial improvements in this regard. Furthermore,
our method exhibits the best result in the PA-MPJPE metric,
particularly a notable reduction in the frames with occlu-
sion. Regarding physics-based metrics, our method contin-
ues to outperform all baselines. However, we still encounter
minor foot penetration issues while quantifying the physics
attributes due to errors in the transformation between the
height map and mesh, as well as in the character’s SMPL
model within the simulator. Despite utilizing GLAMR and
the physics imitator cooperatively to facilitate better physics
attribute outcomes, the infilling capability of GLAMR still
influences the performance of kinematics metrics, FL, and
Accel. This points to the considerable complexity involved
in designing our controller-based physics-aware framework
to address this problem. In summary, our approach pos-
sesses the potential to achieve high-quality human dynam-
ics learning based on visual observations.
Qualitative Results: We demonstrate the qualitative results
in Figure 5. We compare against the GLAMR [67], which
is the state-of-the-art method to infill captured motions. We
find that our method achieves better results on the physical
attributes of human motion. More comparison videos are in
our supplementary material.

4.3. Ablation Studies

Pre-training for High-level Controller: Firstly, we com-
pare the performance of our method without the pre-training
step on synthetic terrains and trajectories. As shown in
Figure 6, the high-level controller based on the pre-trained
model converges faster significantly. More comparisons of
this pre-training are in our supplementary materials.
Physics-based Motion Tracker: Then, we compare with
the motion without our physics-aware imitator in Table 2.
Although we adapt generated motion to the ground during
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Figure 5: Qualitative Comparison. We compare our method with the state-of-the-art method [67] for global human motion mesh recovery
in this figure. Under this comparison, our method mitigates the artifacts on physics attributes of the whole motion sequence significantly.

Figure 6: Convergence Results. We compare the time cost of
training the high-level controller on the Waymo Open Dataset with
and without the pre-training on synthetic data. We show that the
high-level controller converges much faster and achieves a better
reward with the pre-training.

training, the physics-aware imitator still improves the per-
formance on physics attributes of generated motion. More
qualitative comparisons of different design choices are in
our supplementary materials.
Physics-based Post Optimization: Finally, we conduct a
comparison of our method’s performance without the post-
optimization step outlined in Section 3.3. As indicated in
Table 3, the inclusion of post-time optimization notably
enhances the accuracy of matching 2D/3D observations
and improves some physical attributes of the entire mo-
tion sequence. In addition, we demonstrate the effects of
this stage by comparing the results with and without post-
optimization in Figure 7.

5. Conclusion and Limitations
This paper presents a holistic framework for learning

physically-plausible human dynamics motion of entire se-
quences in AV scenarios. Our approach stands out from

Before Optimization After Optimization Before Optimization After Optimization

Figure 7: Effect of physics-aware post-optimization. We
demonstrate the effect of our physics-aware post-optimization in
this figure. Following this optimization, generated motions from
the previous stages end up better matched and aligned with the
video evidence.

prior work by generating motion sequences not only for
visible frames but also for frames with occlusions or miss-
ing data. The generated motion sequences are constrained
by physics and thus are suitable for downstream simu-
lation tasks in AV scenarios. Our methodology begins
with processing reconstructed terrains using LIDAR and
recovering visible motions with off-the-shelf components.
We then use a reinforcement learning-based motion con-
troller within a physically-constrained environment to in-
fill the motions. Finally, we propose a physics-aware post-
optimization stage that utilizes keypoint observations to op-
timize the entire motion sequence. Our approach outper-
forms previous methods, particularly in terms of entire se-
quence motion quality and physical attributes, in several
challenging AV scenarios. Although our results meet the
necessary quality for simulation tasks, a limitation we aim
to address in the future is the ability to optimize body shapes
estimated by MoCap with our physics-aware framework.
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Popović. Contact-aware nonlinear control of dynamic char-
acters. In ACM SIGGRAPH 2009 papers, pages 1–9. 2009.
3

[42] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed AA Osman, Dimitrios Tzionas, and
Michael J Black. Expressive body capture: 3d hands, face,
and body from a single image. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 10975–10985, 2019. 2

[43] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and Kostas
Daniilidis. Learning to estimate 3d human pose and shape

from a single color image. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
459–468, 2018. 2

[44] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and
Michael Auli. 3d human pose estimation in video with tem-
poral convolutions and semi-supervised training. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7753–7762, 2019. 2

[45] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel
van de Panne. Deepmimic: Example-guided deep reinforce-
ment learning of physics-based character skills. ACM Trans-
actions on Graphics (TOG), 37(4):1–14, 2018. 3, 5

[46] Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel,
and Sergey Levine. Mcp: Learning composable hierarchi-
cal control with multiplicative compositional policies. In
Advances in Neural Information Processing Systems, pages
3681–3692, 2019. 2, 3

[47] Xue Bin Peng and Michiel van de Panne. Learning locomo-
tion skills using deeprl: Does the choice of action space mat-
ter? In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 1–13, 2017. 3

[48] Mathis Petrovich, Michael J Black, and Gül Varol. Action-
conditioned 3d human motion synthesis with transformer
vae. In ICCV, pages 10985–10995, 2021. 6

[49] Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang,
Srinath Sridhar, and Leonidas J Guibas. Humor: 3d human
motion model for robust pose estimation. In ICCV, 2021. 2,
3, 5, 7

[50] Davis Rempe, Leonidas J. Guibas, Aaron Hertzmann, Bryan
Russell, Ruben Villegas, and Jimei Yang. Contact and hu-
man dynamics from monocular video. In Proceedings of the
European Conference on Computer Vision (ECCV), 2020. 3

[51] Davis Rempe, Jonah Philion, Leonidas J. Guibas, Sanja Fi-
dler, and Or Litany. Generating useful accident-prone driv-
ing scenarios via a learned traffic prior. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 2

[52] Chris Rockwell and David F Fouhey. Full-body awareness
from partial observations. In ECCV, 2020. 3

[53] Yu Rong, Takaaki Shiratori, and Hanbyul Joo. Frankmocap:
A monocular 3d whole-body pose estimation system via re-
gression and integration. In ICCVW, 2021. 2

[54] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 5

[55] Soshi Shimada, Vladislav Golyanik, Weipeng Xu, Patrick
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