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Abstract. Accurate detection and segmentation of transmission tow-
ers (TTs) and power lines (PLs) from aerial images plays a key role
in protecting power-grid security and low-altitude UAV safety. Mean-
while, aerial images of TTs and PLs pose a number of new challenges
to the computer vision researchers who work on object detection and
segmentation — PLs are long and thin, and may show similar color as
the background; T'Ts can be of various shapes and most likely made up
of line structures of various sparsity; The background scene, lighting,
and object sizes can vary significantly from one image to another. In
this paper we collect and release a new TT/PL Aerial-image (TTPLA)
dataset, consisting of 1,100 images with the resolution of 3,840x2,160
pixels, as well as manually labeled 8,987 instances of T'Ts and PLs. We
develop novel policies for collecting, annotating, and labeling the im-
ages in TTPLA. Different from other relevant datasets, TTPLA sup-
ports evaluation of instance segmentation, besides detection and seman-
tic segmentation. To build a baseline for detection and segmentation
tasks on TTPLA, we report the performance of several state-of-the-art
deep learning models on our dataset. TTPLA dataset is publicly avail-
able at https://github.com/r3ab/ttpla_dataset

1 Introduction

Power grid monitoring and inspection is extremely important to prevent power
failures and potential blackouts. Traditional methods to inspect transmission
towers (TTs) and power lines (PLs) include visual surveys by human inspec-
tors, helicopter-assisted inspection [1], and crawling robots [1], to name a few.
However, these methods always suffer from their high costs in time, labor, and
finance, as well as inspection accuracy. As an alternative, inspection based on
small-scale unmanned aerial vehicles (UAVs) becomes popular and gradually
plays an essential role, thanks to its low costs, high mobility and flexibility, and
the potential to obtain high-quality images.

Autonomous UAV-based power grid inspection requires precise scene under-
standing in real-time to enable UAV localization, scene recognition, tracking,
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aerial monitoring, inspection, and flight safety. The main challenge in fulfilling
this requirement, however, points to background complexity and object complez-
ity. Background complexity mainly comes from the similarity between the color
of the PLs and their backgrounds. Object complexity can be interpreted from
four aspects: (i) Scale imbalance — As discussed in [2], combining strongly corre-
lated objects, such as T'Ts and PLs, together can potentially enhance recognition
accuracy, compared with recognizing them separately. However, the scales of TTs
and PLs are obviously imbalanced in an image; (i¢) Class imbalance — In most
cases, each T'T is linked to least between 3-4 and up to 10 PLs, which will result
in significant imbalance among the number of T'Ts and PLs [3,4]; (i74) Crowded
objects — PLs are very close to each other and sometimes even overlapped in
images [5]; and (iv) Complicated structures and/or shapes.

PLs are long and thin which makes the distribution of the related pix-
els in an image completely different from regular objects in some well-known
datasets [6,7,8]. Meanwhile, TTs may be of various shapes and most likely made
up of line structures of various sparsity, as shown in Fig. 1.

Existing datasets on TTs and PLs
only support two types of annota-
tion: image-level and semantic segmen-
tation [9,10,11,12]. As a result, most re-
lated computer vision research only clas-
sifies and localizes objects in an image
without distinguishing different objects of
the same class [13] (e.g., it can recognize
and/or localize PLs as one class, but can-
not distinguish different PLs in the im-
age). To overcome such a limitation, this
paper presents a unique dataset on TTs
and PLs, TTPLA (TT/PL Aerial-image),
focusing on a different type of annotation,
instance segmentation, which is a combi- '
nation of object detection and mask seg-  pig 1: Different TTs in TTPLA.
mentation. Instance segmentation can dis-
tinguish instances (or “objects”) that belong to the same class and provide a solid
understanding for each individual instance. This is especially useful in power grid
inspection, where PLs can be close to each other, occluded, and overlapped.

TTPLA dataset places unique challenges to computer vision research on
instance segmentation [14,15,16,17]. To evaluate TTPLA dataset, we build a
baseline on our dataset using Yolact as the instance segmentation model. The
results are collected based on different backbones (Resnet-50 and Resnet-101)
and different image resolutions 640 x 360 (preserve aspect ratio), 550 x 550 and
700 x 700. The best average scores for bounding box and mask are 22.96% and
15.72%, respectively (more detailed can be found in Table 3), which are low
in general. Another observation is that all of the previously mentioned models
use the NMS method to sharply filter the large number of false positives near
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Fig. 2: Sample images from public datasets as compared to our dataset TTPLA
where (a) dataset [20] with low resolution 128x128 based on PLs images
only, (b) dataset [21] based on manually cropping PLs images only, (c)
most of images are not aerial images [22], and (d) our dataset (TTPLA)
on TTs and PLs images without manually cropping.

the ground truth [18,19], while single NMS may not be practical on our dataset
since TTPLA considers a crowded scenario. Therefore, using lower NMS thresh-
old leads to missing highly overlapped objects while using higher NMS threshold
leads to increased false positives [5]. Overall, the state-of-the-art approaches may
not perform well on TTPLA, which actually motivates the development of novel
instance segmentation models.

The main contributions of this paper are described as follows.

— We present a public dataset, TTPLA, which is a collection of aerial images on
TTs and PLs. The images are taken from different view angles and collected
at different time, locations, and backgrounds with different tower structures.

— Novel policies are introduced for collecting and labeling images.

— Pixel-wise annotation level is chosen to label instances in TTPLA. This an-
notations are provided in the COCO format [6] which can be easily integrated
to other datasets to enrich future research in scene understanding field. To
the best of our knowledge, TTPLA is the first public image dataset on TTs
and PLs, focusing on instance segmentation, while all the related datasets
focus on semantic segmentation.

— We provide a baseline on TTPLA by evaluating it using the state-of-the-art
deep learning models.

The paper is organized as follows. Prior work is discussed in Section 2. The
properties of the TTPLA dataset are presented in Section 3. Evaluation of
TTPLA is demonstrated in Section 4. Finally, conclusions are summarized in
Section 5.

2 Related Work

There have been several research papers released recently based on their pub-
lished or unpublished datasets on TTs, PLs, and insulators. In this section we
will review these datasets, reported in Table 1, with the understanding that
there is still a lack of training datasets for T'Ts and PLs in general, as mentioned
in [23,24,25], due to the difficulty in image collection, especially when UAVs fly
close to power grids.
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2.1 Datasets Based on TTs Images Only

The dataset, introduced in [23], is employed to detect T'Ts from the aerial images.
The dataset consists of 3,200 images in which only 1,600 images contain towers
while the rest contains background only. The images size is 64 x 128 pixels which
is scaled down from the original frame sizes (550x480 and 720x576). Objects
are labeled by bounding boxes. In [24], four datasets are presented. Only one
dataset with 28,674 images is annotated with bounding boxes with image size
6,048 x4,032 pixels. The other three datasets are binary labeled and built on
cropped images with image size 256 x256. These datasets are exploited to detect
and classify TT damage such as missing top caps, cracks in poles and cross arms,
woodpecker damage on poles, and rot damage on cross arms. The dataset in [20]
includes 600 aerial images for training and testing with resolution 1,280x720
pixels. Unfortunately, all of these datasets are not available to the public.

Table 1: Related Datasets.

Target|Dataset |Public|Image#(Pos.)|Image Size |Annotation Type|Syn. /Manual
TTs |[23] No  |3,200(1,600) |64x128 bounding box  |No |No
TTs |[24] No  |28,674 6,048x4,032 |bounding box  [No |No
TTs |[206] No  |600 1,280x720  |Binary Mask No |No
PLs |[20] Yes  [4,000(2,000) [128x128 Binary Classif. |No |No
PLs |[21] Yes |573 540x 360 Binary Mask No |Yes
PLs |[2]] Yes |287 540x 360 Binary Mask No |Yes
PLs |[27] No 3,568 5,12x512 Binary Mask No |Yes
PLs |[28] No |718,000 - Binary Mask Yes |No
PLs |[29] No  |67,000 480640 Binary Mask Yes [No
Both |[22] Yes 1,290 Various Class Label No |No
Both ‘TTPLA‘Yes ‘1,100 ‘3,840><2,160‘Instance Seg. ‘No ‘No

2.2 Datasets Based on PLs Images Only

Two datasets are presented in [20] on PL images with video resolutions 576x 325
pixels for infrared and 1,920x 1,080 pixels for visible light, respectively. The first
dataset is built on image-level class labels while the second dataset consists of
binary labels at the pixel-level. Only 2,000 images among the 4,000 images under
visible light in the datasets include PLs while the rest does not. The image size
is scaled down to 128 x128 pixels from the original video sizes as shown in Fig. 2
(a). The image-level class labels are exploited for binary classification training. In
the work [30], the dataset in [20] is employed by two CNN-based PL recognition
methods to identify whether the images contain PLs without the consideration
of localization. The work in [31] also relies on the datasets in [20] by resizing the
images to 224 x224 pixels. A CNN model is used as a binary classifier to identify
whether PLs are present in images. Ground truth of the PL dataset consists of
400 infrared and 400 visible light images with the resolution of 512x512 pixels.

Datasets with Manual Cropping. Two public datasets on PL images are
presented in [21], including urban scene and mountain scene captured by UAVs.
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The Urban scene dataset consists of 453 images for training and 120 images
for testing, while the mountain scene dataset consists of 237 and 50 images
for training and testing, respectively. The original image size is 3,000x4,000.
However, the images are manually cropped to meaningful regions of 540x360
pixels to get close scenes for PLs as shown in Fig. 2 (b). Pixel-level annotation
is used to label the cropped images in both datasets. VGG16 architecture [32] is
modified based on richer convolutional features [33] to evaluate both datasets.
The dataset in [27] includes 530 PL images captured by UAV with the resolution
of 5,472x 3,078 pixels. These images are manually cropped and divided into non-
overlapped patches with the size of 512x512 pixels. Then all patches that do not
contain any PLs are removed. The total number of images is 3,568 with the size
of 512x512 pixels. Nested U-Net architectures are evaluated on this dataset.

In general, manually cropping images may not be practical for real-time UAV
operations. UAVs can fly from any directions, which means that TTs and PLs
can appear in any region of the images. Manually manipulated images cannot
reflect the noisy backgrounds that UAVs may face in real life. Alternatively, au-
tomatic image cropping and zooming can be applied in lane detection problems
to get the region of interest, because of bird-view imaging [34].

Synthetic Datasets. There are two datasets using synthetic PLs. In the first
dataset [28], synthetic images of power lines are rendered using the physically
based rendering approach to generate the training dataset. Synthetic PLs are
randomly superimposed on 718k high dynamic range images collected from the
internet. In addition, data augmentation techniques are used to increase the
amount of training data. In the second dataset [29], the synthetic wires from
a raytracing engine are superimposed on 67k images. These images are ex-
tracted from 154 flight videos available on the internet with image resolution
480x640 [29]. Both datasets are not publicly available.

2.3 Datasets Based on Both TTs and PLs Images

ImageNet [22] is regarded as one of the largest datasets for object detection,
which includes 1,290 annotated images with labels on TTs and PLs. Most of
them are not aerial images as shown in Fig. 2 (¢) and there is no top and side
view for TTs and PLs. Imaging from the ground provides most of images simple
backgrounds such as sky and white clouds, which may be impractical in our
scenario since we focus on UAV applications.

3 TTPLA Dataset Properties

Building large-scale aerial datasets is a complicated task, including recording
data, extracting and selecting images, and establishing the required annota-
tion policy. In the following subsections we will introduce the procedures in our
dataset preparation as well as the properties of the TTPLA dataset.
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3.1 Aerial Videos Collection and Images Preparation

Recorded videos are collected by a UAV, Parrot-ANAFI, in two different states in
USA to guarantee the varieties of the scenes. The locations are randomly selected
without any intentions and treatments to avoid noisy background. The UAV
contains 4k HDR camera and up to 2.8x lossless zoom. Zooming is exploited
when collecting the video data, in order to guarantee high-resolution of the
objects, such as PLs, without manual cropping. The TTPLA dataset is extracted
from a set of totally 80 videos. All aerial videos have the resolution of 3,840 x
2,160 with 30 fps.

3.2 TTPLA Dataset Policy

Creating a dataset of TTs and PLs needs policies to deal with the diversity of
objects during aerial imaging. For instance, towers are built by different materi-
als (e.g., tubular steel, wood, and concrete) with different structures (e.g., single
pole, H-frame, horizontal structure, delta structure and guyed structure) and
different insulators [35]. Meanwhile, given the shape characteristics of PLs (thin
and long), different backgrounds and illumination levels play important roles in
PL detection. With these considerations, we introduce the following policy in
data collection and annotation.

Recording Characteristics. The aerial images in TTPLA dataset are ex-
tracted from videos taken by UAVs. The following discussions focus on four
important aspects when recording these videos.

— View angles are essential in data collection, specially when the shape of
the object varies a lot from different view angles. In TTPLA, all TTs are
photographed from different angles such as front view, top view, and side
view. This policy, designed specifically for TTs, guarantees that the deep
learning models can detect TTs from any angles. It provides the freedom
to UAVs to fly along any directions without worrying about the detection
accuracy. Various views for different T'Ts are demonstrated in Fig. 3.

— The images are taken by randomly varying the zooming level together with
the motion of the camera. Different zooming levels are explored in TTPLA
to capture accurate features of PLs, especially with noisy backgrounds as
shown in Fig. 4.

— The videos are recorded at different time during a day under different weather
conditions.

— Backgrounds are important to accurately detect PLs. From the UAV’s view-
point, the backgrounds of most PLs in images are noisy. TTPLA consists
of plentiful PLs images with noisy backgrounds, which make extracting PLs
a challenging task due to “thin and long” features of PLs [36]. Moreover,
the color of PLs can be very close to that of the background (e.g., building,
plants, road, lane line) and sometimes PLs may be hidden behind the trees.
We include all these cases in TTPLA.
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Fig. 3: Different types of TTs in TTPLA. Front view, top view and side view are
ordered from the left to the right for each T'T shape.
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Preparing Images. It is not an easy task to select appropriate frames into
TTPLA from a large set of videos. We consider the following aspects to avoid
duplicate images. To ensure that the images are not duplicated, the videos are
renamed with unique IDs and each video is separately archived. The lengths of
the recorded videos are between 1 min. to 5 min, which imply 1,800 to 9,000 im-
ages per video, given 30fps. These images are then sampled once every 15 frames
before manual inspection, which means 2 images per second. If necessary, we can
extract 3 images per second to augment the dataset [34]. The next step is manual
inspection of the selected images, given the possibility that sometimes PLs are
not clear in images due to day light or complex backgrounds. Another reason
of having manual inspection is to make sure that the whole views of TTs are
included to keep our recording policy consistent. In addition, manual inspection
removes all redundant images from the dataset. Finally, the selected images are
renamed by the related video ID, followed by the related frame number.

i L3 E——
Fig.4: PLs in the TTPLA dataset.

Segmentation Annotation. There are two types of segmentation: semantic
segmentation and instance segmentation. Semantic segmentation assigns only
one category label to all pixels that belong to the same class in a single image,
while instance segmentation provides a mask at the pixel level to each individual
instance in the image. Because we must distinguish each individual PL and TT
in UAV inspection, instance segmentation at the pixel level is desired for our
dataset. To precisely label T'Ts and PLs, we use LabelME [37]. Each instance is
surrounded carefully by a polygon. Three expert annotators are recruited and in
average, each person takes about 45 minutes to annotate one image. Each image
is assigned to only one annotator to construct its full annotations. The annota-
tion consistency between different annotators is actually not a serious issue in
this work since 1) our images are mainly taken from a top view and therefore,
we have very rare occlusions, 2) the instances in our datasets are well defined
without much ambiguity based on our labeling policy, and 3) the three expert
annotators label each assigned image with their highest possible scrutiny. Sam-
ples of annotated images in TTPLA dataset are shown in Fig. 5.

Labeling Instances. A new labeling policy is presented to categorize T'Ts based
on lattice types and pole types (tubular steel, concrete, and wooden) [35].



TTPLA Dataset 9

— Lattice T'Ts are composed of steel angle sections. TTPLA contains different
shapes of lattice TTs (77 —T3) in Fig. 3 which are labeled by “tower-lattice”.

— Tubular steel, spun concrete, and steel/concrete hybrid poles belong to the
same class. These three types of poles have similar appearance. Our dataset
contains three different shapes from this class (Ty —Tg) in Fig. 3. To generate
the label for this class, we take the first two letters from each type of poles
and label such TTs as “tower-tucohy”.

— Wooden TTs have the poles made of wood. TTPLA considers this type
of poles because wooden poles are distributed almost everywhere around
residential places. So TTPLA contains a lot of different shapes of wooden
poles such as T7 and Ty in Fig. 3, which are labeled by “tower-wooden”.

Fig.5: Samples of annotated images in TTPLA.

The reason of labeling T'Ts in this way is to ensure that such a labeling pol-
icy is friendly to deep learning models. In general, each lattice tower can be
divided into three parts: basic body (upper partition), body extension (middle
partition), and leg extension (lower partition). Most lattice towers have simi-
lar shape in body extension and leg extension, which means that, if only body
and/or leg extensions of two TTs appear in the image, it will be very hard for
deep learning models to distinguish these two T'Ts. This is also true for the TTs
under “tower-tucohy”. Therefore, categorizing TTs based on their shapes (e.g.,
H-Frame, Lattice and monopole) may not be practical in UAV applications, since
we cannot guarantee that UAVs always capture the basic body in the image. To
overcome this issue, TTs are categorized based on their structures and mate-
rials instead of their shapes in TTPLA dataset. Therefore, our labeling policy
presents a good step toward the balance of the dataset. Besides the labels related
to TTs, two additional labels are presented:

— The label “cable” is used for all PLs in TTPLA.

— The label “void” is used for any instance (TT or PL) which is difficult to
recognize into image. For example, a PL or even a TT may be labeled by
“void” if it is almost invisible in the image. Any instances labeled by “wvoid”
are ignored from evaluation [3].
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3.3 Dataset Statistics

Fig. 6 describes the relationship between the number of instances per image
and the number of images. The left top corner figure demonstrates that there
are 659 images that contain 1-6 instances per image and 241 images contains
11-56 instances per image. The others four figures describe the number of each
specific object per image versus the number of images such as cable, tower-lattice,
tower-tucohy, and tower-wooden.

Statistics on the instances in TTPLA are reported in Table 2. Notice that
the number of instances in the cable class is much larger than those of the other
classes on TTs. This is because a TT is always connected to at least 2 and up to
10 PLs. Accordingly, TT classes have less training data. As a result, the numbers
of instances on T'Ts and PLs will always be unbalanced in such a dataset focusing
on individual instances. Although it is suggested in the Cityscapes dataset [7]
that the rare classes can be excluded from the evaluation, it should not be the
case for our dataset since we are interested in a combination of both TTs and
PLs. In fact, to increase the number of TT instances in the dataset, we include
images containing multiple T'Ts (see the figure at bottom-left in Fig. 5), which
are not often seen in other datasets. An interesting observation is that the pixels
that PLs and T'Ts occupied in the images are comparable, as reported in Table 2.
It suggests that the dataset actually achieves a balance at the pixel level. It would
be interesting to investigate whether such a balance can benefit detection.

4 Evaluation

This section presents metrics and loss functions that are used for training and
evaluation. The baseline results are provided based on bounding boxes and in-
stance masks.

4.1 Metrics

Instance segmentation on TTPLA is evaluated based on the standard metric
of average precision (AP) [8]. The intersection over union (IoU) measures the
overlap between a pair of the matched prediction and the ground truth. Conse-
quently, AP is accounted when the IoU is greater than 50% [38]. In the baseline,
average precision is calculated for both bounding boxes, denoted by AP, and in-
stance mask, denoted by AP, [L7]. Three precision scores are evaluated: APEO%,
AP AP for bounding box, and AP20% APT% AP for masks [14,17],

m m

Table 2: Dataset Statistics

Category|Classes Labels Instances #|Instances/image|Pixels
PLs Cable cable 8,083 7.3 154M
TTs Lattice tower-lattic 330 0.3 164M
Concrete/Steel/Hybrid|tower-tucohy 168 0.15 30M
Wooden tower-wooden 283 0.26 61M
Void void 173 0.15 0.8M
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Fig.6: Number of Instances per Image (x-axis) v.s. Number of Images (y-
axis), (a) All instances, (b) cable, (c)tower-lattice, (d)tower-tucohy, and (e)tower-
wooden.

as listed in Table 3. AP®0% means the AP with the overlap value of 50%, AP75%
means the AP with the overlap value of 75%, and AP%"9 is the average AP value
at different IoU thresholds ranging from 50% to 95% with step 5% [7].

4.2 Loss Function

Multi-loss functions are often used for multiple output networks [17,14,39,10,11]
to measure the quality of prediction of each model’s outputs by comparing them
to the ground truth during the training process. In the baseline model, the multi-
loss function L4, is a sum of localization loss L., classification loss L.jqss, and
mask loss Lqsk, i-€.,

Lloss = %Lclass + %Lloc + AigbLmask (1)
where «, 3, and ~ are the weights to balance the contribution of each loss func-
tion during the back-propagation. In the configurations, «, 8, and y are set to
1, 1.5, and 6.125, respectively, similar to [17]. In additions, N is the number of
boxes that matches the ground truth boxes. Moreover, the area of the ground
truth bounding boxes Ay, are used to normalize the mask loss.

Classification Loss Function. With one label per bounding box, softmax loss
function is used to estimate the confidence score ¢! of each proposed bounding
box i per category p, where x = {0,1} is the mdlcator of matching the i-th

proposed box to the j-th ground truth box of category p, given ¢ = %
Lclass Zz, C Z Zm log Z IOg (2)

i€Pos j i€Neg

Localization Loss Function. Each bounding box has its center coordinate
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Table 3: Average Precision for Different Deep Learning Models on TTPLA.

Backbone |Image size APPO% AP3Y% APTS% APIS% AP} APSYY
Resnet-50 |Yolact-640x360| 46.72 34.28 4.99 11.20 16.50 14.52
Yolact-550x550| 43.37 28.36 18.36 12.22 20.76 14.70
Yolact-700x 700| 42.62 30.07 20.36 13.64 21.90 15.72
Resnet-101|Yolact-640x360| 44.99 32.58 10.00 10.06 18.42 14.05
Yolact-550x550| 45.30 28.85 19.80 12.33 22.61 14.68
Yolact-700x700| 43.19 28.18 21.27 13.46 22.96 14.88

(¢s,¢y), width w, and height h. Smooth L, loss [10] is used to parameterize the
bounding box offsets between the ground truth box ¢ and prediction box .

N
Lioe(x,1,9) = — Z Z Z xfjsmoothm(l:-" —97")- (3)

i€Pos j mEcy,cy,w,h

Mask Loss Function. Mask loss function is Binary Cross Entropy (BCE) loss
between the predicted mask My, and the ground truth mask My, at the pixel
level [17]. Using BCE loss can maximize the accuracy of the estimated mask,
where Ly,qsr = BCOE(Mge, Mp,).

4.3 Baseline experiment results

The images in TTPLA are split randomly into subsets of 70%, 10%, and 20%
images for training, validation, and testing, respectively. Yolact with different
backbones are evaluated based on the proposed dataset. Yolact produces bound-
ing box, confidence score for a true object, and mask for each predicted object
instance. Yolact is trained based on our dataset using two GeFoce GTX-1070
GPU with 8G memory/each. We train the model using different image sizes
640 x 360 (preserve aspect ratio), 550 x 550 and 700 x 700. In addition, different
backbones are used in our training such as resnet-101 and resnet-50. All the
results on average precision are reported in Table 3. The best average scores
for bounding box and mask are 22.96% and 15.72%, respectively, as listed in
Table 3. Overall, the average precision for instance mask level is less than that
of bounding box.

A brief case study is presented as follows cable: 0.2

tower: 0.60

based on the TTPLA dataset. Average preci- L cable: 0.36

/ SO
A )
% \
4 )\
L

;

sion is evaluated based on true positives and
false positives. False positive is considered for
any object with IoU less than 50%. In addition,
there is an inversely proportional relation be-
tween average precision and the number of false
positives. Therefore, false positive increases as
a result of three types of falseness on classifica-
tion, detection and segmentation.

Firstly, classification falseness appears as a
result of confusion on class labels. Although
there is no shape similarity between the classes

Fig. 7: Classification falseness.
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of PLs and TTs, there is still a small proportion of this type of falseness which
is up to 1.3% from the test-set images. Further examination of the results show
that the classifier may not be able to distinguish one type of TTs (tower-tucohy)
and PLs as shown in Fig. 7. One possibility of this confusion is that the color and
shape of small-size tower-tucohy have high similarity as those of PLs. This type
of falseness is considered as a challenge and leaves much scope for improvement.

Secondly, detection — EEEEEEEEERIITE S S 08 cable: 065 [eabiadian cable:021

'!1 cable: 0.55

i
I

falseness is produced lca?le',o \\ \
due to one of the -
following two reasons.
On one hand, the ob- ‘ P\l

ject is mot detected. [ . ) e |
On the other hand, ‘ ‘
an object may be de-
tected in a region
where there is actually
no object. As shown in Fig.8: Detection falseness.

Fig. 8, there is a wrong

detection of PL in regions of lane line and sidewalk, respectively. Based on what
is mentioned in [3], the probability of detection falseness is high similar because
PLs do not have predictable visual properties and all PLs have the same features
without much distinction. On the other hand, significant shape variation of TTs
affects directly the precision of detection. To reflect this point in our dataset, as
mentioned in subsection 3.2, we collect images for T'Ts from different views.

u
|
|

J

il
|
i

Thirdly, segmentation falseness appears g

when the segmentation mask is not covering B tower:0.59
the whole object. As mentioned in [3], there v
is a strong relationship between precision and
the object size. In other words, precision can
be improved when the number of object pix-
els increases. This is due to the difficulty of
extracting the feature of small objects spe-
cially with noisy background. This problem
often appears in detecting PLs, because of
their long-thin shape and simple appearance.
In TTPLA, most PLs have very small width ‘
between 1 to 3 pixels. In addition, PLs are so  Fig.9: Segmentation falseness.
long as compared to the size of images, when

compared to the instance objects included in COCO and PASCAL VOC. Con-
sequently, according to Yolact, PLs are detected by only one bounding box and
only one mask which in most cases is not covering the whole PL and leads to re-
duced mask average precision for PLs. Moreover, in most cases the single power
line is split up to multiple detecting instances which also increases the falseness
for segmentation [12]. This falseness also appears with TTs detection as shown
in Fig. 9.
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Table 4: Total Percentage of Overlap on TTPLA.
Category Overlap (30%) Overlap (50%) Overlap (75%) Overlap (95%)

cable 4,251 3,224 1,570 224
tower-lattice 15 3 0 0
tower-tucohy 20 4 2 0
tower-wooden 22 10 2 0
Total(%) 48.9 36.8 17.9 2.5

Fourthly, NMS is exploited by instance segmentation detectors [17,14], that

produce large numbers of false positives near the ground truth, to suppress the
overlapped bounding boxes based on lower confidence score and the overlap
threshold [5]. In the crowded scenario, the objects are quite close, overlapped
and their predicted bounding boxes can overlap with each other. Therefore, some
bounding boxes are suppressed based on overlap threshold of NMS although
its nearby bounding boxes are actually for different objects, which reduces the
average precision. Changing the overlap threshold may be one solution, however
in the crowded scenario it is not a perfect solution since higher NMS threshold
leads to increased false positives while lower NMS threshold may increase the
miss-rate and remove more true positives [5]. The number of the overlapped
bounding boxes per object is reported in Table 4. The overlap is calculated
based on threshold 30%, 50%, 75% and 95%, respectively. For example, we have
4,251 overlapped bounding boxes of PLs with threshold 30%. As reported in
Table 4, in TTPLA dataset, the total percentage of the overlap between the
bounding boxes of different instances is up to 48.9%, 36.8%, 17.9%, 2.5% for
threshold 0.3, 0.5, 0.75, 0.95, respectively.

Finally, the analysis results highlight the difficulties to process these real-
time images collected by autonomous UAV and reflect the challenges included
in our dataset which pose opportunities for further enhancements.

5 Conclusion

TTPLA is the first public image dataset with a focus on combined TTs and
PLs instance segmentation. TTPLA dataset consists of 1,100 aerial images with
resolution of 3,840%x2,160 and contains up to 8,987 instances. Data collection
and labeling for TTPLA dataset are highly challenging to ensure the variety in
terms of view angles, scales, backgrounds, lighting conditions and zooming lev-
els. Therefore, novel policies are proposed for collecting, annotating, and labeling
the aerial images. TTPLA dataset is annotated accurately at the pixel-wise level
to be employed by the instance segmentation using deep learning models. Based
on TTPLA, a baseline is created using the state-of-the-art learning model, dif-
ferent backbones, and various images sizes. Finally, TTPLA dataset can provide
a new challenge to computer vision community and lead to new advancement in
detection, classification and instance segmentation.
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