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Abstract. Perturbation-based explanation methods often measure the contribution

of an input feature to an image classifier’s outputs by heuristically removing it

via e.g. blurring, adding noise, or graying out, which often produce unrealistic,

out-of-samples. Instead, we propose to integrate a generative inpainter into three

representative attribution methods to remove an input feature. Our proposed

change improved all three methods in (1) generating more plausible counterfactual

samples under the true data distribution; (2) being more accurate according to

three metrics: object localization, deletion, and saliency metrics; and (3) being

more robust to hyperparameter changes. Our findings were consistent across

both ImageNet and Places365 datasets and two different pairs of classifiers and

inpainters.

1 Introduction

Explaining a classifier’s outputs given a certain input is increasingly important, especially

for life-critical applications [1,2]. A popular means for visually explaining an image

classifier’s decisions is an attribution map i.e. a heatmap that highlights the input pixels

that are the evidence for and against the classification outputs [3]. To construct an

attribution map, many methods approximate the attribution value of an input region by

the classification probability change when that region is absent i.e. removed from the

image. While removing an input feature to measure its attribution is a principle method

(i.e. “intervention” in causal reasoning [4]), a key open question is: How to remove?

State-of-the-art perturbation-based attribution methods implement the absence of an

input feature by replacing it with (a) mean pixels [5,6]; (b) random noise [7,8]; or (c)

blurred versions of the original content [9,10]. However, these removal (i.e. perturbation)

techniques often produce unrealistic, out-of-distribution images (Fig. 1b,d) on which the

classifiers were not trained. Because classifiers are often easily fooled by unusual input

patterns [11,12,13], we hypothesize that such examples might yield heatmaps that are

(1) unreliable i.e. sensitive to hyperparameter settings [14]; and (2) not faithful [15].

To combat these two issues, we propose to harness a state-of-the-art generative

inpainting model (hereafter, an inpainter) to remove pixels from an input image and fill

in with content that is plausible under the true data distribution. We test our approach

on three representative attribution methods of Sliding-Patch (SP) [5], LIME [6], and

Meaningful-Perturbation (MP) [9] across two large-scale datasets of ImageNet [16] and

Places365 [17]. For each dataset, we use a separate pair of pre-trained image classifiers
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(a) Real + BB (b) SP [5] (c) SP-G (d) LIME [6] (e) LIME-G (f) MP2 (g) MP2-G

freight car 0.832 0.391 0.840 0.003 0.898 0.001 0.001

Fig. 1: Three attribution methods, SP [5], LIME [6], and MP2, often produce unrealistic,

out-of-distribution perturbation samples. Top row: SP slides a 29× 29 gray patch across

the image (b). LIME grays out a set of random superpixels (d). MP2 blurs out the

entire image (f). In contrast, a learned inpainter integrated into these methods produces

realistic samples for the same perturbation masks, here, completing the freight car (c),

completing the background (e), and removing the car from the scene (g). Note that the

freight car class probability is reduced by 53% (i.e. from 0.832 to 0.391) when only

a part of the car was occluded (b). However, it is reduced by ∼100% down to 0.003

when the car is still present but the background is unnaturally masked out (d). Since the

inpainted samples are more realistic, the probability drops are often less (c & e) and

substantial only when the object is removed completely (g). Bottom row: the inpainted

samples yield heatmaps that, in overall, outperform the original methods on the object

localization task Sec. 4.3. Here, our heatmaps (SP-G, LIME-G, and MP2-G) are less

noisy and more focused on the object.

and inpainters. We chose SP, LIME, and MP because they are among the most commonly

used and applicable to any classifier. Our main findings include:1

1. Inpainting is more effective than common techniques in removing discriminative

features. That is, photos with the main object blurred or grayed out are still 3

times more recognizable by classifiers and more similar to the original photo (via

MS-SSIM and LPIPS) than photos with objects removed via inpainting (Sec. 4.2).

2. Our results are the first to show that incorporating an inpainter improves perturbation-

based attribution methods i.e. producing (1) more plausible perturbation samples;

(2) explanations that are similarly or more accurate on three common benchmarks—

object localization, deletion, and saliency metrics (Sec. 4.3); and (3) explanations

that are more robust to hyperparameter changes i.e. the SAM metric [14] (Sec. 4.4);

3. We propose MP2-G (Sec. 3.5), a variant that is substantially more accurate, reliable,

and having four hyperparameters fewer than the common MP [9]—a state-of-the-art

approach which is the basis for many extensions [18,19,20,21,22].

To the best of our knowledge, this is the first work that shows the effectiveness of

generative models in improving the accuracy and reliability of explanation methods.

1 All our codes are available at https://github.com/anguyen8/generative-attribution-methods.

https://github.com/anguyen8/generative-attribution-methods


Explaining an image classifier’s decisions using generative models 3

2 Related work

Attribution methods can be grouped into two main classes: (1) white- and (2) black-box.

White-box Given access to the network architecture and parameters, attribution maps

can be constructed analytically from (a) the gradients of the output w.r.t. the input [23],

(b) the class activation map in fully-convolutional neural networks [24], (c) both the

gradients and activations [25], or (d) the gradient times the input image [26]. However,

some gradient-based heatmaps can be too noisy to be human-interpretable [27], and

suffer from gradient saturation [28]. To combat these issues, perturbation techniques

were also utilized. That is, to make a gradient-based heatmap more robust and smooth,

a number of methods essentially average out the resultant heatmaps across a large set

of perturbed inputs that are created via (a) adding random noise to the input [9,27], (b)

blurring the input [9], or (c) linearly interpolating between the input and a reference

“baseline” image [28].

Black-box Perturbation-based methods are important for use cases when only a black-

box model is given (no network parameters). Black-box methods often remove (i.e.

perturb) an input region and take the resultant classification probability change to be

the attribution value for that region. While the idea is principle in causal reasoning, the

physical interventions—taking an object out of a scene (revealing the content behind it)

while keeping other factors unchanged—are impractical in most real-world applications.

The absence of an input region is often implemented by replacing it with (a) mean pixels

[5,6]; (b) random noise [7,8]; or (c) blurred versions of the original content [9]. However,

these removal techniques often produce unrealistic, out-of-samples (Fig. 1), which raises

huge concerns on the sensitivity and faithfulness of explanations.

An open question for existing perturbation-based attribution methods is: Do explana-

tions become more robust and accurate if input features are removed via a strong, natural

image prior? Here, we systematically study this question across three representative

attribution methods: two black-box methods that are perturbation-based (i.e. SP and

LIME) and one white-box method that relies on both perturbations and gradients (i.e.

MP). These representative methods also perturb different types of input features: pixels

(i.e. MP), superpixels (i.e. LIME); and square patches (i.e. SP).

The closest to our work is FIDO-CA [29], which extended MP and harnessed an

image inpainter to synthesize counterfactual samples to explain classifiers’ decisions.

However, FIDO-CA [29] underperformed most baselines that do not use inpainters.

Inspired by [29], we propose a key change in optimization objectives (see details in

Sec. 4) that enabled our approach to improve upon FIDO-CA by a large margin. That

is, for the first time, we show that incorporating an inpainter improves the accuracy and

robustness of explanation methods.

3 Methods

3.1 Datasets and Networks

Classifiers Our experiments were conducted using two separate ResNet-50 image

classifiers [30] that were pre-trained on the 1000-class ImageNet 2012 [16] and Places365
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[17], respectively. The two models were officially released by the PyTorch model zoo

[31] and by the authors [32], respectively.

Datasets We chose these two datasets because they are large, natural-image sets

covering a wide range of images from object-centric (i.e. ImageNet) to scenery (i.e.

Places365). From the 50,000 ImageNet and 36,500 Places365 validation-set images, we

randomly sampled a set of 2000 images correctly classified by their respective ResNet-50

models. We used these two sets of images in all experiments throughout the paper.

Inpainters For each classifier, pre-trained either on ImageNet or Places365, we used

a TensorFlow DeepFill-v1 model pre-trained by [33] on the same respective dataset.

DeepFill-v1 takes as input a color image and a binary mask, both at resolution 256×
256, and outputs an inpainted image of the same size. In this work, we also tried

DeepFill-v2 [34], a free-form inpainting model, but the overall results did not change

significantly. Apart from these two, to the best of our knowledge, there are no other

publicly available generative inpainters for both ImageNet and Places365 datasets. The

DeepFill-v1 inpainter is practically feasible for attribution algorithms as it only takes

0.2s/image on one GPU (and 1.5s/image on CPUs) for inpainting a 512× 512 image.

3.2 Problem formulation

Let s : RD×D×3 → R be an image classifier that maps a square, color image x of

spatial dimension D×D onto a softmax probability of a target class. An attribution map

A ∈ [−1, 1]D×D associates each input pixel xi to a scalar Ai ∈ [−1, 1] which indicates

how much xi contributes for or against the prediction score s(x). We describe below

three methods for generating attribution maps together with our respective proposed

variants (hereafter, G-methods) which harness a generative inpainter.

3.3 Sliding-Patch (SP)

SP [5] proposed to slide a gray, occlusion patch across the image and record the proba-

bility changes as attribution values in corresponding locations in the heatmap. That is,

given a binary occlusion mask m ∈ {0, 1}D×D (here, 1’s inside the patch region and

0’s otherwise) and a filler image f ∈ R
D×D×3, a perturbed image x̄ ∈ R

D×D×3 (see

Fig. 1b) is given by:

x̄ = x⊙ (1−m) + f ⊙m (1)

where ⊙ denotes the Hadamard product and f is a zero image i.e. a gray image2 before

input pre-processing. For every pixel xi, one can generate a perturbation sample x̄i (i.e.

by setting the patch center at xi) and compute the attribution value Ai = s(x)− s(x̄i).
However, sliding the patch densely across the 224 × 224 input image is prohibitively

slow. Therefore, we chose a 29× 29 occlusion patch size with stride 3, which yields a

smaller heatmap A′ of size 66× 66. We bi-linearly upsampled A′ to the image size to

create the full-res A. See Fig. 1b for an example of SP heatmaps and perturbed images.

We implemented SP by converting a MATLAB implementation [35] into PyTorch.

All of our individual experiments in this work were run on a single GTX 1080Ti GPU.

2 The ImageNet mean pixel is gray (0.485, 0.456, 0.406).
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SP-G Note that the stride, size, and color of a SP sliding patch are three hyperparameters

that are often chosen heuristically, and varying them can change the final heatmaps

radically [14]. To ameliorate the sensitivity to hyperparameter choices, we propose a

variant called SP-G by only replacing the gray filler image of SP with the output image

of an inpainter (described in Sec. 3.1) i.e. f = G(m,x) while keeping the rest of SP

the same (Fig. 1b vs. c; top row). That is, at every location of the sliding window, SP-G

queries the inpainter for content to fill in the window.

3.4 Local Interpretable Model-Agnostic Explanations (LIME)

LIME While SP occludes one square patch of the image at a time, LIME [6] occludes

a random-shaped region. The algorithm first segments the input image into S non-

overlapping superpixels [36]. Then, LIME generates a perturbed image x̄ by graying

out a random set of superpixels among 2S possible sets. That is, LIME follows Eq. 1

where the pixel-wise mask m is derived from a random superpixel mask m′ ∈ {0, 1}S .

For each sample x̄i, we measure the output score s(x̄i) and evenly distribute it among

all occluded superpixels in x̄i. Each superpixel’s attribution is then inversely weighted

by the L2 distance ‖x− x̄i‖ via an exponential kernel and then averaged out across N
samples. The resultant attribution ak of a superpixel k is finally assigned to all pixels

in that group in the full-resolution heatmap A. In practice, [6] iteratively optimized for

{ak}S via LASSO for 1000 steps to also maximize the number of zero attributions i.e.

encouraging simpler, sparse attribution maps. We used the implementation provided by

the authors of LIME [37] and their default hyperparameters of S = 50 and N = 1000.

LIME-G While avoiding the bias given by the SP square patch, LIME perturbation

samples remain unrealistic. Therefore, we propose LIME-G, a variant of LIME, by only

changing the gray image f to a synthesized image G(m,x) as in SP-G while keeping

the rest of LIME unchanged.

3.5 Meaningful Perturbation (MP)

MP As SP and LIME gray out patches and superpixels in the input image, they generate

unrealistic counterfactual samples and produce coarse heatmaps. To combat these issues,

Fong et al. [9] proposed the MP algorithm i.e. learning a minimal, continuous mask

m ∈ [0, 1]D×D that blurs out the input image in a way that would minimize the target-

class probability. That is, MP attempts to solve the following optimization problem:

m∗ = argmin
m

λ‖m‖1 + s(x̄) (2)

where x̄ is given by Eq. 1 but with f = Bσ(x) i.e. the input image blurred by a

Gaussian kernel Bσ(.) of radius σ = 10. Note that, in MP, the attribution map A is

also the learned mask m. However, solving Eq. 2 directly often yields heatmaps that are

noisy and sensitive to hyperparameter changes [14]. Therefore, MP only learned a small

28× 28 mask and upsampled it to the image size in every optimization step. In addition,

they also encouraged the mask to be smooth and robust to input changes by changing

the objective function to the following:

m∗ = argmin
m

λ1‖m‖1 + λ2TV (m) + Eτ∼U(0,4)

[

s(Φ(x̄, τ))
]

(3)
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where TV (m) =
∑

i ‖∇mi‖
3
3 i.e. a total-variation norm that acts as a smoothness

prior over the mask. The third term is the expectation over a batch of randomly jittered

versions of the blurred image x̄. That is, Φ(.) is the jitter operator that translates an

image x̄ vertically or horizontally by τ pixels where τ is drawn from a discrete uniform

distribution U(0, 4). We randomly initialized the mask from a continuous uniform

distribution U(0, 1) and minimize the objective function in Eq. 3 via gradient descent for

300 steps. Our MP implementation was in PyTorch and followed all the hyperparameters

as described in [9].

MP2 In the original formulation, MP is highly sensitive to changes in some of its

hyperparameters [14]. In our preliminary experiments (data not shown), we found that

integrating an inpainter into the existing unstable MP optimization did not yield more

accurate heatmaps. In addition, the L1 and TV terms (Eq. 3) introduce strong biases

that impede the contribution of the content generated by inpainters.

Therefore, we propose MP2, a more reliable and accurate variant by eliminating four

hyperparameters from MP: the L1 norm, TV norm, the jitter operator and the stopping

criterion of 300 optimization steps (Sec. 4.3). That is, we still find a minimal mask

(Eq. 2) but by initializing it with all zeros and growing the number of 1’s (i.e. the blurred

region) gradually. Following JSMA [38], in every iteration, we add 1’s to two pixels that

have the highest gradient norms. We stop the mask optimization when the classification

probability reaches random chance, i.e. 0.001 for ImageNet and 0.003 for Places365. As

MP, we use the same Gaussian blur radius of 10 and the mask size of 28×28.

MP2-G We integrate an inpainter G to MP2 by only changing the filler image f =
Bσ(x) that is used in Eq. 1 to an inpainted image i.e. f = G(mb,x) where mb ∈
{0, 1}D×D is the binary mask learned via MP2 optimization.

4 Experiments and Results

4.1 Inpainter failed to synthesize backgrounds given only foreground objects

Chang et al. [29] proposed to find a minimal set of input pixels that would keep the

classification outputs unchanged even when the other pixels in the image are removed

(i.e. the “preservation” objective [9]) via an inpainter. Their method, FIDO-CA, uses

the same DeepFill-v1 inpainter as in our work; however, their “preservation” objective

encourages the inpainter to predict the missing background pixels conditioned on the

remaining foreground object—a task that DeepFill-v1 was not trained to do and thus

produced unrealistic samples as in [29]. In contrast, our MP2-G method harnesses the

dual “deletion” objective i.e. finding the smallest set of input pixels which when inpainted

would minimize the target-class probability—which intuitively asks the inpainter to

replace the main object with some content that is consistent with the background i.e. the

training objective of DeepFill-v1.

To compare these two objectives, we randomly chose 50 validation-set images from

52 ImageNet bird classes and computed their segmentation masks via a pre-trained

DeepLab model [39]. We found that using the DeepFill-v1 to inpaint the foreground

region (i.e. our “deletion” task) yields realistic samples where the object is removed. In

contrast, using the inpainter to fill in the missing background area [29] yields unrealistic
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(a) (b) (c) (d) (e) (f) (g) (h)

Real Mask Preserve [29] Delete Real Mask Preserve [29] Delete

Fig. 2: Using the DeepFill-v1 inpainter to fill in the background region (i.e. “preservation”

task [29]) yields unrealistic images that contain features unnaturally pasted from the

object (c, g). This key difference between the “deletion” (d, h) and “preservation” (c,

g) objectives is further reflected in the evaluation results of MP2-G and FIDO-CA [29]

where the attribution maps generated using the latter consistently underperforms than

MP2-G (Sec. 4.3). See Fig. S3 for more examples of the images.

(a) Real (b) Blur (c) Gray (d) Inpaint (e) Noise

bustard 0.996 0.020 0.050 0.001 0.001

Fig. 3: The results of filling the object mask in a real image (a) via four different filling

methods. The shape of the bird is still visible even after blurring (b), graying out (c) or

adding random noise (e) to the bird region. The inpainter removes the bird and fills in

with some realistic background content (d).

images whose backgrounds contain features (e.g. bird feathers or beaks) unnaturally

pasted from the object (Fig. 2). This result motivated us to integrate DeepFill-v1 into

MP2 but with the “deletion” objective.

4.2 Inpainter is effective in removing discriminative features

While removing objects from an image via DeepFill-v1, qualitatively, yields realistic

samples, here, we quantitatively test how effective this strategy is in removing target-

class discriminative features in comparison with three existing filling methods: (1) zero

pixels; (2) random noise; or (3) blurred versions of the original content. Using the

same procedure as described in Sec. 4.1, we randomly sampled 1000 bird images and

segmented out the bird in each image. We filled in the object mask in each image via all

four methods (Fig. 3) and compared the results (Table 1). Surprisingly, the blurred and

grayed-out images are still correctly classified at 26.4% and 13.3% (Table 1), respectively,

by a pre-trained Inception-v3 classifier [40], i.e., these perturbed images still contain

discriminative features relevant to the target class. In contrast, only 8.9% of the inpainted

images were correctly classified suggesting that the inpainter removes the discriminative

features more effectively. After the main subject (here, birds) are removed from an image,

one would expect the modified image to be perceptually different from the original image

(where the bird exists).
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Table 1: Evaluation of four different filling methods on 1000 random bird images.

The Inception-v3 accuracy scores suggest that inpainting the object mask (d) removes

substantially more discriminative features relevant to the removed object compared to

blurring (b) or graying out (c). Perceptually, the inpainted images are also more dissimilar

to the corresponding real images according two similarity metrics: MS-SSIM (lower is

better) and LPIPS (higher is better).

Metrics
Filling methods

(a) Real (b) Blur (c) Gray (d) Inpaint (e) Noise

Inception Acc.(%) 92.30 26.40 13.30 8.90 4.40

MS-SSIM 1.000 0.941 0.731 0.707 0.692

LPIPS 0.000 2.423 3.186 3.208 3.639

Here, we evaluate how each of the four in-filled images x̄ (where the bird has

been removed) is perceptually dissimilar to the original image x by measuring the

MS-SSIM and LPIPS [41] scores between every pair (x, x̄). Across both metrics, the

inpainted images are consistently more dissimilar from the real images compared to the

blurred and grayed-out images. Note that in all three quantitative metrics, the inpainted

images are the closest to the noise-filled images (Table 1d–e) despite being substantially

more realistic (Fig. 3). Furthermore, the problem with using blurring as a perturbation

operation is explicitly seen in cases where attribution maps covers the entire image.

This is because for some inputs even blurring out the entire image does not result in a

significant probability (Fig. 4). Across the set of 2000 images, the average confidence

score on blurring the entire image was 0.3198.

0.047 0.046 0.871 0.022 0.025 0.017 0.174 0.929 0.015

Fig. 4: The target class probability of images do not drop to random guess, i.e. 0.001 for

ImageNet, even after perturbing the entire image with a Gaussian blur radius of σ =10.

4.3 Are explanations by G-methods more accurate?

While there are currently no established ground-truth datasets to evaluate the correctness

of an attribution map, prior research often assessed correctness via three common proxy

metrics: (1) the object localization task [24]; (2) the deletion task [42]; (3) the saliency

metric [7]. Here, we ran 8 algorithms on the ImageNet and Places365 datasets using the

default hyperparameters (Sec. 3). The heatmaps are then upsampled to the full image

resolution for evaluation on all three measures above.

Object localization Zhou et al. [24] proposed to evaluate heatmaps by localizing objects

in the ImageNet images, which often contain a single object of a known class. We

followed the localization procedure in [9] for the ImageNet dataset. That is, for each

algorithm, we derived multiple bounding boxes per heatmap by thresholding it at dif-

ferent values of t = αµmax, where µmax is the maximum intensity in the heatmap and
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Table 2: Localization errors (lower is better) for all attribution methods on ImageNet.

Naively taking the whole image as a bounding box yields an error of 38.56% (baseline).

MP2-G outperformed all methods including MP, MP2 and a related FIDO-CA [29].

Baseline SP [5] SP-G LIME [6] LIME-G MP [9] MP2 MP2-G FIDO-CA [29]

39.7% 41.9% 38.95% 28.05% 26.55% 29.35% 24.4% 24.03% 27.9%

α ∈ [0 : 0.05 : 0.95]. For each α, we computed the Intersection over Union (IoU) score

between a derived bounding box and the ImageNet ground-truth. The object localization

error was calculated by thresholding each IoU score at 0.5 and averaging them across the

number of images. For each method, we chose the best α∗ that yielded the lowest error

on a held-out set of 1000 ImageNet images (Table 2). We found that our generative

version of the attribution algorithms outperformed their respective counterparts

and MP2-G outperformed FIDO-CA3 (Table 2). Among the 8 methods, MP2-G ob-

tained the lowest error of 24.03%. Qualitatively, MP2-G generates attribution maps that

are more localized to the objects in the image (Fig. 5).

Table 3: Deletion metric (lower is better): SP-G, LIME-G, and MP2-G outperformed

their counterparts on both ImageNet and Places365 datasets. G-methods also outper-

formed a baseline (here, random attribution maps).

Dataset Baseline SP[5] SP-G LIME[6] LIME-G MP[9] MP2 MP2-G FIDO-CA [29]

ImageNet 0.2083 0.1996 0.1769 0.1355 0.1171 0.1654 0.1530 0.1311 0.1638

Places365 0.2151 0.2560 0.1944 0.1919 0.1582 0.2014 0.1980 0.1871 0.1987

Deletion metric Intuitively, if the attributions in an explanation correctly reflect the

importance of input pixels, removing the input pixels of highest attributions should cause

a substantial probability drop. The deletion metric [42] measures the area under the curve

of the target-class probability as we gradually zero out input pixels of the highest attribu-

tions in descending order. The deletion scores are widely used to compare attribution

methods [43,18,44,45] i.e., lower deletion scores are considered more accurate. Here,

we evaluated all 8 methods via the code released by [42] where the authors knocked out

224× 8 pixels at a time. Similar to object localization results, we observed a consistent

trend: Across both ImageNet and Places365, our G-methods outperformed their

counterparts while MP2-G outperformed all algorithms (Table 3).

Saliency metric Dabkowski et al. [7] proposed that if an explanation is accurate then

the most salient patch in an image (derived from the attribution map) should have a

high prediction score. That is, we took the smallest rectangular patch derived from

thresholding the attribution map using an α∗ which yielded the least salient metric

score on a held-out dataset of 1000 images (similar to the object localization task).

The saliency metric is then defined as log
(

max(a, 0.05)
)

− log(s(xp)) where a is the

ratio of the patch size over the image size and s(xp) is the classification probability

for the patch xp upsampled to the full image size. A lower saliency score indicates

3 We produced FIDO-CA results using the code provided by the authors [29]. See Sec. A1 for

more details.
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(a) Real + BB (b) MP2-G (c) SP [5] (d) LIME [6] (e) MP [9] (f) MP2

Fig. 5: MP2-G results in attribution maps that localize the objects accurately compared

to other perturbation-based methods. From left to right, in each row, we show a real

ImageNet image with its ground-truth bounding box (BB) (a), attribution maps from the

proposed MP2-G (b) and other existing methods (c–f). Images are randomly chosen. For

qualitative evaluation, Figs. S4-S5 show a set of heatmaps and their derived BB’s.

a more accurate explanation. On both ImageNet and Places365, SP-G and MP2-

G obtained lower scores than their counterparts while LIME-G was on par with

LIME (Table 4). MP2-G outperformed all its baselines, i.e. MP, MP2, and FIDO-

CA. We hypothesize that the difference between LIME vs. LIME-G is small because they

operate at the superpixel level and most salient pixels might fall in common superpixels

across their respective explanations. Refer to Fig. S6 for the localization error and

saliency metric scores for different α’s on the held-out set of 1000 images.

4.4 Are G-methods more robust to hyperparameter changes?

Machine learning methods are highly sensitive to hyperparameters, contributing to

the reproducibility crisis [46]. Similarly, perturbation-based attribution methods were

recently found to be highly sensitive to common hyperparameters [14]. Such sensitivity

poses a huge challenge in (1) evaluating the explanations; and (2) building trust with end

users [1]. Our hypothesis is that heuristically-perturbed samples are often far from the

true data distribution and thus contribute to the hyperparameter sensitivity of heatmaps.
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Table 4: Saliency metric (lower is better): On both ImageNet and Places365, while

LIME and LIME-G performed on-par, SP-G and MP2-G consistently outperformed

their counterparts (MP2-G outperformed its baselines: FIDO-CA, MP and MP2). The

baseline was calculated using a random attribution map.

Dataset Baseline SP [5] SP-G LIME[6] LIME-G MP[9] MP2 MP2-G FIDO-CA [29]

ImageNet 0.3294 0.3774 0.3122 0.1191 0.1159 0.1182 0.0890 0.0540 0.1071

Places365 1.117 1.1311 1.1148 0.9597 0.9568 1.0413 0.9331 0.9156 0.9263

0.0 0.2 0.4 0.6 0.8 1.0
MP2-G

MP2

LIME-G (150)
LIME (150)

LIME-G (50)
LIME (50)

SP-G
SP

0.0 0.2 0.4 0.6 0.8 1.0
MP2-G

MP2

LIME-G (150)
LIME (150)

LIME-G (50)
LIME (50)

SP-G
SP

0.0 0.2 0.4 0.6 0.8 1.0
MP2-G

MP2

LIME-G (150)
LIME (150)

LIME-G (50)
LIME (50)

SP-G
SP

(a) SSIM (b) Pearson correlation of HOG features (c) Spearman rank correlation

Fig. 6: Error plots for SSIM (a), Pearson correlation of HOG features (b), and Spearman

rank correlation (c) scores obtained from 1000 random ImageNet images (higher is

better). G-methods are more robust than their counterparts (dark vs light bars). LIME-G,

in particular, is robust than LIME on both low and high resolutions i.e. S ∈ {50, 150}
(green and blue bars). The same trends were also observed on the Places365 dataset

(Fig. S2). The exact numbers are reported in Table S1.

Here, we test whether our generative methods are more robust to hyperparameter changes

than their original counterparts.

Similarity metrics and Image sets Following [15,14], we used three metrics from

scikit-image [47] to measure the similarity of heatmaps: the Structural Similarity Index

(SSIM), the Pearson correlation of the histograms of oriented gradients (HOGs), and

the Spearman rank correlation. We upsampled all heatmaps to the full image size before

feeding them into the similarity metrics. We performed the test on a set of 1000 random

images from both ImageNet and Places365.

SP sensitivity across patch sizes It remains a question how to choose the patch

size in the SP algorithm because changing it can change the explanation radically [48].

Therefore, we compare the sensitivity of SP and SP-G when sweeping across 5 patch

sizes p × p with stride 3 where p ∈ {5, 17, 29, 41, 53}. We chose this set to cover the

common sizes that have been used in the literature. For each input image, we obtained

k = 5 heatmaps (i.e. each corresponds to a patch size) and then measured the similarity

among all k(k − 1)/2 = 10 possible pairs.

LIME sensitivity across random batches of samples LIME randomly samples N
perturbed images {x̄i}N and uses them to fit a heatmap. Therefore, we compared the

sensitivity of LIME and LIME-G across 5 random batches of N = 500 perturbation

samples. That is, for each input image among the 1000, we generated k = 5 heatmaps

and computed the similarity among all 10 possible pairs. We ran this experiment for

a small and a large heatmap resolution i.e. two numbers of superpixels S ∈ {50, 150}
while keeping all other hyperparameters constant.
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MP2 sensitivity across mask sizes Because optimizing a mask at a high resolution

is prohibitively slow, Fong et al. [9] used an MP mask of size 28× 28 and upsampled

it to the image size when applying the blur operator on the input image. Therefore, the

mask size is a hyperparameter of MP2 and MP2-G. Here, we compare the sensitivity

by sweeping across the three mask sizes where D ∈ {28, 56, 112}. We re-ran each

algorithm three times on each input image to yield three heatmaps and computed the

average pairwise similarity scores from all possible pairs of heatmaps.

Results First, we found that all 6 algorithms produce inconsistent explanations across

the controlled hyperparameters (Fig. 6; all scores are below 1). That is, LIME heatmaps

can change as one simply changes the random seed! However, LIME-G is consistently

more robust than LIME across all metrics and superpixel settings (Figs. 6 & S17).

Across the patch sizes, SP-G is also consistently more robust than SP (Fig. 6a–b; light

vs. dark yellow). SP-G and SP performed on par with high standard deviations under

the Spearman rank correlation (Fig. 6c). Across the optimization mask size, MP2-G is

consistently more robust than MP2 (Fig. 6; light vs. dark red).

5 The inner-workings of generative attribution methods

Here, we further explain why our G-methods are both more (1) accurate in localizing

objects (Sec. 4.3) and (2) robust to hyperparameter changes (Sec. 4.4).

9 24 36 44 53

(a) Perturbation samples & heatmaps (rightmost)
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(b) GT-class probability over patch locations

Fig. 7: We ran SP and SP-G using a 53× 53 patch on a nail class image. Here are the

perturbation samples from both methods when the patch is slided horizontally across a

row at 5 locations {9, 24, 36, 44, 53} (a); and their respective target-class probabilities (b).

SP-G samples are more realistic than SP and its heatmap localizes the object accurately

(a). That is, the probabilities for SP-G samples are more stable and only substantially

drop when the patch covers the object (blue vs. red). See Fig. S7 for more examples.

5.1 More accurate object localization: A case study of SP-G

We found that as the gray patch of SP is slided from left to right across the input image

(Fig. 7a; top), the target-class probability gradually decreases and approaches 0 when the

patch occludes most of the object (Fig. 7b; red line). Notably, the probability even drops

when the patch is far outside the object region (Fig. 7b; red line within [0, 24]) due to

SP’s unrealistic grayish samples. Hence, the probability distributions by SP often yield a

large blob of high attributions around the object in the heatmap (Fig. 7a; top-right). In
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Fig. 8: We ran LIME and LIME-G on 200 images, each run has 500 intermediate

perturbation samples. Here, for LIME (light green) and LIME-G (dark green) samples,

we show a histogram of the top-1 predicted class labels for all 200 runs ×500 samples =

100,000 images. LIME perturbed samples are highly biased towards few jigsaw puzzle,

maze classes (left panel), which is somewhat intuitive given the gray-masked images

(see Figs. S8-S13). In contrast, the histogram of LIME-G samples are almost uniform.

x-axis: For visualization purposes, we sorted the top-1 labels and showed only first 50

labels. See Fig. S16 for an expanded version of the figure.

contrast, the inpainted samples of SP-G often keep the probability variance low except

when the patch overlaps with the object (Fig. 7b; blue vs. red), yielding heatmaps that

are more localized towards the object (Fig. 7a; bottom). Across 1000 random ImageNet

images, we found that the average probability change when the SP 53 × 53 patch is

outside the object bounding box is ∼2.1× higher than that of SP-G (i.e. 0.09 vs. 0.04).

In sum, our observations here are consistent with the findings that G-methods obtained

lower localization errors than the original counterparts.

5.2 More robust heatmaps: A case study of LIME-G

Here, we provide insights for why LIME-G produced heatmaps that are more consistent

than LIME across 5 random batches of samples. We observed that the top-1 predicted

labels of ∼20.5% of the LIME grayish perturbation samples (e.g. Fig. 9a) were from

only three classes { jigsaw puzzle, maze, hen-of-the-wood } whereas the same top-1

label distribution for LIME-G samples was almost uniform (see Fig. 8 for more details).

Due to their similar grayish, puzzle-like patterns, many LIME samples across images

from different classes (e.g. dogs or nail) are still classified into the same label! Relatedly,

we observed that a LIME perturbation sample is often given a near-zero probability score

regardless of what input feature is being masked out (Fig. 9a). Therefore, when fitted to

N samples, where N is often too small w.r.t. the total 2S possible samples, the heatmap

appears random and changes upon a new set of random masks (Fig. 9b).

In contrast, for LIME-G samples, the probabilities consistently drop when some dis-

criminative features (e.g. the kuvasz dog’s eye in Fig. 9c) are removed. This phenomenon

yields heatmaps that are more consistently localized around the same input features

across different random seeds (Fig. 9d). Our explanation also aligns with the finding

that when the number of superpixels S increases from 50 to 150 (while the sample size

remains at N = 500), the sensitivity gap between LIME vs. LIME-G increases by ∼3

times (Fig. 6a; gap between green bars vs. gap betwen blue bars). See Figs. S8-S15

for qualitative examples of when LIME-G is more robust than LIME and vice-versa.
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(a) 5 LIME perturbation samples (b) 5 LIME heatmaps using five random seeds

(c) 5 LIME-G perturbation samples (d) 5 LIME-G heatmaps using five random seeds

Fig. 9: In Sec. 4.4, we compared the robustness of LIME vs. LIME-G heatmaps when

running using 5 different random seeds. This is an example where LIME-G heatmaps

are more consistent than LIME’s (d vs. b). While LIME grayish samples (a) are given

near-zero probabilities, LIME-G samples (here, inpainted using the same masks as those

in the top row) are often given high probabilities except when the kuvasz dog’s eye is

removed (c). LIME-G consistently assign attributions to the dog’s eye (d) while LIME

heatmaps appear random (b). The top-1 predicted labels for 4 out of 5 LIME samples (a)

here are paper towel.

Quantitatively, we found that the image distribution where LIME-G showed superior

robustness over LIME across all three similarity metrics mostly contains images of

scenes, close-up or tiny objects. In contrast, LIME is more robust than LIME-G on

images of mostly birds and medium-sized objects (See Sec. A2 for more details).

6 Discussion and Conclusion

MP2-G outperforming FIDO-CA consistently on all accuracy metrics confirms that

the “deletion” objective is more appropriate for MP2 when incorporating generative

inpainters. Additionally, discretizing and removing the hyperparameters of the original

MP formulation aid in generating attribution maps that achieve better results across

localization error, deletion, and saliency metric scores.

Integrating a state-of-the-art inpainter into three representative attribution methods

consistently yielded explanations that are (1) more accurate based on three metrics; (2)

more robust to hyperparameter changes; and (3) based on more plausible counterfactuals.

Our results suggest that harnessing generative models to generate synthetic interventions

(here, removal of input features) is a promising direction for future causal explanation

methods.
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