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Abstract. Local feature extraction remains an active research area due
to the advances in fields such as SLAM, 3D reconstructions, or AR appli-
cations. The success in these applications relies on the performance of the
feature detector, descriptor, and its matching process. While the trend of
detector-descriptor interaction of most methods is based on unifying the
two into a single network, we propose an alternative approach that treats
both components independently and focuses on their interaction during
the learning process. We formulate the classical hard-mining triplet loss
as a new detector optimisation term to improve keypoint positions based
on the descriptor map. Moreover, we introduce a dense descriptor that
uses a multi-scale approach within the architecture and a hybrid combi-
nation of hand-crafted and learnt features to obtain rotation and scale
robustness by design. We evaluate our method extensively on several
benchmarks and show improvements over the state of the art in terms
of image matching and 3D reconstruction quality while keeping on par
in camera localisation tasks.

1 Introduction

At its core, a feature extraction method identifies locations within a scene that
are repeatable and distinctive, so that they can be detected with high local-
isation accuracy under different camera conditions and be matched between
different views. The results in vision applications such as image retrieval [1], 3D
reconstruction [2], camera pose regression [3], or medical applications [4], among
others, have shown the advantage of using sparse features over direct methods.

Classical methods [5–7] independently compute keypoints and descriptors.
For instance, SIFT [5] focused on finding blobs on images and extracting gra-
dient histograms as descriptors. Recently proposed descriptors, especially the
patch-based [8–11], are often trained for DoG keypoints [5], and although they
may perform well with other detectors [12], their performance can be further
improved if the models are trained with patches extracted by the same detector.
Similarly, detectors can benefit by training jointly with their associated descrip-
tor [13]. Therefore, following the trend of using the descriptor information to



2 A. Barroso-Laguna et al.

Source Target Trained for Discriminative Features (49% MMA)

Target HeatmapTrained for Repeatable Features (55% MMA) Repeatable and  Discriminative Training (61% MMA)

Target Heatmaps

Fig. 1: Effect of different training strategies on the result. Correct
matches and target detection response maps on London Bridge sequence
(HPatches) when optimising the detector’s features to be repetitive, discrimi-
native, or both.

infer the detections [14, 13, 15, 16], we reformulate the descriptor hard-mining
triplet cost function [9] as a new detector loss. The new detector term can be
combined with any repeatability loss, and consequently, keypoint locations can
be optimised based on the descriptor performance jointly with the detector re-
peatability. This approach leads to finding in a single score map both, repeatable
and discriminative features, as shown in figure 1. We extend the network train-
ings to a multi-scale framework, such that the detector/descriptor learns to use
different levels of detail when making predictions.

Our two-networks approach is motivated by the observations that jointly
learnt detector-descriptor models [14, 17] lack keypoint localisation accuracy,
which is critical for SLAM, SfM, or pose estimations [12], and the fact that
keypoints are typically well localised on simple structures such as edges or cor-
ners, while descriptors require more context to be discriminative. We argue that
despite the recent tendency for end-to-end and joint detector-descriptor meth-
ods, separate extractors allow for shallow models that can perform well in terms
of accuracy and efficiency, which has recently been observed in [12]. Besides
that, in contrast to patch-based descriptors, dense image descriptors make it
more difficult to locally rectify the image regions for invariance. To address this
issue, we introduce an approach based on a block of hand-crafted features and
a multi-scale representation within the descriptor architecture, making our net-
work robust to small rotations and scale changes. We term our approach as
HDD-Net: Hybrid Detector and Descriptor Network.

In summary, our contributions are:

• A new detector loss based on the hard-mining triplet cost function. Although
the hard-mining triplet is widely used for descriptors, it has not been adapted
to improve the keypoint detectors.

• A novel multi-scale sampling scheme to jointly train both architectures at
multiple scales by combining local and global detections and descriptors.

• We improve the robustness to rotation and scale changes with a new dense
descriptor architecture that leverages hand-crafted features together with
multi-scale representations.
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2 Related Work

We focus the review of related work on learnt methods, and refer to [18, 19, 12,
20–22] for further details.

Detectors.Machine learning detectors were introduced with FAST [23], a learnt
algorithm to speed up the detection of corners in images. Later, TILDE [24] pro-
posed to train multiple piecewise regressors that were robust under photometric
changes in images. DNET [25] and TCDET [26] based its learning on a formula-
tion of the covariant constraint, enforcing the architecture to propose the same
feature location in corresponding patches. Key.Net [27] expanded the covariant
constraint to a multi-scale formulation, and used a hybrid architecture composed
of hand-crafted and learnt feature blocks. More details about the latest keypoint
detectors can be found in [21], which provides an extensive detector evaluation.

Descriptors. Descriptors have attracted more attention than detectors, par-
ticularly patch-based methods [28, 8, 9] due to the simplicity of the task and
available benchmarks. TFeat [28] moved from loss functions built upon pairs
of examples to a triplet based loss to learn more robust representations. In [8],
L2-Net architecture was introduced. L2-Net has been adopted in the following
works due to its good optimisation and performance. HardNet [9] introduced the
hard-mining strategy, selecting only the hardest examples as negatives in the
triplet loss function. SOSNet [10] added a regularisation term to the triplet loss
to include second-order similarity relationships among descriptors. DOAP [29]
reformulated the training of descriptors as a ranking problem, by optimising the
mean average precision instead of the distance between patches. GeoDesc [11]
integrated geometry constraints to obtain better training data.

Joint Detectors and Descriptors. LIFT [15] was the first CNN based method
to integrate detection, orientation estimation, and description. LIFT was trained
on quadruplet patches which were previously extracted with SIFT detector. Su-
perPoint [17] used a single encoder and two decoders to perform dense feature
detection and description. It was first pretrained to detect corners on a synthetic
dataset and then improved by applying random homographies to the training
images. This improves the stability of the ground truth positions under different
viewpoints. Similar to LIFT, LF-Net [30] and RF-Net [31] computed position,
scale, orientation, and description. LF-Net trained its detector score and scale
estimator in full images without external keypoint supervision, and RF-Net ex-
tended LF-Net by exploiting the information provided by its receptive fields. D2-
Net [14] proposed to perform feature detection in the descriptor space, showing
that an already pre-trained network could be used for feature extraction even
though it was optimized for a different task. R2D2 [13] introduced a dense ver-
sion of the L2-Net [8] architecture to predict descriptors and two keypoint score
maps, which were each based on their repeatability and reliability. ASLFeat [16]
proposed an accurate detector and invariant descriptor with multi-level connec-
tions and deformable convolutional networks [32, 33].
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Fig. 2: HDD-Net Architecture. HDD-Net is composed by two independent
architectures. Instead of sharing a common feature extractor as in [17, 14, 13,
16], HDD-Net focuses its detector-descriptor interaction at the learning level.

3 Method

3.1 HDD-Net Architecture

HDD-Net consists of two independent architectures for inferring the keypoint
and descriptor maps, allowing to use different hand-crafted blocks that are de-
signed specifically for each of these two tasks. Figure 2 shows the two independent
blocks within the HDD-Net’s feature extraction pipeline.

Descriptor. As our method estimates dense descriptors in the entire image, an
affine rectification of independent patches or rotation invariance by construc-
tion [34] is not possible. To circumvent this, we design a hand-crafted block that
explicitly addresses the robustness to rotation. We incorporate this block before
the architecture based on L2-Net [8]. As in the original L2-Net, we use stride
convolutions to increase the size of its receptive field, however, we replace the last
convolutional layer by a bilinear upsampling operator to upscale the map to its
original image resolution. Moreover, we use a multi-scale image representation
to extract features from resized images, which provides the network with details
from different resolutions. After feature upsampling, multi-scale L2-Net features
are concatenated and fused into a final descriptor map by a final convolutional
layer. The top part of figure 2 shows the proposed descriptor architecture.

Rotation Robustness. Transformation equivariance in CNNs has been exten-
sively discussed in [35–39]. The two main approaches differ whether the transfor-
mations are applied to the input image [40] or the filters [41, 39], we follow the
latest methods and decide to rotate the filters. Rotating filters is more efficient
since they are smaller than the input images, and therefore, have fewer memory
requirements. Unlike [41], our rotational filter is not learnt. We show in section
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Fig. 3: Hand-crafted Block. Given an input image, x, a designed filter, w,
and a set of orientations, θr, the rotation robustness is given by extracting and
features from x with each of the oriented filters, wr. Additionally, (·)+ and (·)−

operators split positive and negative maps before the cyclic max-pooling block.

4.1 that the pre-designed filters offer a strong feature set that benefits the learn-
ing of consecutive CNN blocks. Moreover, in contrast to [41], which applies the
rotation to all the layers in their convolutional model, we only focus on the input
filter, which further reduces the computational complexity. However, we apply
more rotations than [41] to the input filter to provide sufficient robustness. In
[39], authors proposed a method that applied multiple rotations to each con-
volutional filter. Different than estimating a pixel-wise vector field to describe
angle and orientation [39], our rotation block returns multiple maxima through
a cyclic pooling. The cyclic pooling operator returns local maxima every three
neighbouring angles. We experimentally found that returning their local maxima
provides better results than only using the global one. Thence, our hand-crafted
block applies our input filter, w, at R = 16 orientations, each corresponding to
the following angles:

θr =
360

R
r and r ∈ [1, 2, ..., R]. (1)

A rotated filter is generated by rotating θr degrees around the input filter’s
center. Since our rotated filter is obtained by bilinear interpolation, we apply a
circular mask to avoid possible artifacts on the filter’s corners:

wr = m · f(w, θr), (2)

with m as a circular mask around filter’s center and f denoting the bilinear
interpolation when rotating the filter, w, by θr degrees. Given an input image
I, and our designed filter, w, we obtain a set of features h(I) such as:

hr(I) = (I ∗ wr) and r ∈ [1, 2, ..., R], (3)

where ∗ denotes the convolution operator. Before the cyclic max-pooling block,
and because max-pool is driven to positive values, we additionally split and
concatenate the feature maps in a similar fashion to Descriptor Fields [42]:

Hr(I) = [hr(I), (hr(I))
+, -1 · (hr(I))

−], (4)
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Fig. 4: Multi-Scale Hybrid Descriptor. Gaussian pyramid is fed into our
multi-scale descriptor. Each of the re-scaled input images go into one stream,
which is composed by the hand-crafted block detailed in section 3.1 and a L2-
Net architecture. At the end, multi-scale L2-Net features are upsampled and
combined through a final convolution.

with (·)+ and (·)− operators respectively keeping the positive and negative parts
of the feature map hr(I). Descriptor Fields proved to be effective under varying
illumination conditions [42]. Our new set of features, Hr(I), are concatenated
into a single feature map, H(I). Finally, we apply a cyclic max-pooling block
on H(I). Instead of defining a spatial max-pooling, our cyclic pooling is applied
in the channel depth, where each channel dimension represents one orientation,
θr, of the input filter. Cyclic max-pooling is applied every three neighbouring
feature maps with a channel-wise stride of two, meaning that each feature map
after max-pooling represents the local maxima among three neighbouring orien-
tations. The full hand-crafted feature block is illustrated in figure 3.

Scale Robustness. Gaussian scale-space has been extensively exploited for lo-
cal feature extraction [6, 43, 15]. In [30, 31, 27], the scale-space representation was
used not only to extract multi-scale features but also to learn to combine their
information. However, the fusion of multi-scale features is only used during the
detection, while, in deep descriptors, it is either implemented via consecutive
convolutional layers [17] or by applying the networks on multiple resized im-
ages and combining the detections at the end [13, 14, 16]. In contrast to [14, 16],
we extend the Gaussian pyramid to the descriptor part by designing a network
that takes a Gaussian pyramid as input and fuses the multi-scale features before
inferring the final descriptor. To fuse the extracted features, the network upsam-
ples them into the original image resolution in each of the streams. Afterward,
features are concatenated and fed into the last convolution, which maps the
multi-scale features towards the desired descriptor size dimension as shown in
figure 4. The descriptor encoder shares the weights on each multi-scale branch,
hence, boosting its ability to extract features robust to scale changes.

Detector. We adopt the architecture of Key.Net [27] as shown in figure 2.
Key.Net combines specific hand-crafted filters for feature detection and a multi-
scale shallow network. It has recently shown to achieve the state of the art results
in repeatability [27, 12]. Key.Net extended the covariant loss function proposed
in [25] to a multi-scale level, which was termed M-SIP. M-SIP splits the in-
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Fig. 5: Detector-Descriptor Interaction. The proposed triplet loss detector
term optimises keypoint locations based on the descriptor map, refining the
feature candidates towards more discriminative positions.

put images into smaller windows of size s1 × s1 and formulates the loss as the
difference between soft-argmaximum positions in corresponding regions. M-SIP
repeats the process multiple times but splitting the images each time with dif-
ferent window sizes, sn × sn. The final loss function proposed by M-SIP between
two images, A and B, with their matrix transformation, Hb,a, is computed as
the loss of all windows from all defined scale levels:

LM−SIP (A,B) =
∑

i

‖[ui, vi]
T
a −Hb,a[ui, vi]

T
b ‖

2. (5)

We refer to [27] for further details.

3.2 Descriptor-Detector Training

The detector learning has focused on localising features that are repeatable in
a sequence of images [17, 30, 31, 24, 21, 27], with a few works that determine
whether these features are adequate for the matching stage [44, 13, 15, 14]. Since
a good feature should be repeatable as well as discriminative [18], we formulate
the descriptor triplet loss function as a new detector learning term to refine the
feature candidates towards more discriminative positions. Unlike AffNet [44],
which estimates the affine shape of the features, we refine only their locations,
as these are the main parameters that are often used for end tasks such as SfM,
SLAM, or AR. R2D2 [13] inferred two independent response maps, seeking for
discriminativeness of the features and their repeatability. Our approach com-
bines both objectives into a single detection map. LIFT [15] training was based
on finding the locations with closest descriptors, in contrast, we propose a func-
tion based on a triplet loss with a hard-negative mining strategy. D2-Net [14]
directly extracts detections from its dense descriptor map, meanwhile, we use
Key.Net [27] architecture to compute a score map that represents repeatable as
well as discriminative features.

Detector Learning with Triplet Loss. Hard-negative triplet learning max-
imises the Euclidean distance between a positive pair and their closest negative
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sample. In the original work [9], the optimisation happens in the descriptor
part, however, we propose to freeze the descriptor such that the sampling loca-
tions proposed by the detector are updated to minimise the loss term as shown
in figure 5. Then, given a pair of corresponding images, we create a grid on
each image with a fixed window size of s1 × s1. From each window, we extract a
soft-descriptor and its positive and negative samples as illustrated in figure 6. To
compute the soft-descriptor, we aggregate all the descriptors within the window
based on the detection score map, so that the final soft-descriptor and the scores
within a window are entangled. Note that if Non-Maximum Suppression (NMS)
was used to select the maximum coordinates and its descriptor, we would only
be able to back-propagate through the selected pixels and not the entire map.
Consider a window w of size s1 × s1 with the score value ri at each coordinate
[u, v] within the window. A softmax provides:

p(u, v) =
er(u,v)∑s1
j,k e

r(j,k)
. (6)

The window w has the associated descriptor vector di at each coordinate [u, v]
within the window. We compute the soft-score, r̄, and soft-descriptor, d̄, as:

r̄ =

s1∑

u,v

r(u, v)⊙ p(u, v) and d̄ =

s1∑

u,v

d(u, v)⊙ p(u, v). (7)

We use L2 normalisation after computing the soft-descriptor. Similar to previous
works [45, 31], we sample the hardest negative candidate from a non-neighbouring
region. This geometric constraint is illustrated in figure 6. We can define our de-
tector triplet loss with soft-descriptors in window w as:

L(w) = L(δ+, δ−, r̄, µ) = r̄ max(0, µ+ δ+ − δ−), (8)

where µ is a margin parameter, and δ+ and δ− are the Euclidean distances
between positive and negative soft-descriptors pairs. Moreover, we weight the
contribution of each window by its soft-score to control the participation of
meaningless windows e.g., flat areas. The final loss is defined as the aggregation
of losses on all N1 windows of size s1 × s1:

LTrip(s1) =

N1∑

n

L(wn) =

N1∑

n

L(δ+n , δ
−

n , r̄n, µ). (9)

Multi-Scale Context Aggregation. We extend equation 9 to a multi-scale
approach to learn features that are discriminative across a range of scales. Multi-
scale learning was used in keypoint detection [27, 30, 31], however, we extend
these works by using the multi-scale sampling strategy not only on the detector
but also on the descriptor training. Thus, we sample local soft-descriptors with
varying window sizes, sj with j ∈ [1, 2, ..., S], as shown in figure 6, and combine
their losses with control parameters λj in a final term:

LMS−Trip =
∑

j

λjLTrip(sj), (10)
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Fig. 6: Triplet Formation Pipeline. Soft-descriptors are extracted from each
window together with their respective positives and the hardest negatives. The
negatives are extracted only from non-neighbouring areas (non-red areas).

Repeatable & Discriminative. The detector triplet loss optimises the model
to find locations that can potentially be matched. As stated in [18], discrimi-
nativeness is not sufficient to train a suitable detector. Therefore, we combine
our discriminative loss and the repeatability term M-SIP proposed in [27] with
control parameter β to balance their contributions:

LR &D = LM−SIP + βLMS−Trip, (11)

Entangled Detector-Descriptor Learning. We frame our joint optimisation
strategy as follows. The detector is optimised by equation 11, meanwhile, the
descriptor learning is based on the hard-mining triplet loss [9]. For the descriptor
learning, we use the same sampling approach as in figure 6, however, instead of
sampling soft-descriptors, we sample a point-wise descriptor per window. The
location to sample the descriptor is provided by an NMS on the detector score
map. Hence, the descriptor learning is conditioned by the detector score map
sampling, meanwhile, our triplet detector loss term refines its candidate positions
using the descriptor space. The interaction between parts tightly couples the two
tasks and allows for mutual refinement. We alternate the detector and descriptor
optimisation steps during training until a mutual convergence is reached.

3.3 Implementation Details

Training Dataset. We synthetically create pairs of images by cropping and
applying random homography transformations to ImageNet images [46]. The
image’s dimensions after cropping are 192 × 192, and the random homography
parameters are: rotation [−30◦, 30◦], scale [0.5, 2.0], and skew [−0.6, 0.6]. How-
ever, illumination changes are harder to perform synthetically, and therefore,
for tackling the illumination variations, we use the AMOS dataset [47], which
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Dense-L2Net 1st

Order
2nd

Order
Gabor
Filter

Fully Learnt (·)+ &
(·)−

Multi-
Scale

MMA
(%)

X - - - X - - 41.8
X - - - - - - 42.0
X X - - - - - 42.5
X - X - - - - 43.1
X - - X - - - 43.3
X - - - - - X 43.4
X - - X - X - 43.6
X - - X - - X 44.1
X - - X - X X 44.5

Table 1: Ablation Study. Mean matching accuracy (MMA) on Heinly dataset
[48] for different descriptor designs. Best results are obtained with Gabor filters
in the hand-crafted block, (·)+ and (·)− operators, and multi-scale feature fusion.

contains outdoor webcam sequences of images taken from the same position at
different times of the year. We experimentally observed that removing long-term
or extreme variations i.e., winter-summer, helps the training of HDD-Net. Thus,
we filter AMOS dataset such that we keep only images that are taken during
summertime between sunrise and midnight. We generate a total of 12, 000 and
4, 000 images for training and validation, respectively.

HDD-Net Training and Testing. Although the detector triplet loss function
is applied to the full image, we only use the top K detections for training the
descriptor. We select K = 20 with a batch size of 8. Thus, in every training
batch, there is a total of 160 triplets for training the descriptor. On the detector
site, we use j = [8, 16, 24, 32], λj = [64, 16, 4, 1], and set β = 0.4. The hyper-
parameter search was done on the validation set. We fix HDD-Net descriptor
size to a 256 dimension since it is a good compromise between performance and
computational time. Note that the latest joint detector-descriptor methods do
not have a standard descriptor size, while [13] is derived from 128-d L2-Net [8],
the works in [17, 30] use 256-d and [14] is 512-d. During test time, we apply a
15× 15 NMS to select candidate locations on the detector score map. HDD-Net
is implemented in TensorFlow 1.15 and is available on GitHub4.

4 Experimental Evaluation

This section presents the evaluation results of our method in several application
scenarios. Due to the numerous possible combinations of independent detectors
and patch-based descriptors, the comparison focuses against end-to-end and joint
detector-descriptor state of the art approaches.

4 https://github.com/axelBarroso/HDD-Net
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Fig. 7: Mean Matching Accuracy (MMA) on HPatches dataset for top 100, 500
and 1,000 points. HDD-Net gets the best results on both, viewpoint and illumi-
nation sequences.

4.1 Architecture Design

Dataset. We use the Heinly dataset [48] to validate our architecture design
choices. We focus on its homography set and use only the sequences that are not
part of HPatches [20]. We compute the Mean Matching Accuracy (MMA) [49]
as the ratio of correctly matched features within a threshold of 5 pixels and the
total number of detected features.

Ablation Study. We evaluate a set of hand-crafted filters for extracting fea-
tures that are robust to rotation. Specifically, 1st and 2nd order derivatives as
well as a Gabor filter. Besides, we further test a fully learnt approach without the
hand-crafted filters. We also report results showing the impact of splitting the
hand-crafted positive and negative features. Finally, our multi-scale approach is
tested against a single-pass architecture without multi-scale feature fusion.

Results in table 1 show that the Gabor filter obtains better results than 1st

or 2nd order derivatives. Gabor filters are especially effective for rotation since
they are designed to detect patterns under specific orientations. Besides, results
without constraining the rotational block to any specific filter are slightly lower
than the baseline. The fully learnt model could be improved by adding more
filters, but if we restrict the design to a single filter, hand-crafted filter with (·)+

and (·)− operators give the best performance. Lastly, a notable boost over the
baseline comes from our proposed multi-scale pyramid and feature fusion within
the descriptor architecture.

4.2 Image Matching

Dataset. We use the HPatches [20] dataset with 116 sequences, including view-
point and illumination changes. We compute results for sequences with image
resolution smaller than 1200 × 1600 following the approach in [14]. To demon-
strate the impact of the detector and to make a fair comparison between differ-
ent methods, we extend the detector evaluation protocol proposed in [21] to the
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SuperPoint

R2D2

HDD-Net

Input Pairs

Fig. 8: Qualitative examples on v bip, i bridger, and i smurf from the HPatches
dataset. Illustrated sequences display extreme scale and rotation changes, as well
as outdoor and indoor illumination variations.

matching metrics by computing the MMA score for the top 100, 500, and 1,000
keypoints. As in section 4.1, MMA is computed as the ratio of correctly matched
features within a threshold of 5 pixels and the total number of detected features.

HPatches (MMA)

View Illum

LMS−Trip 26.4 34.9
LM−SIP 38.3 35.5
LR &D (eq.11) 38.9 41.5

Table 2: MMA (%) results for
different detector optimisations.

Effect of Triplet Learning on Detector.

Table 2 shows HDD-Net results when train-
ing its detections to be repeatable (LM−SIP )
or/and discriminative (LMS−Trip). The per-
formance of LMS−Trip only is lower than
LM−SIP , which is in line with [13]. Being
able to detect repeatable features is cru-
cial for matching images, however, best re-
sults are obtained with LR &D, which com-
bines LM−SIP and LMS−Trip with β = 0.4,
and shows the benefits of merging both prin-
ciples into a single detection map.

Comparison to SOTA. Figure 7 compares our HDD-Net to different algo-
rithms. HDD-Net outperforms all the other methods for viewpoint and illumina-
tion sequences on every threshold, excelling especially in the viewpoint change,
that includes the scale and rotation transformations for which HDD-Net was
designed. SuperPoint [17] performance is lower when using only the top 100 key-
points, and even though no method was trained with such constraint, the other
models keep their performance very close to their 500 or 1,000 results. When
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Madrid Metropolis Gendarmenmarkt Tower of London

(448 Images) (488 Images) (526 Images)

Reg.
Ims

Sp.
Pts

Track
Len

Rep.
Err.

Reg.
Ims

Sp.
Pts

Track
Len

Rep.
Err.

Reg.
Ims

Sp.
Pts

Track
Len

Rep.
Err.

SIFT 27 1140 4.34 0.69 132 5332 3.68 0.86 75 4621 3.21 0.71
LF-Net 19 467 4.22 0.62 99 3460 4.65 0.90 76 3847 4.63 0.56

SuperPoint 39 1258 5.08 0.96 156 6470 5.93 1.21 111 5760 5.41 0.75
D2Net-SS – – – – 17 610 3.31 1.04 10 360 2.93 0.94
D2Net-MS – – – – 14 460 3.02 0.99 10 64 5.95 0.93
R2D2 22 984 4.85 0.88 115 3834 7.12 1.05 81 3756 6.02 1.03

HDD-Net 43 1374 5.25 0.80 154 6174 6.30 0.98 116 6039 5.45 0.80

Table 3: 3D Reconstruction results on the ETH 3D benchmark. Dash symbol
(–) means that COLMAP could not reconstruct any model.

constraining the number of keypoints, D2Net-SS [14] results are higher than for
its multi-scale version D2Net-MS. D2Net-MS was reported in [14] to achieve
higher performance when using an unlimited number of features. In figure 8,
we show matching results for the three best-performing methods on hard exam-
ples from HPatches. Even though those examples present extreme viewpoint or
illumination changes, HDD-Net can match correctly most of its features.

4.3 3D Reconstruction

Dataset. We use the ETH SfM benchmark [50] for the 3D reconstruction task.
We select three sequences; Madrid Metropolis, Gendarmenmarkt, and Tower of

London. We report results in terms of registered images (Reg. Ims), sparse points
(Sp. Pts), track length (Track Len), and reprojection error (Rep. Err.). Top 2,048
points are used as in [12], which still provides a fair comparison between meth-
ods at a much lower cost. The reconstruction is performed using COLMAP [2]
software where we used one-third of the images to reduce the computational time.

Results. Table 3 presents the results for the 3D reconstruction experiments.
HDD-Net and SuperPoint obtain the best results overall. While HDD-Net re-
covers more sparse points and registers more images in Madrid and London,
SuperPoint does it for Geendarmenmarkt. D2-Net features did not allow to re-
construct any model on Madrid within the evaluation protocol i.e., small regime
on the number of extracted keypoints. Due to challenging examples with moving
objects and in distant views, recovering a 3D model from a subset of keypoints
makes the reconstruction task even harder. In terms of a track length, that is the
number of images in which at least one feature was successfully tracked, R2D2
and HDD-Net outperform all the other methods. LF-Net reports a smaller repro-
jection error followed by SIFT and HDD-Net. Although the reprojection error is
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small in LF-Net, their number of sparse points and registered images are below
other competitors.

4.4 Camera Localisation

Dataset. The Aachen Day-Night [51] contains more than 5,000 images, with
separate queries for day and night5. Due to the challenging data, and to avoid
convergence issues, we increase the number of keypoints to 8,000. Despite that,
LF-Net features did not converge and are not included in table 4.

Aachen Day-Night

Correct Localised Queries (%)

Threshold 0.5m, 2◦ 1m, 5◦ 5m, 10◦

SIFT [5] 33.7 52.0 65.3
SuperPoint [17] 42.9 61.2 85.7
D2-Net SS [14] 44.9 65.3 88.8

D2-Net MS [14] 41.8 68.4 88.8

R2D2 [13] 45.9 66.3 88.8

HDD-Net 43.9 62.2 82.7

Table 4: Aachen Day-Night results on local-
isation. The higher the better.

Results. The best results for
the most permissive error thresh-
old are reported by D2-Net net-
works and R2D2. Note that
D2-Net and R2D2 are trained
on MegaDepth [52], and Aachen
datasets, respectively, which con-
tains real 3D scenes under simi-
lar geometric conditions. In con-
trast, SuperPoint and HDD-Net
use synthetic training data, and
while they perform better on im-
age matching or 3D reconstruc-
tion, their performance is lower
on localisation. As a remark, re-
sults are much closer in the most
restrictive error, showing that
HDD-Net and SuperPoint are on par with their competitors for more accurate
camera localisation.

5 Conclusion

In this paper, we have introduced a new detector-descriptor method based on
a hand-crafted block and multi-scale image representation within the descrip-
tor. Moreover, we have formulated the triplet loss function to not only learn
the descriptor part but also to improve the accuracy of the keypoint locations
proposed by the detector. We validate our contributions in the image matching
task, where HDD-Net outperforms the baseline with a wide margin. Further-
more, we show through extensive experiments across different tasks that our
approach outperforms or performs as well as the top joint detector-descriptor
algorithms in terms of matching accuracy and 3D reconstruction, despite using
only synthetic viewpoint changes and much fewer data samples for training.
Acknowledgements. This research was supported by UK EPSRC IPALM
project EP/S032398/1.

5 We use the benchmark from the CVPR 2019 workshop on Long-term Visual Local-
ization.
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