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Abstract. Head pose is a vital indicator of human attention and behav-
ior. Therefore, automatic estimation of head pose from images is key to
many applications. In this paper, we propose a novel approach for head
pose estimation from a single RGB image. Many existing approaches
often predict head poses by localizing facial landmarks and then solve
2D to 3D correspondence problem with a mean head model. Such ap-
proaches rely entirely on the landmark detection accuracy, an ad-hoc
alignment step, and the extraneous head model. To address this draw-
back, we present an end-to-end deep network, which explores rotation
axis (yaw, pitch and roll) focused innovative attention mechanism to
capture the subtle changes in images. The mechanism uses attentional
spatial pooling from a self-attention layer and learns the importance over
fine-grained to coarse spatial structures and combine them to capture rich
semantic information concerning a given rotation axis. The evaluation
of our approach using three benchmark datasets is very competitive to
state-of-the-arts, including with and without landmark-based methods.
Code can be found at https://github.com/ArdhenduBehera/RAFA-Net.

1 Introduction

Head pose estimation aims to infer the orientation of a person’s head relative to
the camera view. It is often represented using a 3D vector containing the Euler
angles of yaw, pitch and roll. It is a key to many real-world applications such
as aiding eye gaze estimation, human attention modeling, driver behavior un-
derstanding, human-robot social interactions, face alignments, human-computer
interactions and many more. Over the past 20 years, there is a significant ad-
vancement in face detection. However, the reliable estimation of head poses from
a single RGB image is still challenging, particularly in unconstrained ‘in the wild’
scenarios. For extreme poses, even face detection is arguably still difficult.

Estimating head pose from an image is essentially solving the mapping prob-
lem between 2D and 3D spaces. Traditionally, this is carried out using two steps:
1) detecting 2D facial landmarks in the target face, and 2) establishing the cor-
respondence between landmarks and a head template [1–4]. The recent surge
in deep Convolutional Neural Networks (CNNs) has significantly influenced in
detecting and localizing facial landmarks [5–8]. This is mainly due to the fact
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that deep models are often robust to extreme poses and occlusions, encouraging
improvements in performance. Most of these models are aimed to estimate head
poses and detect facial landmark, jointly. Moreover, the main goal is to improve
the accuracy of facial landmark detection with the help of head poses, resulting
in head pose estimation itself is not accurate enough.

There is no doubt that the advancement of deep CNNs has significantly im-
proved landmarks detection accuracy. However, there are still possibilities of in-
troducing errors in landmark-based head pose estimation. These are: 1) an insuf-
ficient number of detected landmarks, 2) quality of the head models/templates,
and 3) their adaptation to each individual is also influenced by the model defor-
mation, which is computationally expensive. To address this, there is a signif-
icant interest in estimating head poses directly from image intensities [9–14, 7,
6]. Existing works also use multimodal information such as RGB+depth images
[15–18] and temporal knowledge from videos [19, 20] to improve the head pose
estimation accuracy. It has significantly helped in improving performance but
has its drawbacks. For example, depth cameras to capture depth information
can be challenging to use in outdoors, and uncontrolled environments and are
not always available. Therefore, there is a need for fast and reliable monocular
image-based head pose estimation. On the other hand, temporal information in
videos involving detection and tracking of heads could guide the pose estima-
tion. However, modeling temporal information is often achieved with the use of
recurrent networks, which are usually computationally expensive.

Our contribution: We propose a landmark-free end-to-end regression model
called RAFA-Net (Rotation Axis Focused Attentional Network) for head pose
estimation from monocular images. Head poses in monocular images often ex-
hibit subtle changes. Deep models over the full images with distinctive classes
have shown great success, but it raises the question about their performance
in recognizing fine-grained changes [21]. Therefore, there is a need for learn-
ing meaningful features linking fine-grained changes for performing regression.
One way to address this problem by adapting statistical pooling or aggregation
approaches [22, 23], which learn high-level representative features from the low-
level local features. However, such approaches often do not consider the spatial
relationships, resulting in them being unable to capture the spatial structure,
which is necessary for modeling fine-grained changes. Thus, we propose a novel
attentional spatial pooling that learns to distill fine-grained to coarse spatial
structures and combines them based on their importance to capture rich se-
mantic information for estimating head poses. Moreover, the pooling module
is attached to a given rotation axis (yaw, pitch and roll) to capture specific
fine-grained changes in the image intensities for accurate head pose estimation.

Our attentional pooling can be interpreted as a more flexible and versatile
pooling tool. Conventional pooling uses a pre-defined fixed window size (RoI),
strides and types for a given task. Whereas, in our case, we pool features from a
set of possible pooling (a combination of types, size and strides) covering smaller
area to wider area with a more versatile approach to capture both local and
global structures. Our approach is very similar to the recent work of deformable
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RoI pooling [24, 25] for object detection and semantic segmentation. However,
to generate new feature maps, we use attentional RoI pooling, which learns to
distill the intrinsic consistency between informativeness of pooled features and
their usefulness in estimating poses. Moreover, our attention map conveys how
much to concentrate a given RoI in focus conditioned on all other RoIs. Whereas,
deformable RoI pooling generates feature map via weighted summation of RoIs.

2 Related Work

Facial landmark-based approaches: Detected 2D facial keypoints are used
to estimate head poses using 3D techniques such as POSIT [26]. The face align-
ment is often carried out using regression [1, 3, 4, 27], as well as model-based
approaches [28–30]. Lately, CNN models [2, 31] for estimating 3D faces have
shown superior performance. However, these approaches require manually an-
notated ground-truth, which is laborious, time-consuming, and often experts
cannot accurately assign landmark locations in low-resolution images.

Landmark-free approaches: To address the above drawback, recently, there is
a significant interest in estimating head poses directly from the image intensities
using deep networks [9–14]. Such approaches often encounter problems due to
illumination variations or poor illumination during night time. To overcome this,
researchers have explored the complementary depth information for higher accu-
racy [16–18, 32]. Similarly, sequential knowledge from videos is explored in [19,
20] to benefit from the temporal coherence by using particle filters and recurrent
networks to track facial features over time for improved head pose estimation.

Multi-tasking approaches: Facial modeling and analysis are multi-task learn-
ing (e.g. face detection, person identification, landmark detection, recognizing
emotions, etc.) and is closely linked to head poses. Therefore, it has been shown
that learning-related tasks jointly achieve better performance than individually
[4–8]. Most of these methods are based on end-to-end deep learning models.

Attention-based approaches: Attention mechanism in machine learning is in-
fluenced by the human perception that focuses on selective parts of image/video
to acquire salient information at specific locations and times. It has drawn in-
creasing interest in solving machine translation [33, 34], image/video caption-
ing [35–37], image/video recognition [38–40] and visual question answering [41]
problems. Head pose estimation using attention mechanism is yet to be explored.
This could be due to the head pose is a regression model, whereas, most of the
existing approaches are applied to the classification of sequence mapping. Re-
cently, Yang et al. [11] use a spatial attention proposal for refining regression
values to estimate head poses. Our method is different from them since we use
attentional spatial pooling and learn to attend the importance of fine-grained
to coarse spatial structures to capture the subtle changes in images. Moreover,
our model learns the rotation-axis specific subtle changes for estimating head
poses. Our method is simple yet efficient and can be easily applicable to other
applications.
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Fig. 1: RAFA-Net for estimating head poses by introducing rotation axis-specific
(yaw, pitch and roll) self-attention and attentional pooling components.

We revisit many of the above approaches (especially landmark-free methods,
residual networks and attention mechanism) for advancing knowledge and solv-
ing the head pose estimation problem. We benefit from the well-known and very
efficient ResNet architecture with simple yet efficient network modifications to
capture salient information linking fine-grained changes in monocular images for
estimating the head poses. We emphasize that our contributions include not only
the modification to ResNet architecture but also an empirical study on the role
of attentional spatial pooling in improving pose estimation accuracy.

3 Proposed Approach (RAFA-Net)

RAFA-Net is based on the ResNet model [42], which is adapted by introducing
rotation axis-specific self-attention and attentional pooling layer to estimate head
orientation represented using yaw, pitch and roll (Fig. 1a). In a CNN, initial lay-
ers learn more generic features (e.g. edges, corners, color blobs, etc.). As we move
towards the output layer, the network gradually moves from generic to task-
specific high-level features (e.g. structural/shape information). We explore this
by modifying the last convolution (Conv5) layer of the ResNet-50 to learn rota-
tion axis-specific high-level structural information. As a result, we use three par-
allel Conv5 layers focusing on the respective yaw, pitch and roll axes. The output
(width W , height H and C channels) of axis-specific Conv5 is used to compute
the respective bandwidth-specific self-attention map α = {αyaw, αpitch, αroll}
(Fig. 1b) to capture important cues focusing on spatial changes. For each axis,
the goal is to explicitly learn the relationships between features (dimension C)
spatially located in a given resolution of W ×H. It conveys how much to focus
the features at a given spatial location when synthesizing feature in another lo-
cation. To achieve this, we compute the self-attention map (αyaw, αpitch, αroll)
by adapting the SAGAN concept [43] in which the query, the key, and the value

are all the same. For clarity, we describe the process for computing α and is
the same for each rotation axis. Let’s consider x ∈ R

W×H×C is the output of
a Conv5 layer for an image I (Fig. 1a). To compute α, the feature x is first
transformed into the concept of key f(x) = Wfx, query g(x) = Wgx, and value
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h(x) = Whx. The element αi,j indicates the extent to which the α attends to
the jth location while focusing on the ith position in x and is computed using
softmax function. It is used to compute the output oj , which is a column vector
of final output o = (o1, o2, . . . , oj , . . . , oW×H) ∈ R

W×H×C and is computed as:

oj =
W×H∑

i=1

αi,jh(xi),where αi,j =
exp(si,j)

∑W×H

j=1 exp(si,j)
, si,j = f(xi)

Tg(xj) (1)

Wf , Wg and Wh are all 1×1 convolution filters. We compute o = {ok} for each
axis k ∈ {yaw, pitch, roll}. In addition, we also learn axis-specific scalar βk and
multiply with the output ok and then add it with the input feature map xk.

x̂k = βkok + xk, where k ∈ {yaw, pitch, roll} (2)

βk is initialized to zero. It allows the network to first rely on the axis-specific
local cues and then gradually learns to assign more weight to the global evidence.
Afterwards, x̂k is passed to our novel attentional spatial pooling (Fig. 2a).

3.1 Attentional Spatial Pooling

Spatial pooling is a standard building block of modern CNNs. In terms of the
receptive field, there are two types (local or global) of spatial pooling widely
used. Usually, global pooling often substitutes for the FC layer in many CNNs
[42, 44, 45] via spatially squeezing the feature map tensor into a vector of channel
dimensionality and is fed into the final classification/regression layer. However,
global pooling loses the spatial structure and therefore, it might not be able to
capture the subtle changes in images containing face orientations. In contrast,
local pooling in CNNs [45–48] is commonly used to reduce spatial resolution
with increasing robustness in variation (e.g. translation) against input images.
It deals with only local features in the receptive field [49, 50]. To get the best
out of both, one needs an appropriate method to combine them.

To address this, we propose a novel trainable hybrid spatial pooling, which
employs attention mechanism and learns importance over fine-grained (local)
to coarse (global) structures and combines them to attain rich semantic in-
formation in images. Our approach learns rotation axis specific pooling mod-
ule (see Fig. 1a) that combines a various combination of pooling parameters
(sizes, types and strides) and adaptively tunes it without manually fixing it
beforehand. Let’s consider our pooling module P = {pool1, pool2, . . . , poolK}
consists of K possible poolings (i.e. combination of types, size and strides).
One module per axis i ∈ {yaw, pitch, roll} receives input from the respective
self-attention map x̂i ∈ R

W×H×C . Each poolk (k = 1 . . .K) is a unique com-
bination of pooling size, type and stride resulting in a fixed number of RoI
(region-of-interest) per poolk to be used for pooling (i.e. spatial sliding positions)
in the spatial resolution of W × H (Fig. 2a). As a result, there is K1 RoIs in
pool1 = {pool11, pool

2
1, . . . , pool

K1

1 }, K2 RoIs in pool2 = {pool12, pool
2
2, . . . , pool

K2

2 }
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(a) Attentional spatial pooling (b) Weighting each pooled feature

Fig. 2: Before computing the loss for the respective Euler angle, we use a novel
attentional spatial pooling from self-attention layer to capture rich semantic
information representing the given rotation axis-specific angle. Afterwards, we
combine them with our innovative attention mechanism.

and so on, until a single RoI in poolK = {pool1K} since poolK is the global pool-
ing considering whole spatial resolution of W × H. We concatenate all RoIs
i.e. P = (pool11, . . . , pool

K1

1 , pool12, . . . , pool
K2

2 , . . . , poolK) over K pooling com-
binations and represent as P = (p1, p2, . . . , pN ), where N is the total number
of RoIs (see Fig. 2a). Each element pn (n = 1 . . . N) is a RoI-pooled feature.
During decision making, our pooling module P learns to focus on each pn by
its importance. We achieve this by introducing an attention-focused learnable
parameter θa to compute high-level feature encoding x = fa(pn, an; θa), where
an is the attention-focused representation of RoI-pooled feature pn and fa is a
mapping function. The element an is computed using the weighted summation
of all other RoI-pooled features pn′ and their similarity (measured in the form of
probability) τn,n′ to a given feature pn in focus. This novel attention mechanism
is implemented using an LSTM (Long Short-Term Memory) cell as follows:

an =

N∑

n
′=1

τn,n′pn′ , where τn,n′ =
exp(σn,n′ )

∑N

n
′=1 exp(σn,n′ )

,

σn,n′ =Wσρn,n′ + bσ, and ρn,n′ = tanh(Wρpn +Wρ
′pn′ + bρ)

(3)

Wρ andWρ
′ are weights matrices for the respective RoI pooling combinations

n and n′; Wσ is their non-linear fusion. τn,n′ is computed from ρn,n′ using the
sigmoid function; bρ and bσ are the biases. The attention-focused representation
an conveys how much to attend the RoI-pooled feature pn in focus conditioned

on all other RoI-pooled features (Fig. 2b). Finally, high-level feature map x for
a given axis (yaw, pitch and roll) is computed by a weighted summation of all
the pooling combinations using the attention importance weight wn.

x =

N∑

n=1

anwn,where wn =
exp(ψn)

∑N

j=1 exp(ψj)
and ψn =Wψan + bψ (4)
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The weight matrix Wψ and bias bψ are learned. The attention importance score
wn for each an is constructed via probability distribution over the pooling repre-
sentations using the sigmoid function. This approach is similar to the attention-
based approach used to solve machine translation problems [51] in which the
model automatically searches for parts of a source sentence that are relevant to
predicting a target word. The difference is that we do not consider the sequen-
tial information. The final feature map x is used as an input to a final linear
regression layer to solve the head pose estimation. Our attentional spatial pool-
ing module consists of learnable parameter θa = {Wρ,Wρ

′ ,Wσ,Wψ, bρ, bσ, bψ}
for each rotation axis (yaw, pitch, and roll) o estimate axis-specific pose angles.

3.2 Learning

RAFA-Net is trained in an end-to-end fashion with the default ResNet input
image size of 224× 224. The model takes a set of training images I = {Im|m =
1, . . . ,M} and the respective head pose value of yaw (ymyaw), pitch (ympitch) and
roll (ymroll) in Euler angle (radian). The aim is to train the model to predict
ŷmyaw, ŷ

m
pitch, ŷ

m
roll = model(Im) for a given image Im by minimizing combined

regression loss (LMSE), which is computed as a Mean Squared Error.

LMSE =
1

M

M∑

m=1

(ymyaw − ŷmyaw)
2

︸ ︷︷ ︸

Yaw MSE Loss

+(ympitch − ŷmpitch)
2

︸ ︷︷ ︸

Pitch MSE Loss

+(ymroll − ŷmroll)
2

︸ ︷︷ ︸

Roll MSE Loss

(5)

4 Experiments

4.1 Implementation

RAFA-Net is implemented using Keras with TensorFlow as a backend. The con-
volutional layers (Conv1 to Conv5) are pre-trained layers from the ResNet-50
model [42] trained on the ImageNet [52] dataset. The model is trained with 150
epochs (32 batch size) using RMSProp optimizer [53] with a learning rate of
0.001 and rho of 0.9. The experiments are performed on a Linux PC (Ubuntu
OS, Intel Core i9 9820X) with an NVIDIA Titan V GPU (12GB).

For an input image of size 224× 224× 3, the self-attention module’s output
feature map resolution is 7×7×2048 (Fig. 1b). For our attentional spatial pooling
module P, we experimentally found that max pooling is the best possible pooling
type for this task. Given the spatial resolution of 7 × 7, we use pooling sizes of
2, 3, 4, 5 and 7. Similarly, we use the pooling stride of 2 and 3.

4.2 Datasets and Evaluation Strategies

There are a number of datasets produced so far for head pose estimation [54,
55]. Often facial landmarks are used to generate the ground-truth head poses
by fitting a mean 3D face with the POSIT algorithm [26] since it is difficult to
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(a) 300W-LP (b) AFLW2000 (c) BIWI

Fig. 3: Example images from three datasets: a) 300W-LP synthetic [31] - the
various rendered head poses. b) AFLW2000 [31] - head poses from real-world
images with varying background and lighting conditions. c) BIWI [17] - head
poses from RGB-D images collected under a controlled environment.

precisely measure (or manually annotate) them. This approach works well for
smaller angle head poses. However, it does not work well for large head poses
due to the accuracy of facial landmark detection deteriorates in large poses and
is mainly due to occlusion. For our experiments, we have used the three most
popular datasets: 1) 300W-LP [31], 2) AFLW2000 [31], and 3) BIWI [17]. A few
examples from these datasets are shown in Fig. 3. The 300W-LP [31] dataset
is derived from the 300W dataset [55], which is a collection of several datasets
for face alignment with 68 facial landmarks. It uses face profiling with 3D im-
age meshing to generate 61,225 images of faces having large poses and further
expanded to 122,450 faces with flipping. It is called as the 300W across Large
Poses (300W-LP) and is synthetically generated by predicting the depth of each
face, and then its profile views are computed with 3D rotation. The AFLW2000
dataset [31] is the subset (first 2000 images) of the AFLW dataset [56], and con-
sists of head pose with large variations, facial expressions, different illumination,
and occlusion conditions. It provides ground-truth annotations consisting of 3D
faces and the corresponding 68 3D landmarks. The BIWI dataset [17] contains
15,678 frames from 24 RGB-D videos of 20 subjects captured using a Kinect de-
vice. These videos are captured in a controlled environment, and the 3D model
is fitted to the RGB-D videos to obtain the ground-truth head poses. The head
poses angle ranges are ±77o for yaw, ±60o for pitch, and ±50o for the roll.

To compare the performance of the RAFA-Net with state-of-the-arts, we fol-
low the standard evaluation strategies, which are: 1) train on the synthetic 300W-
LP large dataset and test on the other two relatively small datasets (AFLW2000
and BIWI). 2) train the model using 70% of videos (16 videos) in the BIWI
dataset and evaluate the rest 30% (8 videos). In all three datasets, we use the
detected face bounding box provided by Shao et al. [13]. The standard evaluation
metric of mean absolute error (MAE) is used. For each pose angle, the average
prediction error in degrees over testing images is used for the comparison. We
have also compared the average prediction error over three (yaw, pitch and roll)
Euler angles to show the overall performance of the proposed approach.

4.3 Data Augmentation

We propose a novel data augmentation approach (Fig 4) and is inspired by the
experiment carried out by Shao et al. [13] to measure the accuracy of their
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(a) (b) (c)

Fig. 4: Data augmentation involving randomization of bounding box margin us-
ing a control parameter γ: a) original bounding box from a face detector (γ = 0)
and the corresponding cropped and resized (224× 224) image, b) bounding box
with γ = 0.3 and the corresponding cropped and resized image, c) 20 ran-
domly generated bounding boxes (red) between blue and green bounding box,
i.e. 0 ≤ γ ≤ 0.5. Best view in color.

model by selecting a different size of the bounding box (prior to training and
evaluation) enclosing a face. Our is different since we randomly generate these
bounding boxes during training using a control parameter γ. Let (bx, by) is the
provided top-left location of a square bounding box b with size bs. The corre-
sponding bottom-right corner location will be at (bx + bs, by + bs). The aim is
to generate different locations of top-left (bx − γbs, by − γbs) and bottom-right
(bx + bs + γbs, by + bs + γbs) corners using γ to control bounding box margins.
We experimentally found that this randomization gives better generalization
resulting in improved performance rather than using standard augmentation
techniques such as random scaling, width and/or height sifting and cropping.
For all our experiments, we have used 0 ≤ γ ≤ 0.5.

4.4 Comparison with the State-of-the-Art (SotA) Methods

We first compare the SotA pose estimation methods trained on the 300W-LP
[31] and tested on the AFLW2000 [31] and BIWI [17], respectively. The perfor-
mance comparison is presented in Table 1. In this experiment, the training and
testing datasets are very different. For example, 300W-LP is a synthetic one,
while the BIWI and AFLW2000 consist of real images. The deep learning-based
landmark-free approaches such as Hopenet [10], SSR-Net-MD [12], ResNet-BBM
[13], FSA-Net [11] and our RAFA-Net perform better than the landmark-based
ones (Dlib [1], 3DDFA [31], FAN [2], KEPLER [5] and Two-stage [3]) tested on
both the BIWI and AFLW2000 datasets. This is mainly since the landmark-free
approaches can better accommodate the domain discrepancies between training
and testing datasets.
Train on 300W-LP and test on AFLW2000: Our RAFA-Net is significantly
outperformed the SotA approaches (Table 1). Among the existing landmark-
free approaches, FSA-Caps-Fusion [11] provides the best performance. It uses
the capsule network [23] for feature aggregation and gives equal importance to
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Table 1: Comparison with the state-of-the-art approaches, which are trained on
300W-LP [31] dataset and evaluated on the respective AFLW2000 [31] and BIWI
[17] datasets. The average error is in Euler angles (degrees).

Method AFLW2000 dataset [31] BIWI dataset [17]
Yaw Pitch Roll MAE Yaw Pitch Roll MAE

Dlib (68 landmarks) [1] 23.15 13.63 10.55 15.78 16.76 13.80 6.19 12.25
3DDFA [31] 5.40 8.53 8.25 7.39 36.18 12.25 8:78 19.07
FAN (12 landmarks) [2] 6.36 12.28 8.71 9.12 8.53 7.48 7.63 7.88
KEPLER [5] - - - - 8.80 17.3 16.2 13.9
Two-stage [3] 11.92 8.25 7.47 9:21 9.49 11:34 6.00 8.94
Ground-truth landmarks [10] 5.92 11.76 8.27 8.65 - - - -
Hopenet (α = 2) [10] 6.47 6.56 5.44 6.16 5.17 6.98 3.39 5.18
SSR-Net-MD [12] 5.14 7.09 5.89 6.01 4.49 6.31 3.61 4.65
ResNet-BBM (K=0.5) [13] 5.07 6.37 4.99 5.48 4.59 7.25 6.15 6.00
FSA-Caps-Fusion [11] 4.50 6.08 4.64 5.07 4.27 4.96 2.76 4.00
RAFA-Net(Ours: γ = 0.3) 3.60 4.92 3.88 4.13 5.71 6.28 3.64 5.21
RAFA-Net(Ours: γ = 0.2) 3.52 4.93 3.91 4.12 5.67 6.26 3.60 5.17

(a) Yaw (b) Pitch (c) Roll

Fig. 5: Visualization of the proposed attentional spatial pooling using rotation
axis specific class activation map. RAFA-Net is trained on the 300W-LP dataset
and tested on AFLW2000. It shows the rotation axis specific representative fea-
tures are used for angle estimation. Visualization using BIWI images is included
in the supplementary document.

different fine-grained feature mapping. We found that by providing weighted
importance to the fine-grained to coarse spatial structures using our rotation
axis-specific attentional spatial pooling produces more robust results. Similarly,
KEPLER [5] aims to establish structural relationships between facial landmarks.
Our approach is more effective than their iterative method since we learn the
importance of fine-grained to coarse spatial structures and combine them by
considering their importance to capture the rich semantic information. We have
also evaluated the proposed approach by varying the bounding box parameter
0 ≤ γ ≤ 0.5 during testing. We have found that the overall prediction error
(MAE: 4.12) of our approach is the best (lower the better) for γ = 0.2, but the
individual prediction error for pitch and roll is slightly better for γ = 0.3.

Train on 300W-LP and test on BIWI: The overall performance (MAE)
of our RAFA-Net is inferior to the FSA-Caps-Fusion [11] and SSR-Net-MD [12]
landmark-free approaches (Table 1). However, it is better than the ResNet-BBM
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Table 2: Comparison with the state-of-the-art approaches using BIWI dataset
[17]. There are three different evaluation methods (RGB only, RGB+Depth, and
RGB+Time) by considering different modalities. The training (16 videos) data
consists of 70% of the total videos (24) and the rest eight videos being used for
testing. The average error is in Euler angles (degrees).

Method Yaw Pitch Roll MAE

RGB and Depth (RGB-D)

DeepHeadPose [15] 5.32 4.76 - -
Martin et al. [16] 3.60 2.50 2.60 2.90
3DMM [32] 2.50 1.50 2.20 2.07

RGB and Time

VGG16+RNN [19] 3.14 3.48 2.60 3.07

Single RGB frame

DeepHeadPose [15] 5.67 5.18 - -
VGG16 [19] 3.91 4.03 3.03 3.66
SSR-Net-MD [12] 4.24 4.35 4.19 4.26
FSA-Caps-Fusion [11] 2.89 4.29 3.60 3.60
RAFA-Net (ours: γ = 0.2) 3.08 4.35 2.85 3.43
RAFA-Net (ours: γ = 0.1) 3.07 4.30 2.82 3.40

[13] and Hopenet [10]. Moreover, the estimated average error in pitch is better
(6.26) than the landmark-free approaches except for the FSA-Caps-Fusion [11]
(4.96). This could be due to the BIWI dataset is captured in a controlled envi-
ronment with limited pose variations (yaw: ±77o, pitch: ±60o and roll: ±50o)
and RGB-D videos are used to obtain the ground-truth head poses. Whereas,
AFLW2000 consists of head poses with large variations (±99o) and is consistent
with the training dataset 300W-LP. Nevertheless, our RAFA-Net performs sig-
nificantly better than the landmark-based ones (Dlib [1], 3DDFA [31], FAN [2],
KEPLER [5] and Two-stage [3]) on this dataset.

Train and test on BIWI: In this experiment, we compare the performance
using only the BIWI dataset. We use the same train and test split, as provided
in [11]. The dataset consists of RGB-D sequences, including color and depth
information. The overall performance (MAE) of our approach is better than all
other methods in its peer group (single RGB frame only). For individual yaw
and pitch Euler angles, our method is very close to the FSA-Caps-Net [11] (e.g.
Yaw: 2.89 vs 3.07 and Pitch: 4.29 vs 4.30). For roll, our approach is significantly
better than the existing approaches. We also report the existing approaches,
which combine the different modalities (RGB+Depth and RGB+Time) for im-
proving performance. Our approach does not perform equally well compared to
these methods, which combine multimodal data, but not too far from them.
Additionally, our RAFA-Net performs significantly better than the multimodal
approaches [19], [15], [16] in estimating yaw. Similarly, for pitch, our RAFA-Net
is better than the DeepHeadPose [15] that uses RGB and depth information.
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Table 3: Ablation study involving the performance of individual components.
Performance comparison using our novel bounding box (BB) augmentation ver-
sus standard spatial augmentation (random scaling, shifting and cropping), as
well as rotation axis-specific attentional pooling versus single attentional pooing.
The respective model is trained on 300W-LP [31] dataset and evaluated on the
respective AFLW2000 [31] and BIWI [17] datasets.

Experiment using AFLW2000 [31] BIWI [17]
Yaw Pitch Roll MAE Yaw Pitch Roll MAE

Self-attn. only (γ = 0.3) 4.19 5.83 4.44 4.82 6.26 9.50 4.36 6.71
Attn. pooling only (γ = 0.3) 3.34 5.61 3.91 4.29 5.16 9.93 3.56 6.22

No BB augmentation 4.22 5.87 4.53 4.53 7.46 10.31 4.01 7.26
RAFA-Net (single attn) 3.93 5.51 4.13 4.52 6.85 8.45 4.18 6.49

RAFA-Net (γ = 0.2) 3.52 4.93 3.91 4.12 5.67 6.26 3.60 5.17

Evaluation using spatial augmentation only

Self-attn. only 5.83 6.54 5.74 6.04 9.00 7.42 5.67 7.36
Attn. pooling only 4.35 5.89 4.71 4.99 7.32 7.98 4.90 6.73

RAFA-Net 3.63 5.55 3.57 4.25 5.56 6.02 4.54 5.37

Table 4: Ablation study involving the performance of individual components
using our novel bounding box (BB) augmentation versus standard spatial aug-
mentation (random scaling, shifting and cropping). RAFA-Net is trained and
tested using BIWI [17] datasets.

Experiment BB Augmentation Spatial Augmentation
BIWI [17] Yaw Pitch Roll MAE Yaw Pitch Roll MAE

Self-attn. only (γ = 0.4) 3.84 5.26 3.91 4.34 4.62 5.99 4.67 5.10
Attn. pooling only (γ = 0.3) 4.23 6.00 4.11 4.80 4.98 5.54 4.25 4.92

No BB augmentation 4.37 4.74 3.98 4.36 - - - -

RAFA-Net (γ = 0.1) 3.07 4.30 2.82 3.40 3.50 4.83 3.28 3.87

4.5 Ablation Studies

We have conducted an ablation study to understand the impact of the pro-
posed novel attentional spatial pooling, rotation axis-specific self-attention, and
our data augmentation approach involving the randomization of bounding box
margin. The results are shown in Table 3 and Table 4. The performance of
RAFA-Net trained on 300W-LP and tested on the respective AFLW2000 and
BIWI datasets are presented in Table 3. It is observed that the MAE of our
attentional spatial pooling is better than the self-attention, as well as our model
without a randomized bounding box. Moreover, for AFLW2000 dataset, the per-
formance of each component in Table 3 is better than the previous best FSA-
CAPS-Fusion (MAE: 5.07) [11]. This justifies the benefits of each component.
Among the three components, our novel spatial attentional pooling module is
the best performer. This proves the significance of the proposed spatial pooling.
We have also compared the performance of RAFA-Net using our novel bounding
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Fig. 6: Effect of bounding box margin (control with parameter 0 ≤ γ ≤ 0.5) on
pose estimation error. RAFA-Net is trained on 300W-LP and evaluated on the
respective a) AFLW2000 and b) BIWI datasets. c) RAFA-Net is trained and
tested using BIWI dataset. Mean is the average of yaw, pitch and roll.

box augmentation versus standard spatial augmentation (random scaling, shift-
ing and cropping). The proposed bounding box augmentation outperforms the
standard spatial augmentation (Table 3). A similar trend is also observed when
tested on the BIWI dataset. We have also assessed the performance of the above
components using the BIWI dataset (train and test like in Table 2). The results
are presented in Table 4. The rotation axis-specific attentional spatial pooling is
also compared with the single attentional pooling predicting yaw, pitch and roll.
The axis-specific attentional pooling is outperformed the single one (Table 3).

We have also carried out the ablation study for understanding the influence of
bounding box margin parameter γ while testing. During training, we randomize
the value of 0 ≤ γ ≤ 0.5 while selecting the size of the bounding box enclosing
a face (Fig. 4). During testing, we vary the value of γ from 0 to 0.5 with an
increment of 0.1 and evaluate the prediction error. The results are reported in
Fig 6. It shows the result of our model trained on 300W-LP [31] and evaluated
on the respective AFLW2000 [31] and BIWI [17] datasets. One can observe that
as the value of γ increases, the prediction error decreases (less the better) and
reaches a minimum at γ = 0.2 and then increases. A similar trend is observed for
γ = 0.1 when the model is evaluated using BIWI (Fig. 6c). Shao et al. [13] have
also studied the effect of bounding box margin on prediction accuracy. However,
our approach is different from them since we use the randomization of γ during
training and evaluate the prediction accuracy with different γ values during
testing. Whereas, they use the same fixed value during training and testing.

We have also studied the impact of bounding box margin parameter γ on
different angle ranges (-90:-60, -60:-30, -30:0, 0:30, 30:60, and 60:90) using our
RAFA-Net. The model is trained on 300W-LP [31] and tested on AFLW2000 [31]
and BIWI [17] datasets. The results are presented in Fig. 7. It is evident that
the estimation of the yaw angle is accurate for a wide range of angles, whereas
the pitch and roll tend to be inaccurate for larger angles (absolute). This trend
is observed in both BIWI and AFLW2000 datasets. It is also observed that the
pitch and roll lean to insensitive to the γ values for smaller angles; however,
they tend to be sensitive for larger angles. A noticeable observation is that yaw
is sensitive to the γ values for a wide range of angles. Therefore, the optimal
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Fig. 7: Effect of bounding box margin (control with parameter 0 ≤ γ ≤ 0.5)
on average pose estimation error in degrees (y-axis) on different angle ranges
(x-axis) for yaw, pitch, and roll. Our model is trained on 300W-LP and tested
on the BIWI and AFLW2000 datasets.

value of γ has influenced the overall estimation accuracy. We have included the
quantitative values in tabular form in the supplementary document.

5 Conclusion

In this paper, we have proposed a simple yet effective way to learn the impor-
tance of meaningful salient features in modeling fine-grained changes for head
pose estimation using monocular images. By defining learn to attend weighting
function via exploring attentional pooling mechanism, we are able to learn the
importance of fine-grained to coarse spatial structures and combined them based
on their importance to capture rich semantic information to solve the problem in
hand. The proposed attentional pooling is employed to capture rotation axis spe-
cific semantic information, and our experiments have shown that the approach
is better than the state-of-the-art methods. The proposed approach has demon-
strated to improve the head pose estimation accuracy; however, we believe that
this idea can be adapted to other regression and classification problems. Future
work will be to apply the proposed technique for multi-task learning linking
facial expression analysis, modeling, and recognition.
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